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Alfv�en eigenmodes in up-down asymmetric tokamak equilibria are studied by a new

magnetohydrodynamic eigenvalue code. The code is verified with the NOVA code for the Solov�ev

equilibrium and then is used to study Alfv�en eigenmodes in a up-down asymmetric equilibrium of

the Experimental Advanced Superconducting Tokamak. The frequency and mode structure of

toroidicity-induced Alfv�en eigenmodes are calculated. It is demonstrated numerically that

up-down asymmetry induces phase variation in the eigenfunction across the major radius on the

midplane. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4879826]

I. INTRODUCTION

Alfv�en eigenmodes (AEs) can be excited in tokamak plas-

mas by energetic particles from various sources such as neutral

beam injection (NBI), RF heating, and fusion reactions.1–7 The

AEs can in turn influence the transport of energetic particles

and thus are important in determining the performance of

NBI/RF heating and future burning plasmas.8–12

Alfv�en eigenmodes in tokamak plasmas have been investi-

gated theoretically and experimentally for more than two

decades.6,7,13–16 Most of the linear properties of AEs are well

understood and the methods of identifying AEs in experiments

are well developed.2,17–19 The studies of AEs in the Experimental

Advanced Superconducting Tokamak (EAST) have begun from

the experiments in the year 2012.20,21 The studies at present focus

on identifying the modes and the associated driving sources. The

modes observed so far are identified as beta-induced Alfv�en

eigenmodes (BAEs).20 No obvious toroidicity-induced Alfv�en

eigenmodes (TAEs) or ellipticity-induced Alfv�en eigenmodes

(EAEs) have been observed. Recently one NBI line has been in-

stalled on EAST and the next campaign of experiments with NBI

heating is planned in July of 2014. It is expected that, with the

NBI generating energetic particles, various AEs will be routinely

observed in the EAST plasmas.

As the first step to understand AEs in the NBI heating

EAST plasmas, we need to calculate the frequency and mode

structure of AEs for typical EAST parameters. Kinetic theory

is often needed in determining the frequency, mode structure,

and the stability of AEs.22–28 Kinetic effects of fast ions can

change the frequency and mode structure of AEs away from

those predicted by the ideal magnetohydrodynamic (MHD)

theory.23,26 However, to a first approximation, the MHD

theory can be used to estimate the frequency and mode struc-

ture of AEs.17,29,30 Various properties of AEs have been stud-

ied analytically by the MHD theory.17,31,32 Analytical theory

of AEs are usually limited to simple equilibria with large

aspect-ratio and circular flux surfaces.17,31,33 To investigate

AEs in general tokamak equilibria (e.g., equilibria with elon-

gation, triangularity, and up-down asymmetry), numerical

codes are usually needed.34–39 One of the extensively used

AEs codes, the NOVA code,34 solves the ideal MHD eigenm-

odes equations in general tokamak geometry. However,

NOVA along with its kinetic extension NOVA-K40,41 is re-

stricted to up-down symmetric equilibria. The equilibria of the

EAST discharges are usually up-down asymmetric. To study

AEs in this kind of equilibria, we have built a new MHD

eigenvalue code named GTAW (General Tokamak Alfv�en

Waves) which can treat up-down asymmetric equilibria.

For up-down symmetric equilibria, the ideal MHD theory

predicts that eigenfunctions have a constant phase (or a phase

jump of p) across the major radius on the midplane. However,

measurements from the electron cyclotron emission radiometer

show that the phase of AEs changes across the radius.18,42,43

The change can be due to various effects, including kinetic and

geometric effects. In this paper, as an application of the

GTAW code, we calculate the frequency and mode structure

of TAEs in a up-down asymmetric EAST equilibrium and

demonstrate that up-down asymmetry induces radial phase var-

iation in the eigenfunction. In addition, we found that TAEs

with frequency near the lower tip of the continuum gap exist in

the equilibrium considered, whereas TAEs with frequency

near the upper tip of the gap do not exist.

The remainder of this paper is organized as follows.

Section II reviews the eigenmodes equations solved in both the

NOVA and GTAW codes. The benchmark of GTAW is pre-

sented in Sec. III. In Sec. IV, GTAW is applied to the up-down

asymmetric EAST equilibrium to calculate the frequency and

mode structure of TAEs. A brief summary is given in Sec. V.

Appendixes A–D give some formulas used in GTAW.

II. EIGENMODES EQUATIONS IN GENERAL TOKAMAK
GEOMETRY

We use the ideal MHD model and assume there is no equi-

librium flow. Consider single frequency perturbation of the form

e�ixt, then the linearized ideal MHD equations are written asa)E-mail: yjhu@ipp.cas.cn
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�x2q0n¼�rp1þ l�1
0 ðr�B1Þ �B0þ l�1

0 ðr�B0Þ �B1;

(1)

B1 ¼ r� n� B0ð Þ; (2)

and

p1 ¼ �n � rp0 � cp0r � n; (3)

where n is the plasma displacement vector, which is related

to the perturbed fluid velocity u1 by u1 ¼ �ixn, B1 and p1

are the perturbed magnetic field and thermal pressure,

respectively; B0, p0, and q0 are the equilibrium magnetic

field, thermal pressure, and mass density, respectively; l0 is

the vacuum permeability and c¼ 5/3 is the ratio of specific

heats. Equations (1)–(3) constitute a closed system for n, B1,

and p1. In order to obtain the component equations of Eqs.

(1) and (2) in general tokamak geometry, following Ref. 34,

we decompose n and B1 into components lying in the mag-

netic surface and perpendicular to it:

n ¼ nw
rW

jrWj2
þ ns

B0 �rWð Þ
B2

0

þ nb
B0

B2
0

; (4)

B1 ¼ Qw
rW

jrWj2
þ Qs

B0 �rWð Þ
jrWj2

þ Qb
B0

B2
; (5)

where W¼Wpol/(2p)þC with C being a constant and Wpol

being the poloidal magnetic flux within a magnetic surface,

nw, ns, and nb are the radial, poloidal, and parallel (to B0)

plasma displacement, respectively, Qw, Qs, and Qb are the ra-

dial, poloidal, and parallel perturbed magnetic field, respec-

tively. Using Eqs. (4) and (5) in Eqs. (1)–(3), we can obtain

the component equations for nw, ns, nb, Qw, Qs, Qb, and p1.

Following Ref. 34, we express the final equations in terms of

the following four variables: P1, nw, ns, and r � n, where

P1 � p1 þ B1 � B0=l0 is the sum of the perturbed thermal

and magnetic pressure. Then, the eigenmodes equations can

be written in the following matrix form:34

rW � r
P1

nw

 !
¼

C11 C12

C21 C22

 !
P1

nw

 !

þ
D11 D12

D21 D22

 !
ns

r � n

 !
(6)

and

E11 E12

E21 E22

� �
ns

r � n

� �
¼ F11 F12

F21 F22

� �
P1

nw

� �
; (7)

where the matrix elements are spatial differential operators

on a flux surface. For example, C11, D11, and D21 are given,

respectively, by

C11 ¼ 2jw; (8)

D11 ¼ l�1
0 jrWj2S� B2

0r
� � jrWj2

B2
0

B0 � r; (9)

D21 ¼ �jrWj2 B0 �rWð Þ
B2

0

� r þ 2jrWj2js: (10)

The expression for the other matrix elements are given in

Appendix A. In Eqs. (8)–(10), jw � j � rW is the normal

magnetic curvature with j � b � rb being the magnetic cur-

vature vector and b � B0=B0 being the unit vector of the

equilibrium magnetic field, js � j � ðB0 �rWÞ=B2
0 is the

geodesic curvature, r � B0 � J0=B2
0 with J0 being the equi-

librium current, and

S � r� B0 �rW

jrWj2

 !
� B0 �rWð Þ
jrWj2

; (11)

is the local magnetic shear.

III. BENCHMARK OF THE GTAW CODE

The GTAW code was developed to solve the eigenmo-

des Eqs. (6) and (7), which are also the equations solved in

the NOVA code.34 The difference between GTAW and

NOVA is that NOVA is restricted to up-down symmetric

equilibrium while GTAW can deal with up-down asymmet-

ric one. GTAW calculates perturbations with a single toroi-

dal mode number n and thus, the radial plasma displacement

nw is generally written as

nwðw; h; fÞ ¼
X1

m¼�1
nwmðwÞeiðmh�nfÞ; (12)

where m is the poloidal mode number, nwm(w) is the ampli-

tude of the poloidal harmonics, (w, h, f) is a flux coordinate

system with w, h, and f being the radial, poloidal, and toroidal

coordinate, respectively. The details of the flux coordinate

system (w, h, f) used in GTAW are given in Appendix B. One

thing to note is that location of h¼ 0 is chosen on the

low-field side of the midplane.

To verify GTAW, we use it to calculate the continuum

spectra and Alfv�en gap modes in a up-down symmetric

Solov�ev equilibrium and compare the results with those

given by NOVA. The Solov�ev equilibrium used in the

benchmark case is given by

W ¼ B0

2R2
0j0q0

R2Z2 þ j2
0

4
R2 � R2

0

� �2

� 	
; (13)

p0 ¼ p0a �
B0ðj2

0 þ 1Þ
l0R2

0j0q0

W; g ¼ g0; (14)

with B0¼ 1.0 T, R0¼ 1.0 m, g0¼ 1.0 mT, j0¼ 1.5, q0¼ 3.0,

and p0a¼ 1.1751� 104 Pa, where p0 is the thermal pressure

and g ¼ RB/ is the toroidal field function of the

Grad-Shafranov equation. The flux surface with the minor

radius being 0.3 m (corresponding to W¼ 2.04� 10�2Tm2)

is chosen as the boundary flux surface. The flux surfaces and

profile of the safety factor q of the equilibrium are plotted in

Fig. 1. The plasma is taken to be Deuterium and the number

density is taken to be uniform with nD¼ 2� 1019 m�3.

Figure 2 compares the n¼ 1 Alfv�en continua calculated by
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NOVA and GTAW, which shows good agreement between

them.

An n¼ 1 Alfv�en gap mode with frequency f¼ 297 kHz

is found by both NOVA and GTAW. The mode is identified

as a noncircularity-induced Alfv�en eigenmode (NAE)

because its frequency lies in the NAE gap of the Alfv�en con-

tinua, as is shown in Fig. 3.

The eigenfunctions of the NAE given by GTAW show

that the poloidal harmonics with m¼ 2 and m¼ 5 are domi-

nant, which is consistent with the expectation that a NAE is

formed due to the coupling between m and mþ 3 harmonics.

Before comparing the eigenfunctions given by the two codes,

we note, as is mentioned above, NOVA is restricted to up-

down symmetric equilibrium and, for this case, it can be

shown that the amplitude of all the radial displacement har-

monics can be transformed to real functions. For this reason,

NOVA uses directly real functions for the radial displace-

ment in its calculation. In GTAW, the amplitude of the

poloidal harmonics of the radial displacement are complex-

valued functions. The Solov�ev equilibrium used here is up-

down symmetric and the results given by GTAW indicate

the poloidal harmonics of the radial displacement can be

transformed (by multiplying a constant complex number) to

real functions. After transforming the radial displacements to

real functions, the results can be compared with those of

NOVA. Figure 4 compares the radial structure of the

dominant poloidal harmonics (m¼ 2, 3, 4, 5) given by the

two codes, which also shows good agreement between the

two codes.

IV. TAEs IN EAST DISCHARGE #38300

In this section, as an application of the GTAW code, we

calculate the frequency and mode structure of TAEs in a up-

down asymmetric equilibrium of EAST tokamak. The EAST

equilibrium used here was reconstructed by the EFIT code45

by using the constraints from experimental diagnostics in

EAST discharge #38300 at 3.9 s.46 Figure 5 plots the flux

surfaces of the equilibrium and the flux coordinates grids

within the last closed flux surface (LCFS) used in the numer-

ical calculation. The equilibrium is a double-null configura-

tion with the LCFS connected with the lower X point. The

up-down asymmetry can be seen from the shape of the LCFS

(besides the shape of flux surfaces, the up-down asymmetry

also refers to the distribution of some quantities, e.g., jw, on

a flux surface).

The profiles of the safety factor q, thermal pressure p0,

and electron number density ne are plotted in Fig. 6, where it

can be seen that p0 and ne0 have transport barriers near the

boundary. The electron number density ne0 is used here to

FIG. 1. The flux surfaces (a) and safety factor profile (b) of the Solov�ev

equilibrium used in the benchmark case.

FIG. 2. Comparison of the n¼ 1 Alfv�en continua calculated by NOVA and

GTAW. The continua are calculated in the slow sound approximation44 and

the equilibrium used is the Solov�ev equilibrium given in Eqs. (13) and (14).

FIG. 3. The frequency f¼ 297 kHz is within the NAE gap of the Alfv�en con-

tinua of the Solov�ev equilibrium. Also plotted are the m¼ 2 and m¼ 5

Alfv�en continua in the cylindrical limit.

FIG. 4. The dominant poloidal harmonics (m¼ 2, 3, 4, 5) of the radial dis-

placement of an n¼ 1 NAE as a function of the radial coordinate. The fre-

quency of the mode is f¼ 297 kHz. The equilibrium is given by Eqs. (13)

and (14).
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determine the plasma mass density through the approximate

relation q0� ne0mD, where mD is the mass of Deuterium ion.

The continuum spectra of the equilibrium are plotted in

Fig. 7, where two approximations of the full continua are

also presented, namely, the zero-b and slow sound approxi-

mations,23,44 where b is the ratio of the thermal to magnetic

pressure. The full ideal MHD continua includes the coupling

between Alfv�en and sound continua while the zero-b approx-

imation (corresponding to c¼ 0) removes the sound waves

from the continua, giving the Alfv�en branch of the continua

without the thermal pressure contribution. The slow sound

approximation also removes the sound branch of the con-

tinua but partially retaining the thermal pressure contribution

to the Alfv�en branch. The obvious difference between the

slow sound and zero-b approximations is that the former has

additional frequency gaps (BAE gaps) below the TAE gaps

while the latter does not. The continua provide useful infor-

mation for the experimental observation of AEs, namely, the

approximate frequency and radial location of possible AEs.

In Fig. 7(c), there are three obvious TAE gaps, which are

formed due to the coupling of m and mþ 1 harmonics with

m¼ 1, 2, 3, respectively. In each of the gaps, there can be

several AEs with their frequencies within the gap and their

radial structures peaking near the gap center. With the toroi-

dal mode number n increasing, the number of TAE gaps usu-

ally increases. For instance, Fig. 8 plots the n¼ 4 Alfv�en

continua, where it can be seen that there are more than eight

TAE gaps.

We used GTAW to search modes in the frequency range

of the n¼ 1 TAE gaps. A mode with frequency f¼ 103 kHz

FIG. 5. (a) Flux surfaces of the equilibrium of EAST discharge #38300 at

3.9 s; (b) Flux coordinates grids within the LCFS corresponding to uniform

poloidal flux and uniform poloidal arc length (the grids actually used in the

numerical calculation are much finer than those plotted in the figure). The

coordinate lines corresponding to h¼ 0 and h¼p/2 are labeled in (b), where

h is the poloidal angle. The dashed lines in (a) and (b) indicate the LCFS,

which has Zmax ¼ 0:67 m and Zmin ¼ �0:80 m. The location of the magnetic

axis is at (R¼ 1.91 m, Z¼�1.35� 10�2m).

FIG. 6. The radial profiles of the pressure, electron number density, and

safety factor for EAST discharge #38300 at 3.9 s.

FIG. 7. Full (a), zero b approximation

(b), and slow sound approximation (c)

of n¼ 1 continua. The poloidal harmon-

ics included in the numerical calcula-

tion are in the range m � [�20, 40].

Also plotted on (c) are the m¼ 1, 2, 3,

4, 5 Alfv�en continua in the cylindrical

limit. The equilibrium used is for EAST

discharge #38300 at 3.9 s.
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was found. The radial structure of the mode is plotted in

Fig. 9(a), which shows that the poloidal harmonics with

m¼ 1 and m¼ 2 are dominant. Figure 9(b) plots the fre-

quency of the mode (f¼ 103 kHz) on the graph of the Alfv�en

continua, which shows that the frequency is within the TAE

gap formed due to the coupling of the m¼ 1 and m¼ 2 har-

monics. The mode is thus identified as a TAE mode.

The boundary condition used in obtaining the results in

Fig. 9(a) is that the radial plasma displacement nw is zero

both at the magnetic axis and the LCFS. Examining Fig.

9(a), we can find that the mode structure has singularities at

two radial locations
ffiffiffiffi
w

p
¼ 0:74 and

ffiffiffiffi
w

p
¼ 0:97. These two

locations are also where the frequency of the mode intersects

the continua, as is shown in Fig. 9(b). This indicates that the

singularities are due to the continuum resonance. These

kinds of singularities in the mode structure is typical for real-

istic equilibria where the Alfv�en continua gaps have shear

across the radius and thus, a given frequency in a gap usually

intersects the continuum at some locations. The definition of

the Alfv�en gap modes requires the frequency of the mode

does not intersect the continua. At the location where the fre-

quency intersects the continua, the mode should be locally

identified as a singular continuum mode, instead of an

Alfv�en gap mode. For realistic equilibria, an Alfv�en eigen-

mode found numerically is usually a combination of an

Alfv�en gap mode and singular continuum modes, as is seen

in the case of Fig. 9(a). Analytical theory predicates that the

mode structure has a logarithm singularity at the point of

continuum resonance. This kind of singularity can be repro-

duced by GTAW code (as is shown in Fig. 9(a), the singular-

ity at
ffiffiffiffi
w

p
¼ 0:74 is of logarithm type). However, the

structure near the continuum resonance is sensitive to how

the numerical grids are distributed near the point of the con-

tinuum resonance (the peak of the logarithm singularity can

be easily made lower/higher and wider/narrower by adjusting

the radial grids). This kind of singular structure can some-

times blur the mode structure of the gap modes. In numerical

calculations, we can avoid the continuum resonance and thus

obtain pure gap modes by restricting the radial range to a

sub-range near the center of a gap. The boundary condition

in this case is set to that nw is zero at both the end points of

the sub-range. Using this strategy, we recalculate the mode

structure and frequency of the TAE in Fig. 9. The results are

plotted in Fig. 10, which indicates that the frequency and

mode structure in the sub-range are similar to the results

given in Fig. 9.

Next, we examine the phase variation of the eigenfunc-

tion across the major radius on the midplane. For a up-down

symmetric equilibrium, the midplane is special in that it is

the mirror plane of the equilibrium. As is mentioned above,

for a up-down symmetric equilibrium, the amplitude of the

radial displacement of a gap mode can be transformed to a

real-valued function. Thus, the phase variation of a eigen-

mode across the radius on the midplane is zero (or a phase

jump of p if eigenfunctions change signs) (note that the loca-

tion of h¼ 0 is chosen on the midplane and the amplitude by

definition is the value of the perturbation at h¼ 0). For the

up-down asymmetric equilibrium considered here, Figure 10

shows that the real and imaginary parts of the poloidal har-

monics have slightly different radial dependence, which indi-

cates that the eigenfunction cannot be exactly transformed to

a real function across the radius. This implies that the eigen-

function has phase variation across the radius. The phase of

the eigenfunction in Fig. 10 is plotted by the solid line in

Fig. 11, which shows that the phase changes across the ra-

dius, where the phase is defined relative to the phase at the

point very near the left end-point of the computational

region. The phase variation in this case is small (only

0.2 rad), which is consistent with the fact that the up-down

asymmetry of the equilibrium in Fig. 5 is also small. Since

FIG. 8. The slow-sound approximation44 of the n¼ 4 Alfv�en continua for

the equilibrium of EAST discharge #38300 at 3.9 s. Also plotted on the fig-

ure are the m¼ 4, 5, 6, 7, 8, 9 Alfv�en continua in the cylindrical limit.

FIG. 9. (a) Amplitude of the poloidal harmonics (m � [�3, 8]) of an n¼ 1 TAE as a function of the radial coordinate. (b) The frequency of the TAE mode

(f¼ 103 kHz) plotted on the Alfv�en continua. Also plotted in (b) are the m¼ 1 and m¼ 2 Alfv�en continua in the cylindrical limit. Both the TAE and the Alfv�en

continua are calculated in the slow sound approximation.23,44 The equilibrium is for EAST discharge #38300 at 3.9 s.
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the phase variation is small, we need to verify that the small

phase variation is due to the up-down asymmetry, instead of

numerical errors. In order to achieve this, it is desirable to do

a scan in the degree of up-down asymmetry and show that

the phase variation relates to the degree of up-down asym-

metry. However, for a given equilibrium, there is no method

of changing the degree of up-down asymmetry while keep-

ing the equilibrium still an exact one. As a coarse method,

we vary the degree of up-down asymmetry artificially by

directly varying one of the equilibrium quantities jw and

keeping the others unchanged. The way we modifies jw is as

follows: expand jw(w, h) in terms of the Fourier series of h
on every flux surface, then multiply the coefficient of the first

harmonic sinh by a factor a1, and then reconstruct jw by

using the modified Fourier coefficients. Since the term sinh
is a up-down asymmetric term, modifying this term will

change the degree of up-down asymmetry. The factor a1 can

be considered as a parameter characterizing the degree of

up-down asymmetry. Figure 12 plots the original and the

modified jw on one of the flux surfaces, which shows that

the degree of up-down asymmetry increases with the increas-

ing of the value of a1.

Figure 11 plots the phase variation across the radius for

different values of a1, which shows that the phase variation

increases with the increasing of the value of a1, i.e., the

phase variation increases with the increasing of the degree of

up-down asymmetry.

Next, we examine the parity of the TAE in Figure 10.

Figure 10(a) shows that the m¼ 1 and m¼ 2 harmonics inter-

fere constructively at the low-field side of the midplane (note

again that the location of h¼ 0 is on the low field side of the

midplane and the amplitudes by definition are the values of

the poloidal harmonics at h¼ 0). This kind of mode structure

(i.e., ballooning structure) corresponds to the even TAE (the

usual TAE) reported in Refs. 5 and 47, where the frequency

of the mode was reported to be near the low continuum tip.

As is shown in Fig. 10(b), the frequency of the mode

(f¼ 102 kHz) is indeed near the low continuum tip (instead

of the upper tip) of the gap formed due to the coupling of the

m¼ 1 and m¼ 2 harmonics. By scanning the guess fre-

quency, we attempted to find TAEs with odd parity.

However, the results indicate all the TAEs found are of even

parity. To explain this, we examine the existence condition

of the odd TAEs, which requires that the magnetic shear

should be weak and the pressure profile be flat near the radial

location of the gap tip. Specifically, the condition is given

by48

a < �s2 þ e; (15)

where a is the normalized pressure gradient defined by a ¼ �8p
Raq2B�2

a dp0=dr with r being the minor radius of flux surfaces,

FIG. 11. The phase variations across the radius on the midplane for different

values of the degree of up-down asymmetry.

FIG. 12. The original and the modified values of the normal magnetic curva-

ture jw as a function of the poloidal angle h on the
ffiffiffiffi
w

p
¼ 0:31 flux surface.

The a1¼ 1 case corresponds to the original jw and the a1¼ 120 corresponds

to the modified one.

FIG. 10. (a) Amplitude of the poloidal harmonics (m � [�8, 18]) of an n¼ 1 TAE (the m¼ 1 and m¼ 2 harmonics are dominant, with m¼ 3, m¼ 4, and all

other harmonics being neglectable). (b) The frequency of the TAE (f¼ 102 kHz) plotted on the graphic of the Alfv�en continua. The radial range of the line of

102 kHz denotes the radial range used in the numerical calculation, which is chosen in order to avoid the continuum resonance. Also plotted on (b) are the

m¼ 1 and m¼ 2 Alfv�en continua in the cylindrical limit. The equilibrium is for EAST discharge #38300 at 3.9 s.
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Ra and Ba being the major radius and strength of the equilib-

rium magnetic field at the magnetic axis, s is the global mag-

netic shear defined by s¼ rq�1dq/dr, and e is the inverse

aspect ratio at the location of the mode. For the (m¼ 1,

m¼ 2) TAE gap in Fig. 10(b), we have a¼ 0.31, s¼ 0.46,

e¼ 0.08, and the inequality (15) is invalid, i.e., the existence

condition of odd TAEs is not satisfied for this case, which

explains why no odd TAEs can be found in the (m¼ 1,

m¼ 2) TAE gap.

Next, we investigate the n¼ 1 TAEs in the (m¼ 2,

m¼ 3) TAE gap. A TAE with frequency f¼ 56 kHz was

found by GTAW. The radial structure of the mode is plotted

in Fig. 13(a), which shows the m¼ 2 and m¼ 3 poloidal har-

monics are dominant. The TAE found is also of even parity

and no odd TAE can be found in this gap. To explain this,

we examine again the existence condition (15) for the odd

TAEs. For the (m¼ 2, m¼ 3) TAE gap in Fig. 13(b), we

have a¼ 0.04, s¼ 0.51, e¼ 0.18, and the inequality (15) is

invalid, which explains why no odd TAEs can be found.

Figure 14(a) plots the contour of the radial displacement

nw of the n¼ 1 TAE with frequency f¼ 102 kHz on the

poloidal plane, where the poloidal structure with m¼ 2 can

be seen. Figure 14(a) shows, as expected, that nw on the

low-field side is stronger than that of the high field side, i.e.,

the mode exhibits a ballooning structure. Figure 14 also

shows that the TAE is localized in the core region of the

plasma. Figure 14(b) plots the contour of the radial

displacement nw of the n¼ 1 TAE with frequency f¼ 56 kHz

on the poloidal plane, where an m¼ 3 ballooning poloidal

structure can be seen. Figure 14 shows that the TAE is local-

ized near the plasma boundary.

The radial displacement obtained from an eigenvalue

code is useful in that it relates to the electron number density

fluctuation through (the compressible term is neglected)

ne1

ne0

¼ � 1

ne0

dne0

dW
nw; (16)

where the number density fluctuation ne1 can be measured in

experiments by microwave reflectometers and beam-emission

spectroscopy.30,43 This provides a way to compare the results

of an eigenvalue code with experimental measurements. The

radial displacement also relates approximately to the electron

temperature fluctuation through

Te1

Te0

¼ � 1

Te0

dTe0

dW
nw; (17)

where the electron temperature fluctuation Te1 can be meas-

ured in experiments by electron cyclotron emission radio-

meters.18 This provides another way to compare the results

of an eigenvalue code with experimental measurements.

These kinds of comparisons are planned for the next cam-

paign of experiments on the EAST tokamak.

FIG. 13. (a) Amplitude of the poloidal harmonics (m � [�8, 18]) of an n¼ 1 TAE (with the two dominant poloidal harmonics being m¼ 2 and m¼ 3). (b) The

frequency of the TAE (f¼ 56 kHz) plotted on the graphic of the Alfv�en continua. The radial range of the line of 56 kHz denotes the radial range used in the nu-

merical calculation, which is chosen in order to avoid the continuum resonance. Also plotted on (b) are the m¼ 2 and m¼ 3 Alfv�en continua in the cylindrical

limit. The equilibrium is for EAST discharge #38300 at 3.9 s.

FIG. 14. Contour plot of the radial dis-

placement nw of the f¼ 102 kHz (a)

and f¼ 56 kHz (b) TAEs on the poloi-

dal plane. The dashed line in the figure

indicates the LCFS and the small circle

in the center indicates the location of

the magnetic axis.
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V. SUMMARY

The ideal MHD eigenmodes equations in up-down

asymmetric tokamak geometry were solved numerically by

the newly built code GTAW. The code was verified with the

NOVA code for the Solov�ev analytical equilibrium and then

was used to study Alfv�en eigenmodes in the EAST tokamak.

The frequency and mode structure of TAEs were calculated.

It is numerically demonstrated that up-down asymmetry

induces phase variation in the eigenfunction across the radius

on the midplane. In addition, we found that TAEs with fre-

quency near the lower tip of the continuum gap exist in the

equilibrium considered, whereas TAEs with frequency near

the upper tip of the gap do not exist. The results are consist-

ent with the analytical theory for the existence condition of

the TAEs.

One feature of the GTAW code is that it can use directly

equilibria reconstructed by EFIT from experiments, and thus

makes the comparison of the results with experimental

observations easy. The further development of the code will

be to include consistently plasma rotation, continuum damp-

ing, and non-perturbative effects of energetic particles.
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APPENDIX A: SURFACE OPERATORS IN THE
EIGENMODE EQUATIONS

The matrix elements in Eqs. (6) and (7) are spatial dif-

ferential operators on a flux surface. The expressions of these

operators were given in Ref. 34, where the vacuum perme-

ability l0 was dropped. Here, for the convenience of refer-

ence, we provide the full expression of these operators

C12 ¼ x2q0 þ l�1
0 jrWj2B0 � r

B0 � r
jrWj2

 !

� ðl�1
0 jrWj2S� B2

0rÞ
jrWj2

B2
0

Sþ 2jw
dp0

dW
; (A1)

C21 ¼ 0; (A2)

C22 ¼ �jrWj2r � rW

jrWj2

 !
; (A3)

D12 ¼ 2cp0jw; (A4)

D22 ¼ jrWj2 þ cp0jrWj2

x2q0

B0 � r
B0 � r

B2
0

� �
; (A5)

E11 ¼ �
x2q0jrWj2

B2
0

� l�1
0 B0 � r

jrWj2

B2
0

B0 � r
 !

; (A6)

E12 ¼ �2jscp0; (A7)

E21 ¼ 2l�1
0 js; (A8)

E22 ¼
l�1

0 B2
0 þ cp0

B2
0

þ l�1
0

cp0

x2q0

B0 � r
B0 � r

B2
0

� �
; (A9)

F11 ¼ 2js �
B0 �rW

B2
0

� �
� r; (A10)

F12 ¼ rB0 � r � l�1
0 B0 � r

jrWj2

B2
0

S

 !
þ 2js

dp0

dW
; (A11)

F21 ¼ �
1

B2
0

; (A12)

F22 ¼ �l�1
0

2

jrWj2
jw: (A13)

APPENDIX B: EXPRESSION OF OPERATORS B0 �$,
(B0 3 $W/B0

2) �$, AND $W�$ IN FLUX COORDINATES

The eigenmodes Eqs. (6) and (7) were solved numerically

in the flux coordinate system (w, h, f), where w is a radial

coordinate defined by w¼ (W�W0)/(Wa�W0) with W0 and

Wb being, respectively, the values of W at the magnetic axis

and boundary flux surface, h is an equal-arc poloidal angle, f
is a generalized toroidal angle defined by f � /�
qðwÞdðw; hÞ with d(w, h) defined by

�W0q
@d
@h
þ 1

� �
R2

J ¼ g; (B1)

where W0 �dW=dw¼1=ðWa�W0Þ;J ¼ðrw�rh �rfÞ�1

is the transformation Jacobian of (w, h, f) coordinates. The

form of J used in GTAW is given by

J ¼ �

þ
dlp

2p
R

jrwj ; (B2)

where lp is the poloidal arc length along magnetic surfaces.

The poloidal angle h determined by this Jacobian is an

equal-arc-length poloidal angle. The location h¼ 0 is chosen

to be on the low field side of the midplane and the positive

direction of h is chosen to be counter clockwise when

observers look along the direction of r/, where the cylindri-

cal coordinate system ðR;/; ZÞ is a right-hand one, with the

positive direction of Z pointing vertically up.

In (w, h, f) coordinates, the contravariant and covariant

form of B0 are written, respectively, as

B0 ¼ �W0 rf�rwþ qðwÞrw�rh½ � (B3)

and
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B0 ¼ W0
J
R2
rw � rhþ gq

@d
@w
þ gdq0

� �
rw

þ � B2
0

W0
J � gq

� �
rhþ grf: (B4)

Using Eqs. (B3) and (B4), the surface operators, B0 � r and

ðB0 �rW=B2
0Þ � r in the eigenmode equations are written,

respectively, as

B0 � r ¼ �W0J �1 @

@h
þ q

@

@f

� �
; (B5)

B0 �rW

B2
0

� r ¼ 1þW0g
J�1

B2
0

q

 !
@

@f
þW0g

J�1

B2
0

@

@h
:

(B6)

The radial differential operator rW�r in (w, h, f) coordi-

nates is written as

rW � r ¼ W0jrwj2 @

@w
þW0ðrh � rwÞ @

@h

�W0
@ðqdÞ
@w
jrwj2 þ q

@d
@h
rh � rw

� 	
@

@f
: (B7)

APPENDIX C: MAGNETIC CURVATURE AND LOCAL
MAGNETIC SHEAR

The eigenmodes Eqs. (6) and (7) involve three important

magnetic geometry quantities, namely, the normal magnetic

curvature jw, the geodesic curvature js, and the local mag-

netic shear S. Next, we give the formulas for calculating

these quantities. In the (w, h, f) coordinates, the normal cur-

vature is written as

jw ¼ �W03R
J�3

B2
0

RhhZh � RhZhhð Þ þW0g2

B2
0

1

R2

1

J Zh; (C1)

and the geodesic curvature is written as

js ¼
J�1g

B3
0

W0
@B0

@h
; (C2)

which indicates that the geodesic curvature is proportional to

the poloidal derivative of the magnetic field strength. In Eq.

(C1), Rh, Zh, Rhh, and Zhh denote the partial derivatives with

respect to the subscripts. The local magnetic shear is written

as

S ¼ @

@w
gJ

W0R2

� �
þ @

@h
gJ

W0R2

rw � rh

jrwj2

 !" #
J�1; (C3)

which is related to dq/dw through

hSi ¼ � 2pð2p

0

J dh

dq

dw
; (C4)

where h…i is the flux surface averaging operator defined by

h…i �

ð2p

0

ð…ÞJ dhð2p

0

J dh

: (C5)

Equation (C4) can be used to verify that the numerical

implementation of S is correct. The local magnetic shear can

also be calculated in the cylindrical coordinate system,

which gives

S ¼ 1

W2
R þW2

Z

1

R2
gWZZ þ g0W2

Z þ gWRR þWR
g0WRR� g

R

� �

� 1

W2
R þW2

Z

� �2 g

R2
4WRWRZWZ þ 2W2

ZWZZ þ 2W2
RWRR

� �
;

(C6)

where WR, WZ, WRR, WZZ, WRZ denote the partial derivatives

with respect to the subscripts. In addition, the parallel current

term r � B0 � J0=B2
0 is written as

r ¼ g
dp0

dW
1

B2
0

þ 1

l0

dg

dW
: (C7)

The radial profiles of jw, js, S, and l0r for EAST discharge

#38300 at 3.9 s are plotted in Fig. 15.

APPENDIX D: NUMERICAL METHODS IN GTAW CODE

Since we consider perturbation with a single toroidal

number n, the differential with respect to the toroidal angle f
can be treated analytically. The differential with respect to h
is treated by using the Fourier spectrum expansion method.

After taking the inner product over h and using Eq. (7) in Eq.

(6) to eliminate the poloidal harmonics of ns and r � n in

favor of those of P1 and nw, we obtain the following system

of ordinary differential equations for the poloidal harmonics

of P1 and nw:

d

dw

P
ð1Þ
1 ðwÞ

�

P
ðLÞ
1 ðwÞ

nð1Þw ðwÞ
�

nðLÞw ðwÞ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
¼ A

P
ð1Þ
1 ðwÞ

�

P
ðLÞ
1 ðwÞ

nð1Þw ðwÞ
�

nðLÞw ðwÞ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; (D1)

where L is the total number of the poloidal harmonics

included in the Fourier expansion, A is a 2L� 2L matrix

with the matrix elements being functions of w and x2, P
ðjÞ
1

and nðjÞw with j¼ 1, 2,…, L are the amplitudes of the poloidal

harmonics of P1 and nw, respectively (nðjÞw is different

from nwj defined in Eq. (12); the relation between them is

nðjÞw ¼ nwðjþl�1Þ with l being the smallest harmonics number

(can be negative) included in the Fourier expansion).
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We use fixed boundary conditions for the radial plasma

displacement nw, i.e., nw is set to be zero at both the ending

points of the radial computational region. Given the values

of all the poloidal harmonics of P1 and nw at the left end-

point, Eq. (D1) can be integrated by the first-order Euler

scheme from the left endpoint to the right one. Note that we

are solving a two-points boundary problem for which the

values of the poloidal harmonics of P1 are unknown at the

left endpoint. Further note that we are solving an eigenvalue

problem for which there is an additional equation for x2

dx2

dw
¼ 0: (D2)

Noting these, it is natural to use the shooting method to solve

the eigenvalue problem in Eq. (D1). The shooting process

finally reduces to finding the root of a system of multivari-

able nonlinear equations F(X)¼ 0. In our case, X and F(X)

are given by

X ¼

P
ð1Þ
1 ðwaÞ

P
ð2Þ
2 ðwaÞ

�

P
ðL�1Þ
1 ðwaÞ
x2ðwaÞ

0
BBBBBBBBB@

1
CCCCCCCCCA
; FðXÞ ¼

nð1Þw ðwbÞ

nð2Þw ðwbÞ
�

nðL�1Þ
w ðwbÞ

nðLÞw ðwbÞ

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; (D3)

where wa and wb are the two end-points. The value of the

last poloidal harmonic of P1 at the left end-point, i.e.,

P
ðLÞ
1 ðwaÞ, is set to be a small nonzero constant during the

shooting process. Once a root is obtained for F(X)¼ 0, the

last component of X gives the eigenfrequency and the eigen-

functions can be obtained by integrating Eq. (D1) with this

eigenfrequency.
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