
Programming in Lisp/Scheme

by Youjun Hu

Institute of Plasma Physics, Chinese Academy of Sciences, China
Email: yjhu@ipp.cas.cn

1 Introduction

Lisp is the second-oldest high-level programming language (after Fortran). Richard
Stallman said in one of his articles: �The most powerful programming language is Lisp.
If you don't know Lisp (or its variant, Scheme), you don't know what it means for a
programming language to be powerful and elegant. Once you learn Lisp, you will see what
is lacking in most other languages.� This made me curious and motivated me to learn Lisp
begining from September of 2015. �Powerful� in the world of Turing-complete program-
ming languages means that you can do more with the language in a �nite amount of time.

(Another big name in Lisp community is Paul Graham, who wrote many inspiring essays
on Lisp[5]. I read most of his essays and found they provide new insights on many issues,
not just programming.)

I primarily use Guile, a GNU implementation of the Scheme. I also use Racket (previously
known as PLT scheme), another famous implementation. Scheme is mostly functional (but
not purely functional). A program being functional means that the program accomplishes
its task by evaluating various expressions. Being functional also means that a function
itself is a type of value, which can be, for example, stored in a variable, passed as an
argument to a function, returned from a function invocation, just like a traditional value
such as an integer.

All function invocations (including basic arithmetic operations) in Lisp are based on the
parenthezed-pre�x-notation, i.e., (operator operands1 operands2). For example (+ 1
2) is a function call. This notation is also used for other syntax structures (called special
forms) in Lisp such as the if conditional structure:

(if my_test exp1 exp2)

A subexpression in the above can also be another function call (or special form), which will
introduce another pair of round-brackets. This kind of nest can be of arbitary levels. As a
result, Lisp programs are full of round-brackets, which makes Lisp source codes look messy
and not so readable if without strong support from a text editor (e.g. automatic indenting).

The parentheses (round-brackets) are also used as the external representation of the list
data structure in Lisp. Therefore, people often say that souce codes of Lisp take the same
form as the list data structure.

Multiple whitespaces (including line-breaks) are equivalent to a single whithespace in Lisp.

2 Lisp/Scheme interpreter

On my Ubuntu desktop computer, I used aptitude to install Common-Lisp, clisp. Later
I switched to guile and Racket. I will primarily use guile in this note.

1



2.1 Run Lisp code interactively

In a terminal, type guile to invoke the scheme interpreter:

yj@pic:~$ guile
guile> (display "Hello World! \n")
Hello World!

Users interact with a Scheme interpreter though a read-evaluate-print loop (REPL). Scheme
waits for the user to type an expression, reads it, evaluates it, and prints the return value.

The readline support for guile command line is not loaded by default and can be loaded
and activated by adding the following two lines of code in the init �le ~/.guile:

(use-modules (ice-9 readline))
(activate-readline)

2.2 Run Lisp scripts

2.2.1 Method 1

Create a �le called h.scm with the following content:

;This line is a comment
(display "Hello, World! \n")

Then run the above script at command line:

$ guile -s h.scm

2.2.2 Method 2

Like Perl, Python, or any shell, Guile can interpret script �les. A Guile script is simply a
�le of Scheme code with some extra information at the beginning which tells the operating
system how to invoke Guile, and then tells Guile how to handle the Scheme code. Add the
interpreter at the beginning of h.scm:

#!/usr/bin/guile -s
!#

and then make the �le executable

chmod u+x h.scm

Then we can run it directly by ./h.scm (assuming h.scm is in the current directory).

Note that there is an additional line starting with !#. This is because #!..!# indicates
multiline comments (block comments) in guile. When bash sees #! at the �rst line of a
�le, it considers the name following #! as an interpreter and invoke the interpreter with
the name of the present �le as an argument. After guile gets control, it reads the �le
again from the begining. In this case, guile see #!..!#, which is block comment and so
is ignored by guile. That is the reason why another line with !# is needed in the script.

3 Type of values
In dynamically typed languages such as Scheme, types are used to categorize values, rather
than variables. The term �value� can be used exchangeably with �data�, which is often used
when making a comparison with �program�. Scheme provides the following value types:

� Simple value types: boolean, number, char, symbol.

2



� Compound value types: string, vector, pair, procedure, port

Type of a value can be tested by the corresponding predicates:

boolean? number? char? symbol? string?
vector? pair? procedure? port?

Boolean: #f is logical false, #t is logical true. Although there is a separate boolean type,
any Scheme value can be used as a boolean value for the purpose of a conditional test: all
values count as true in such a test except for #f.

number�>complex�>real�>rational�>integer. Scheme numbers can be integers (eg, 42),
rationals (22/7), reals (3.1416), or complex (2+3i). In scheme, an integer is a rational, is
a real, is a complex number, is a number. Predicates exist for testing the various kinds of
numberness:

(number? 42) =========>>>>>>>>> #t
(number? #t) =========>>>>>>>>> #f
(complex? 2+3i) =========>>>>>>>>> #t
(real? 2+3i) =========>>>>>>>>> #f
(real? 3.1416) =========>>>>>>>>> #t
(real? 22/7) =========>>>>>>>>> #t
(real? 42) =========>>>>>>>>> #t
(rational? 2+3i) =========>>>>>>>>> #f
(rational? 3.1416) =========>>>>>>>>> #t
(rational? 22/7) =========>>>>>>>>> #t
(integer? 22/7) =========>>>>>>>>> #f
(integer? 42) =========>>>>>>>>> #t

Integers need not be speci�ed in decimal (base 10) format. They can be speci�ed in binary
by pre�xing the numeral with #b. Thus #b1100 is the number twelve. The octal pre�x is
#o and the hex pre�x is #x. (The optional decimal pre�x is #d.)

Character data are represented by pre�xing the character with #\. Thus, #\c is the char-
acter c. Some non-graphic characters have more descriptive names, e.g., #\newline, #\tab.
The character for space can be written #\ , or more readably, #\space. The character
predicate is char?

Symbol is a sequence of characters that can not be confused with other values, namely,
characters, booleans, numbers, compound data. Thus, this‑is‑a‑symbol, i8n, <=>, and
$!#* are all symbols; whereas 6, ‑i (a complex number), #t, "this‑is‑a‑string", and
(barf) (a list) are not. Symbols and strings are separate data types.

Symbols are also atomic, we cannot split them apart. The primary operation we perform
on symbols is comparison (determining whether two symbols are the same).

A symbol denotes only itself. Unlike other simple values (booleans, characters, numbers),
symbols are not self-evaluating. This design is because of the practice that a sequence of
characters that is a symbol is reserved by Scheme as an identi�er (rather than a value), and
is evaluated to the value the identi�er is bound (if it is bound, otherwise raises an error),
rather than the symbol literal itself.

When we want to refer to something as a value (data) involved in a computation, rather
than as a program (speci�cally, the name of some other value, an expression to be evalu-
ated), we put an apostrophe (usually pronounced �quote�) in front of it. In e�ect, by quoting
something, we're telling Scheme to take it literally and without further interpretation or
evaluation. You can quote many di�erent data, not only limitted to symbols. For example:

3



(symbol? '(1 2 3)) ;=>#f
(symbol? 'sample) ;=>#t
(symbol? '2) ;=>#f
(integer? '2) ;=>#t

In e�ect, an apostrophe introduces data i.e., values, which can be of any types. What fol-
lows the apostrophe and ends at a proper location (determined by Lisp syntax) is the data
itself; apostrophe itself is not a part of the data. For the practical purpose of distinguishing
between data and program for programmers, the apostrophe can be considered as a part of
external representation of the data, as an indicator of data. For values of boolean, number,
char and string, they are self-evaluating, and thus it is not necessary to quote them, but
in order to have a sharp distinguishment between data and program, it is instructive to
quote them.

To be uni�ed with Lisp's parentheses pre�x syntax, Lisp also introduces the quote special
form:

(symbol? (quote sample)) ;=>#t

4 Compound data structure: string, vector, pair/list,
procedure, port

4.1 String

string: a sequence of characters enclosed by double quotation markers is a string. Strings
evaluates to themselves:

"hello"
=> "hello"

The characters in a given string can be individually accessed and modi�ed. The procedure
string‑ref takes a string and a (0-based) index, and returns the character at that index:

(string-ref "Hello" 0)
=> #\H

Other useful string methods include string-append, make-string, string-set!.

4.2 Vectors

Vectors are sequences like strings, but their elements can be anything, not just characters.
Indeed, the elements can be vectors themselves, which is a good way to generate multidi-
mensional vectors.

Scheme's representation of a vector value: a sharper sign # followed by the vector's contents
enclosed in parentheses. eg.

#(0 1 2)

Here's a way to create a vector of the �rst �ve integers:

(vector 0 1 2 3 4)

4



=========>>>>>>>>> #(0 1 2 3 4)

In analogy with make‑string, the procedure make‑vector makes a vector of a speci�c
length:

(make-vector 5)

The procedures vector‑ref and vector‑set! access and modify vector elements. The
predicate for checking if something is a vector is vector?.

4.3 Pair and list

The following pair:

(a . (b . (c . d)))

is equivalent to the following list:

(a b c d)

List predicat is list?

4.4 Procedure

This value is returned by a lambda expression (discussed later). Procedure values do not
have external representations for readin syntax.

4.5 Port

Port value do not have external representations for readin syntax.

5 Expressions

Like other functional programming languages, basic elements of Scheme code are expres-
sions. Expressions can be evaluated, producing a value. The most fundamental expressions
are literal expressions:

#t ;=>#t
23 ;=>23

This notation means that the expression #t evaluates to #t, that is, the value for �true�,
and that the expression 23 evaluates to a number object representing the number 23.

Variable reference is another simple expression, e.g.,

(define a 10)
a ;an expression evaluates to 10

Compound expressions are formed by placing parentheses around their subexpressions
(multiple subexpressions are separated by white-spaces). The �rst subexpression identi�es
an operation; the remaining subexpressions are operands to the operation:

(+ 23 42) ;=>65
(+ 14 (* 23 42)) ;=>980
(remainder 5 2) ; => 1

5



Compound expressions can be nested, as the second example shows. As these examples
indicate, compound expressions in Scheme are always written using the same pre�x nota-
tion: operator �rst then operands follow. As a consequence, the parentheses are needed
to indicate structure. Another consequence is that, �super�uous� parentheses, which are
often permissible in mathematical notation and also in many programming languages,
are not allowed in Scheme. This is because adding a pair of super�uous parentheses to
an expression corresponds to forming a new compound expression and letting Lisp treat
the original expression as a sub-expression and use the value of this sub-expression as an
operator and evaluate the compound expression (function invocation with no argument),
the value of which is usually di�erent from the original expression (if we are lucky to get
a value at all).

Multiple sub-expressions of a compound expression are separated by white-space. In
Scheme, line-ending is equivalent to whithe spaces, and multiple whitespaces or line-end-
ings are equivalent to a single whitespace.

Not all expressions are valid programs. If you typed (1 2) at the Scheme listener, you will
get an error because (1,2) is a list, which is valid data but is not an expression that can
be evaluated to give an value.

Compound expressions are a subcategory of combinations (in Guile) or forms (in R5RS).
This ditinguishment is necessary becasue, in scheme, some combinations are not considered
to be expressions. One example is the variable binding and initialization structure:

(define x 23)

which is not expression. While de�nitions are not expressions, de�nitions and compound
expressions exhibit similar syntactic structure:

(define x 23)
(* x 2)

While the �rst line contains a de�nition, and the second an expression, this distinction
depends on the bindings for define and *. At the purely syntactical level, both are forms,
and form is the general name for a syntactic part of a Scheme program. In particular, 23
is a subform of the form (define x 23).

Scheme evaluates a list form by examining the �rst element, or head, of the form. If the
head evaluates to a procedure, the rest of the form is evaluated to get the procedure's
arguments, and the procedure is applied to the arguments. If the head of the form is a
special form, how the remaing sub-form are evalued are determined by that special form.
Some special forms are begin, define, and set!. define introduces and initializes a
variable. set! assigns a new value to a variable. begin causes its subforms to be evaluated
in order, the result of the entire form being the result of the last subform.

Empty combination () is considered to be an invalid program in Guile and Racket (it is
still a valid data, i.e., empty list) because it is missing the procedure expression. In GNU
clisp, empty list is a valid program, which evaluates to NIL (boolean value false).

All function calls (including basic arithmetic operations) in Lips are based on the par-
enthezed-pre�x-notation, i.e., (operator operands1 operands2). Many prede�ned oper-
ations of Scheme are provided not by syntax, but by variables whose values are procedures.
The + operation, for example, which receives special syntactic treatment in many other
languages, is just a regular identi�er in Scheme, bound to a procedure that adds number
objects. The following are some arithmetic operations:

(+ 2 3) ;=> 5

6



(- 2 3) ;=> -1
(* 2 3) ;=> 6
(/ 2 3) ;=> 2/3
(expt 2 3) ;=> 8
(quotient 5 2) ; => 2
(remainder 5 2) ; => 1
(/ 35 5) ; => 7
(/ 1 3) ; => 1/3
(exact->inexact 1/3) ; => 0.3333333333333333
(+ 1+2i 2-3i) ; => 3-1i

A list in lisp can be treated as program or data. If a list is given to a lisp interpreter, by
default, the list is treated as program and lisp evaluates each elements of the list. To prevent
a list from being evaluated (i.e, to treat them literally), we can use the quote special form.
For example

guile>(quote (1 2 3))
(1 2 3)
guile> (quote foo)
foo

quote is called a �special form� because, unlike most other lisp operations, it doesn't
evaluate its argument.

There is a shortcut (syntax sugar) which provides an alternative form of calling the quote
procedure: instead of using the standard list form: a single quotation marker before an
expression have the e�ect of preventing evaluation. For example

guile> '(f 2 3)
(f 2 3)
guile> 'foo
foo

6 Variables (pointers), values (objects), data type

6.1 Variable names

In Scheme, there are very few restrictions on what kind of sequence of characters can be
used as a variable name. Any character sequence that can not be confused with Scheme's
value types can be used a variable name.

The restriction on variable names in Lisp can be put in the following way: All literals that
are symbols (i.e., the predicate symbol? return true) can be used as identi�ers (variable
names, names of locations, names of values).

6.2 De�ne variables and assignments

Scheme has latent as opposed to manifest types. Types are associated with objects(also
called values) rather than with variables. (Some authors refer to languages with latent
types as untyped, weakly typed or dynamically typed languages.) Other languages with
latent types are Python, Ruby, Smalltalk, and other dialects of Lisp. Languages with
manifest types (sometimes referred to as strongly typed or statically typed languages)
include Fortran, C/C++, C#, Java, Haskell, and ML.

7



Lisp is a language with dynamically typed variables, which means the type of a variable
can change during runtime and hence there is no type declaration for variables. More
accurately, typing is associated with the value that a variable assumes rather than the
variable itself. A variable (name) is a pointer pointing to a location where a data object
(value) is stored.

In guile, a variable (a name) is bound to a value (data object) by using define

(define a 123)
(define a "hello")

More accurately speeaking, define bind a name with a location (if the name is not yet
bound) and assign a value to that location. When a variable is bound to a location, its
value can also be modi�ed by using set!, e.g.,

(set! a 456)

For a bound variable, using define and set! are equivalent to each other. If we use set!
on a unbound variable, the lisp will raise error message, reminding us that a variable must
be �rst bound to a location (using define) before we can set its value.

6.3 Variable scope

Scheme uses lexical (static) scope. (Originally Lisp used dynamic scoping, Emacs lisp can
swich between lexical and dynamic scoping by seting an option.) In lexical scope, each use
of a variable is associated with a lexically apparent binding of that variable.

Scheme is a statically scoped language with block structure. To each place in a top-
level program or library body where an identi�er is bound, there corresponds a region
of code within which the binding is visible. The region is determined by the particular
binding construct that establishes the binding; if the binding is established by a lambda
expression, for example, then its region is the entire lambda expression. Every mention
of an identi�er refers to the binding of the identi�er that establishes the innermost of the
regions containing the use. If a use of an identi�er appears in a place where none of the
surrounding expressions contains a binding for the identi�er, the use may refer to a binding
established by a de�nition or import at the top of the enclosing library or top-level program
(see chapter 7). If there is no binding for the identi�er, it is said to be unbound.

In dynamic scoping, a function may reference local variables de�ned in the lexical scope of
the calling unit, which means, if a programmer declares a variable within the lexical scope
of a function, it is available to subroutines called from within that function. Originally,
this was intended as an optimization; lexical scoping was still uncommon and of uncertain
performance. Somebody asked RMS (Richard Stallman) why it was dynamically scoped
when he was implementing emacs lisp and his exact reply was that lexical scope was
too ine�cient. Dynamic scoping was also meant to provide greater �exibility for user
customizations. However, dynamic scoping has several disadvantages. It can easily lead
to bugs in large programs, due to unintended interactions between variables in di�erent
functions.

With the constructs for local binding (let, let*, letrec, and letrec*), the Scheme language
has a block structure like most other programming languages since the days of ALGOL
60. Readers familiar to languages like C or Java should already be used to this concept.

The most basic local binding construct is let. syntax: let bindings body

bindings has the form

8



( (variable1 init1) . . .)

that is zero or more two-element lists of a variable and an arbitrary expression each.
All variable names must be distinct. A let expression is evaluated as follows. All init
expressions are evaluated. New storage is allocated for the variables. The values of the init
expressions are stored into the variables.

The expressions in body are evaluated in order, and the value of the last expression is
returned as the value of the let expression.

Local binding: `me' is bound to "Bob" only within the (let ...)

(let ((me "Bob") (you "Tom") ) me) ;; => "Bob"

The other binding constructs are variations on the same theme: making new values, binding
them to variables, and executing a body in that in the newly extended lexical context.

All objects created in the course of a Scheme computation, including procedures and
continuations, have unlimited extent. No Scheme object is ever destroyed. The reason that
implementations of Scheme do not (usually!) run out of storage is that they are permitted to
reclaim the storage occupied by an object if they can prove that the object cannot possibly
matter to any future computation. Other languages in which most objects have unlimited
extent include C#, Java, Haskell, most Lisp dialects, ML, Python, Ruby, and Smalltalk

7 Conditionals

�A conditional is an if-then-else construct. We take these for granted now. They were
invented in the course of developing Lisp. (Fortran at that time only had a conditional
goto, closely based on the branch instruction in the underlying hardware.)[5].

The conditionals in Scheme take the following forms:

(if test consequent alternate)
(if test consequent)

where test, consequent, and alternate are expressions. An if expression is evaluated as
follows: �rst, test is evaluated. If it yields a true value, then consequent is evaluated and
its values are returned. Otherwise alternate is evaluated and its values are returned. If
test yields a false value and no alternate is speci�ed, then the result of the if expression
is unspeci�ed.

Example:

(if (= 5 (+ 2 3)) "equal" "inequal") ;==>"equal"

if is a special form because it does not automatically evaluate all of its arguments:

(if (= 0 1) (/ 1 0) (+ 2 3)) ;==> 5

Note that the (/ 1 0) is not evaluated. Another interesting example:

((if #f + *) 3 4) ;===> 12

In scheme standard[2], if construct is the primitive construct. There is a derived condi-
tional, the cond construct:

(cond (test1 expr1)
(test2 expr2)

9



...
(testN exprN))

As soon as cond �nd a test that evaluates to true, then it evaluates the corresponding
expression and return its value. The remaining tests and expressions are not evaluated. If
none of the tests evaluate to ture, then the return value of cond is not de�ned. To get an
�else� part , we provide a test that is gurrantee to be true as the last clause of the cond
structure.

(cond (test1 expr1)
(test2 expr2)
...

(#t exprN))

Consider the fact �else� part is often used, guile provide a syntax sugar which uses else
as a keyword:

(cond (test1 expr1)
(test2 expr2)
...

(else exprN))

If none of the tests evaluate to ture then cond evaluate the else part and return its value
(the else part can be left o�, but it's not good style, since this may make return value
unde�ned).

Logical operators: and/or. For example:

(and #f #t) ;=> flase
(or #f #t) ;=> true

8 Lambda expression

The lambda expression de�ne a (anonymous) function and, when it is evaluated, return
that function object as the returned value. Let us examine an example:

(lambda (x y) (+ x y))

which will return a function object that takes two arguments and what the function does
is to sum the two arguments.

Note that function/procedure is just another type of value and the importance of lambda
is that it can return this type of value. Using the word �lambda� instead of �funtion� or
�procedure� is due to Lisp's history. In practice, when we see the word lambda in source
codes, we can safely translate (in our mind) the word to �function�.

The returned function by the above lambda call is unnamed. How do we use the returned
function? We can use it wherever a function name can appear. For example

((lambda (x y) (+ x y)) 2 3)

or, equivalently, binding the function objet to a variable:

(define foo (lambda (x y) (+ x y)))

and then calling the function using the variable name:

10



(foo 2 3)

In the latter case, we de�ne a unnamed function by using lambda and then bind it to the
name foo. This amounts to that we are de�ning a named function. Since de�ning named
functions is a very common task, scheme provides this special version of define that
doesn't use lambda explicitly:

(define (foo x y) (+ x y))

which can be considered as an abbreviation for (define foo (lambda (x y) (+ x y))),
i.e., de�ning a unnamed function and then binding it to the variable foo.

8.1 Pass by value or reference?

Similar to C, Scheme function call uses pass by value (rather than by reference) with pointer
semantics. Let us examine an example:

(define (func x)
(define x 4)
(* x 2))

(define a 3)
(func a)
(display a) ;=> 3

8.2 General syntax of lambda expression:

(lambda <formals> <body>)

where <formals> have one of the following forms:

� (variable_1 variable_2 . . . variable_n) The procedure takes a fixed
number of arguments; when the procedure is called, the values of actual arguments
will be stored in newly allocated locations to which the formal arguments are bound.

� variable The procedure takes any number of arguments; when the pro-
cedure is called, the sequence of actual arguments is converted into a newly allocated
list, and the list is stroed in a fresh location to which variable is bound.

� (variable_1 ... variable_n . variable_n+1) If a space-delimited period
precedes the last variable, then the procedure takes n or more arguments, where n is
the number of formal arguments before the period. The value stored in the binding
of the last variable will be a newly allocated list of the actual arguments left over
after all the other actual arguments have been matched up against the other fromal
arguments.

8.3 Closure

What is important about lambda expression is that it returns an enviroment (e.g., values of
the free variables in the lambda expression) to perform calculations and this environment
can be changed and is remembered (persitent variables) by the closure. Let us see an
example of a serial number generator:

11



(define make-serial-number-generator
(lambda ()
(let ((current-serial-number 0))
(lambda ()
(set! current-serial-number (+ current-serial-number 1))
current-serial-number))))

(define entry-sn-generator (make-serial-number-generator))
(define entry-sn-generator2 (make-serial-number-generator))

(display (entry-sn-generator)) ;==>1
(newline)
(display (entry-sn-generator)) ;==>2
(newline)
(display (entry-sn-generator2)) ;==>1
(newline)
(display (entry-sn-generator2)) ;==>2
(newline)

This example create a procedure with a variable binding that is private to the procedure,
like a local variable, but whose value persists between procedure calls.

When make-serial-number-generator is called, it creates a local environment with a binding
for current-serial-number whose initial value is 0, then, within this environment, creates
a procedure. The local environment is stored within the created procedure object and so
persists for the lifetime of the created procedure.

Note that make-serial-number-generator can be called again to create a second serial
number generator that is independent of the �rst. Every new invocation of make-serial-
number-generator creates a new local let environment and returns a new procedure object
with an association to this environment.

In summary, closure is the capture of an environment, containing persistent variable bind-
ings, within the de�nition of a procedure. This is rather similar to the idea in some
object oriented languages of encapsulating a set of related data variables inside an �object�,
together with a set of �methods� that operate on the encapsulated data. The following
example shows how closure can be used to emulate the ideas of objects, methods and
encapsulation in Scheme.

(define (make-account)
(let ((balance 0))
(define (get-balance)
balance)

(define (deposit amount)
(set! balance (+ balance amount))
balance)

(define (withdraw amount)
(deposit (- amount)))

(lambda args
(apply
(case (car args)

12



((get-balance) get-balance)
((deposit) deposit)
((withdraw) withdraw)
(else (error "Invalid method!")))

(cdr args)))))

Scheme was one of the �rst languages to support procedures as objects in their own right.
Procedures can be created dynamically, stored in data structures, returned as results
of procedures, and so on. Other languages with these properties include Common Lisp,
Haskell, ML, Ruby, and Smalltalk.

One distinguishing feature of Scheme is that continuations, which in most other languages
only operate behind the scenes, also have ��rst-class� status. First-class continuations are
useful for implementing a wide variety of advanced control constructs, including non-local
exits, backtracking, and coroutines.

In Scheme, the argument expressions of a procedure call are evaluated before the procedure
gains control, whether the procedure needs the result of the evaluation or not. C, C#,
Common Lisp, Python, Ruby, and Smalltalk are other languages that always evaluate
argument expressions before invoking a procedure. This is distinct from the lazy-evalua-
tion semantics of Haskell, or the call-by-name semantics of Algol 60, where an argument
expression is not evaluated unless its value is needed by the procedure.

The power of lambda expression is better shown when they are used as an anonymous
function inside another function.

9 Recursion

Let us see some simple examples of recursion.

(define (factorial n)
(if (= 0 n)

1
(* n (factorial (- n 1)))))

which is the classic factorial function.

;; (double-each '(1 3 4)) => (2 6 8)
(define (double-each s)
(if (null? s)

'()
(cons (* 2 (car s))

(double-each (cdr s)))))

which doubles each number in a list.

Rules for writing recursive functions:

1. Know when to stop (the base case)

2. Decide how to take one step towards the base case

3. Phrase the solution in terms of one step, and a smaller version of the original problem.

13



For numbers, the base case is usually a small integer constant, and a smaller version of the
problem is something like n-1.

For lists, the base case is usually the empty list, and a smaller version of the problem is
usually the rest (i.e., cdr) of the list. Here is a template for most recursive functions:

(define (fn args)
(if base-case

base-value
(compute-result (fn (smaller args)))))

Implementations of Scheme must be properly tail-recursive, which means that the exe-
cution of an iterative computation in constant space, even if the iterative computation
is described by a syntactically recursive procedure. Thus with a properly tail-recursive
implementation, iteration can be expressed using the ordinary procedure-call mechanics
without runtime penality, so that special iteration constructs are useful only as syntactic
sugar.

9.1 Loop

Scheme has no expressions designed for looping at a general level. The only easy way to
do this is recursion, which forces a particular mindset but is actually a natural way for
iteratation. The following example illustrates a Scheme script that iterates from 0 to 9,
then prints done. This example uses what in Scheme is called tail recursion. Note that
the function being de�ned is invoked at the end of the block. This recursion is called tail
recursion. In traditional languages, this recursion eats away at the stack to maintain a
history of the calls; in Scheme, it's di�erent. The last call (the tail) simply invokes the
function without any procedure call or stack maintenance overhead. This is often stated
in the following words: Implementations of Scheme must be properly tail-recursive

(let countup ((i 0))
(if (= i 10) (begin (display "done") (newline))

(begin (display i) (newline) (countup (+ i 1)))))

Scheme is �properly tail recursive�, meaning that tail calls or recursions from certain con-
texts do not consume stack space or other resources and can therefore be used on arbitrarily
large data or for an arbitrarily long calculation.

10 Higher order function

Scheme supports functions as �rst class citizens, which means Scheme supports passing
functions as arguments to other functions, returning them as the values from other func-
tions, and assigning them to variables or storing them in data structures. A programming
language is said to have �rst-class functions if it treats functions as �rst-class citizens.

Scheme gets much of its expressiveness and capacity for abstraction by supporting an
applicative programming style using higher order functions � functions that take other
functions as arguments, or that return functions as the result. All other functions are
�rst-order functions. In mathematics higher-order functions are called operators or
functionals. The di�erential operator in calculus is a common example, since it maps a
function to its derivative, also a function.

14



First-class functions are a necessity for the functional programming style, in which the
use of higher-order functions is a standard practice. A simple example of a higher-ordered
function is the map function, which takes, as its arguments, a function and a list, and
returns the list formed by applying the function to each member of the list. For a language
to support map, it must support passing a function as an argument. Let us see an example:

(map (lambda (x) (* x 2)) '(1 2 3))

which doubles all elements in a numerical list. Let us de�ne our own version of map, my-
map, which is a higher order function:

(define (my-map fun alist)
(if (null? alist)

'()
(cons (fun (car alist)) (my-map fun (cdr alist))))

)

There are certain implementation di�culties in passing functions as arguments or returning
them as results, especially in the presence of non-local variables introduced in nested
and anonymous functions. Historically, these were termed the funarg problems, the name
coming from "function argument". In early imperative languages these problems were
avoided by either not supporting functions as result types (e.g. ALGOL 60, Pascal) or
omitting nested functions and thus non-local variables (e.g. C). The early functional lan-
guage Lisp took the approach of dynamic scoping, where non-local variables refer to the
closest de�nition of that variable at the point where the function is executed, instead
of where it was de�ned. Proper support for lexically scoped �rst-class functions was intro-
duced in Scheme and requires handling references to functions as closures instead of bare
function pointers, which in turn makes garbage collection a necessity.

A function object is also known as a closure.

Memory management is one of Scheme's strong points. Unlike languages like C, pro-
grammers of scheme do not have to deal with complicated memory management. Scheme
uses garbage collection, so you do not have to worry about. This means that the Scheme
environment frees memory for you when the last reference to an object is destroyed. Simply
stop referring to an object (e.g. re-assigning a variable) and the value is marked as free and
garbage collected. Languages like Java also do this. Garbage collection is a very powerful
feature. The source of many bugs (in languages that you must manually manage memory
in) is memory management. Why have every program deal with memory management
manually when you can do it all in one place? Of course, many people will disagree, but
whether garbage collection is the answer is usually something that is true for some apps
but false for others.

1.7 Procedure calls and syntactic keywords

Whereas (+ 23 42) and ((lambda (x) (+ x 42)) 23) are all examples of procedure
calls, lambda and let forms are not. This is because let, even though it is an identi�er,
is not a variable, but is instead a syntactic keyword. A form that has a syntactic keyword
as its �rst subform obeys special rules determined by the keyword. The define identi�er
in a de�nition is also a syntactic keyword. Hence, de�nitions are also not procedure calls.

The rules for the lambda keyword specify that the �rst subform is a list of parameters,
and the remaining subforms are the body of the procedure. The rules for the let keyword
specify that the �rst subform is a list of binding speci�cations, and the remaining subforms
constitute a body of expressions.

15



Procedure calls can generally be distinguished from these special forms by looking for a
syntactic keyword in the �rst position of an form: if the �rst position does not contain a
syntactic keyword, the expression is a procedure call. (So-called identi�er macros allow
creating other kinds of special forms, but are comparatively rare.) The set of syntactic
keywords of Scheme is fairly small, which usually makes this task fairly simple. However,
it is possible to create new bindings for syntactic keywords

5.8.7 The R5RS syntax-rules System

R5RS defines an alternative system for macro and syntax transformations using the
keywords define-syntax, let-syntax, letrec-syntax and syntax-rules. The main dif-
ference between the R5RS system and the traditional macros is how the transformation
is speci�ed. In R5RS, rather than permitting a macro de�nition to return an arbitrary
expression, the transformation is speci�ed in a pattern language that (1) does not require
complicated quoting and extraction of components of the source expression using caddr
etc. (2) is designed such that the bindings associated with identi�ers in the transformed
expression are well de�ned, and such that it is impossible for the transformed expres-
sion to construct new identi�ers. The last point is commonly referred to as being hygienic,
i.e., the R5RS syntax-case system provides hygienic macros.

In Guile, the syntax-rules system is provided by the (ice-9 syncase) module. To make
these facilities available in your code, include the expression (use-syntax (ice-9 syn-
case)). For example:

#!/usr/bin/guile -s
!#
(use-syntax (ice-9 syncase))
(define-syntax def
(syntax-rules ()
( (def f (p ...) body)
(define (f p ...) body) )

) )

(def f(x) (+ x 1))
(display (f 3))
(newline)

Pattern Language: The syntax-rules pattern language.

De�ne-Syntax: Top level syntax de�nitions.

Let-Syntax: Local syntax de�nitions.

11 I/O

Reading

Writing

16



File ports

Automatic opening and closing of �le ports

String ports

12 System interface

Useful Scheme programs often need to interact with the underlying operating system.

12.1 Checking for and deleting �les

file‑exists? checks if its argument string names a �le. delete‑file deletes its argument
�le. These procedures are not part of the Scheme standard, but are available in most
implementations (e.g. gule). These procedures work reliably only for �les that are not
directories. (Their behavior on directories is dialect-speci�c.)

12.2 Calling operating-system commands

The system procedure executes its argument string as an operating-system command.1
It returns true if the command executed successfully with an exit status 0, and false if it
failed to execute or exited with a non-zero status. Any output generated by the command
goes to standard output.

(system "ls")
;lists current directory

(define fname "spot")

(system (string-append "test -f " fname))
;tests if file `spot' exists

(system (string-append "rm -f " fname))
;removes `spot'

The last two forms are equivalent to

(file-exists? fname)
(delete-file fname)

12.3 Getting environment variables

The getenv procedure returns the setting of an operating-system environment variable. Eg,

(getenv "HOME")
=> "/home/yj"

reference: https://ds26gte.github.io/tyscheme/

17



13 A complete Example of using scheme in numerical
simulation

Let us consider using Runge-Kuta method to integrate a system of ordinary di�erential
equations (ODEs). First let us construct some basic facilities (some data structures and
operations on them) which will be used in our simulation. We use a Scheme vector to store
a state of the system. If we have a system of 3 ODEs, then the vector will be of size 3,
with one element of the vector standing for the value of one variable of the 3 ODEs.

(define (generate-vector size proc)
(let ((ans (make-vector size)))
(letrec ((loop

(lambda (i)
(cond ((= i size) ans)

(else
(vector-set! ans i (proc i))
(loop (+ i 1)))))))

(loop 0))))

(define (elementwise f)
(lambda vectors
(generate-vector
(vector-length (car vectors))
(lambda (i)
(apply f

(map (lambda (v) (vector-ref v i)) vectors))))))

(define add-vectors (elementwise +))

(define (scale-vector s)
(elementwise (lambda (x) (* x s))))

Here vectors is a list of vectors.

Next, de�ne the core procedure which uses runge-Kutta method to push a given system
one step forward:

(define (runge-kutta-4 f h)
(let ((*h (scale-vector h))

(*2 (scale-vector 2))
(*1/2 (scale-vector (/ 1 2)))
(*1/6 (scale-vector (/ 1 6))))

(lambda (y) ;; y is a system state
(let* ((k0 (*h (f y)))

(k1 (*h (f (add-vectors y (*1/2 k0)))))
(k2 (*h (f (add-vectors y (*1/2 k1)))))
(k3 (*h (f (add-vectors y k2)))))

(add-vectors y
(*1/6 (add-vectors k0

(*2 k1)
(*2 k2)
k3)))))))

18



Here h is time-step size, f is a function that calculates the time derivates for a given system
state. Speci�cally, function invocation (f y), with the y being a vector standing for the
system state, returns the time derivates.

Next, let us consider a speci�c system, a damped oscillator:

dvC
dt

=¡iL
C
¡ vC
RC

; (1)

diL
dt

=
vC
L
: (2)

The above time derivatives are implemented as:

(define (damped-oscillator R L C)
(lambda (state)
(let ((Vc (vector-ref state 0))

(Il (vector-ref state 1)))
(vector (- 0 (+ (/ Vc (* R C)) (/ Il C)))

(/ Vc L)))))

Finally, let us implement the time iteration:

(define (integrate-system system-derivative initial-state h nsteps)
(let ((next (runge-kutta-4 system-derivative h))

(old_state initial-state)
(new_state initial-state))

(letrec ((countdown (lambda (i)
(if (= i 0) 'liftoff

(begin
(set! new_state (next old_state))
(display (vector-ref new_state 0))

(newline)
(set! old_state new_state)
(countdown (- i 1)))))))

(countdown nsteps))))

And invoke the above procedure for a speci�c damped oscillator with R=10000, L=1000,
C = 0.01, initial state vector #(1 0), time-step size h= 0.01, number of time-steps nstep=
5000:

(integrate-system (damped-oscillator 10000 1000 .001) '#(1 0) 0.01 5000)
(display "finish")
(newline)

The above example is a revised version of the example given in R7RS[3]. Store the above
codes in a �le and run it in a linux shell:

$ guile -s rk_yj.scm > t.txt

Then plot the result stored in t.txt by using GNUplot:

This is a TeXmacs interface for GNUplot.

GNUplot] plot '/home/yj/project_new/test_space/lisp/t.txt' using 1 w l

19



-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

’/home/yj/project_new/test_space/lisp/t.txt’ using 1

GNUplot]

14 Readability of LLLLLLLLLIIIIIIIIISSSSSSSSSPPPPPPPPP source code

Each function call in LISP source code is organized as a (nested) list. Since each list is
delimited by a pair of parentheses (), for a nested list with several depth, the number of
parenthesis will increase to a level that makes many people consider LISP as weird/unread-
able at �rst glance. The reason is obvious: by intuition, people do not distinguish a nested
structure by parentheses. People's intuition tends to distinguish logical structure through
the spatial structure, e.g. line break and indent. This is the reason why Python uses indent
to delimit structure, which increase the readability of the source code.

There is no di�culty for a computer to recognize the structure whatever delimiting marks
a language chooses to use. Source code editors of LISP can transform the structure de�ned
by the parenthesis to the appropriate indent loved by human's eyes and brain (the messy
parentheses are still there, just do not bother with them and occasionally use them to get
useful information for the structures.)

As mentioned above, Lisp source code is a list, which is a one-dimensional structure, and
line-breaks are equivalent to white spaces. We can add new lines appropriately to provide
vertical spacial structure in order to enhance readability.

two things will vastly improve your experience with Emacs and Guile:

The �rst is Taylor Campbell's Paredit. You should not code in any dialect of Lisp without
Paredit. (They say that unopinionated writing is boring�hence this tone�but it's the
truth, regardless.) Paredit is the bee's knees.

When developing these notes, I read the following materials: [4][1]

https://people.eecs.berkeley.edu/~bh/ssch0/preface.html

20



A misc

, (2) program and data are equivalent, which makes it easy to write Scheme programs that
process/produce other programs, e.g. compilers, structure editors, debuggers, etc.

Lisp code is easy to write, but hard to read by pepole other than the code author (due to
using macoros)

Metaprogramming is a programming technique in which computer programs have the
ability to treat other programs as their data. It means that a program can be designed to
read, generate, analyze or transform other programs, and even modify itself while running

Metaprogramming can be used to move computations from run-time to compile-time, to
generate code using compile time computations, and to enable self-modifying code. The
language in which the metaprogram is written is called the metalanguage. The language of
the programs that are manipulated is called the attribute-oriented programming language.
The ability of a programming language to be its own metalanguage is called re�ection or
�re�exivity�. Re�ection is a valuable language feature to facilitate metaprogramming.

Metaprogramming was popular in the 1970s and 1980s using LISP languages. LISP hard-
ware machines were popular in the 1980s and enabled applications that could process code.

A large number of programmers would have a tendency to learn a new programming
language whenever they get a chance. Typically, decent programmers can pick up a new
Language and write nontrivial programs in that language within a few days. This high
e�ciency of learning a new language is achieved by explicitly asking ourselves several
questions about general language features:

static type or dynamic type or mixed?

what is the primitive type (e.g., real and integer numbers) and compound type (e.g., arrays
and lists),

what is the syntax for name binding (i.e., variable/function de�nition)?

what is the syntax of calling functions?

lexical scope or dynamic scope? (most languages adopts lexical scope),

the �ow control: what is the syntax for conditional structures and loop structures?

With these questions in mind, we can quickly �nd the answers by searching online or a
handbook of that language. Then we can write codes and test the syntax with a com-
piler/interpreter.

https://schemers.org/Documents/Standards/R5RS/HTML

Scheme has latent (as opposed to manifest) types. Types are associated with values (also
called objects) rather than with variables. (Some authors refer to languages with latent
types as weakly typed or dynamically typed languages.) Other languages with latent types
include python and javascript. Languages with manifest types (sometimes referred to as
strongly typed or statically typed languages) include Fortran, and C.

21



Arguments to Scheme procedures are always passed by value, which means that the actual
argument expressions are evaluated before the procedure gains control, whether the proce-
dure needs the evaluation result or not. ML, C, and APL are three other languages that
always pass arguments by value. This is distinct from the lazy-evaluation semantics of
Haskell, or the call-by-name semantics of Algol 60, where an argument expression is not
evaluated unless its value is needed by the procedure.

Scheme's model of arithmetic is designed to remain as independent as possible of the
particular ways in which numbers are represented within a computer. In Scheme, every
integer is a rational number, every rational is a real, and every real is a complex number.
Thus the distinction between integer and real arithmetic, which is important to many
programming languages, does not appear in Scheme. In its place is a distinction between
exact arithmetic, which corresponds to the mathematical ideal, and inexact arithmetic on
approximations. As in Common Lisp, exact arithmetic is not limited to integers.

Note that the sequence of characters (+ 2 6) is not an external representation of the
integer 8, even though it is an expression evaluating to the integer 8; rather, it is an external
representation of a three-element list, the elements of which are the symbol + and the
integers 2 and 6. Scheme's syntax has the property that any sequence of characters
that is an expression is also the external representation of some object. This can
lead to confusion, since it may not be obvious out of context whether a given sequence of
characters is intended to denote data or program, but it is also a source of power, since it
facilitates writing programs such as interpreters and compilers that treat programs as data
(or vice versa).

An identi�er may name a type of syntax, or it may name a location where a value can be
stored. An identi�er that names a type of syntax is called a syntactic keyword and is said
to be bound to that syntax. An identi�er that names a location is called a variable and is
said to be bound to that location. The value stored in the location to which a variable is
bound is called the variable's value. By abuse of terminology, the variable is sometimes said
to name the value or to be bound to the value. This is not quite accurate, but confusion
rarely results from this practice.

Certain expression types are used to create new kinds of syntax and bind syntactic keywords
to those new syntaxes (these expression types are called keyword binding constructs.),
while other expression types create new locations and bind variables to those locations
(these expression types are called binding constructs).

The most fundamental of the variable binding constructs is the lambda expression, because
all other variable binding constructs can be explained in terms of lambda expressions. The
other variable binding constructs are let, let*, letrec, and do expressions.

In Lisp, list delimiter is chosen to be parentheses, i.e., round brackets (for comparison,
square brackets are chosen in python). The whitespace is chosen as the saperator between
di�erent elements of a list (cf., commas are chosen by python and whitespace is ignored by
the interpreter). In lisp, a newline is equivalant to a whitespace. The following is a lisp list:

(1 2 3 a b c)

For comparison, the following is a python list:

[1, 2, 3, a, b, c]

Fortran's new array constructor (introduced in Fortran 2003) can also adopt the python
style, e.g.

22



integer :: a(3), i
a=[1, 2, 3]
a=[(i, i=1,3)] !implied do-loop

The standard form of fortran array constructor is (/ . . . /), which is hard to remember
and read.

The so-called �lambda calculus� is a formal system for expressing computation based on
function abstraction and application using variable binding and substitution. Althouth
the name contains �calculus�, the lambda calculus has nothing to do with the calculus in
mathematics (i.e., integration and di�erential). Then why the name �calculus�? Is the name
here to frighten newbies? Maybe paritally yes. The remaining part, I guess, is related to
the applicative programming style using higher order functions � functions that take other
functions as arguments. In mathematics higher-order functions are called operators or
functionals. The di�erential operator in calculus is a common example, since it maps a
function to its derivative, which is also a function. Due to this similarity with the di�er-
ential operators in calculus, this formal computational system is called �lambda calculus�,
where lambda can be understood as �function�.

The lambda calculus can be called as the smallest programming language of the world.
It gives the de�nition of what is computable. Anything that can be computed by lambda
calculus is computable. It provides a theoretical framework for describing functions and
their evaluation.

Do not get frightened by the fancy/mysterious nonmenclatures. Calm down and assume
that they probably refer to a very simple thing that you already understand. The author use
them maybe because he/she want to impress readers. They are simple concepts in disguise.

Scheme would still be useful as a notation for expressing computational methods even in
the absence of a mechanical implementation.

One of the great simpli�cations of Scheme is that a procedure is just another type of value,
and that procedure values can be passed around and stored in variables in exactly the same
way as, for example, strings and lists.

a function that, when invoked, return a function.

a function that return a function upon invocation.

History

Alonzo Church formalized lambda calculus, a language based on pure abstraction, in the
1930s. Lambda functions are also referred to as lambda abstractions, a direct reference to
the abstraction model of Alonzo Church's original creation.

Lambda calculus can encode any computation. It is Turing complete, but contrary to the
concept of a Turing machine, it is pure and does not keep any state.

Functional languages get their origin in mathematical logic and lambda calculus, while
imperative programming languages embrace the state-based model of computation invented
by Alan Turing. The two models of computation, lambda calculus and Turing machines,
can be translated into each another. This equivalence is known as the Church-Turing
hypothesis.

23



Functional languages directly inherit the lambda calculus philosophy, adopting a declarative
approach of programming that emphasizes abstraction, data transformation, composition,
and purity (no state and no side e�ects). Examples of functional languages include Haskell,
Lisp, or Erlang.

By contrast, the Turing Machine led to imperative programming found in languages like
Fortran, C, or Python.

The imperative style consists of programming with statements, driving the �ow of the
program step by step with detailed instructions. This approach promotes mutation and
requires managing state.

The separation in both families presents some nuances, as some functional languages incor-
porate imperative features, like OCaml, while functional features have been permeating
the imperative family of languages in particular with the introduction of lambda functions
in Java, or Python.

Python is not inherently a functional language, but it adopted some functional concepts
early on. In January 1994, map(), �lter(), reduce(), and the lambda operator were added
to the language.

Operation on List Data structure.

List is one the built in data type in Scheme. Lists in Scheme can contain items of di�erent
types:

(1 1.5 x (a) �hello�)

The intrinsic functions that create or operate on a list: list, car, cdr, cons, and append.

(list 1 2 3) ==>create a list

(car (list 1 2 3)) ==> choose the first element of a list

(car '(1 2 3)) ==> the same as the above

(cdr '(1 2 3)) ==> create a list by excluding the first element
(cons 'foo '(1 2 3)) ==> add a new cell to a list:
(append '(1 2) '(3)) ===>concatenate two or more lists==>(1 2 3)

The process that led to the R6RS standard brought a split in the Scheme community
to the surface. The implementors that wrote R6RS considered that it was impossible to
write useful, portable programs in R5RS, and that only an ambitious standard could solve
this problem. However, part of the Scheme world saw the R6RS e�ort as too broad, and
as having included some components that would never be adopted by more minimalistic
Scheme implementations. This second group succeeded in taking control of the o�cial
Scheme standardization track and in 2013 released a more limited R7RS, essentially con-
sisting of R5RS, plus a module system. Guile supports R7RS also.

As a Scheme program runs, values of all types pop in and out of existence. Sometimes
values are stored in variables, but more commonly they pass seamlessly from being the
result of one computation to being one of the parameters for the next.

24



Scheme programmers prefer to avoid assignment statements because assignment is a
mutating operation, which is not prefered in (pure) functional programming pardigam.
In most cases, values pass seamlessly from being the result of one computation to being
one of the parameters for the next, rather than being stroed in an temporary variable.

Part of what we mean when we talk about �creating a variable� is in fact establishing an
association between a name, or identi�er, that is used by the Scheme program code, and
the variable location to which that name refers. Although the value that is stored in that
location may change, the location to which a given name refers is always the same.

Why is not Lisp booming now that there is an AI boom in 2010s?

The reason is very simple, Lisp was created for the school of Symbolic AI, and the AI
that is growing in popularity right now, is a totally di�erent school, the school of Machine
Learning, which is a highly numerical domain (numerical statistics). You could say that
Symbolic AI looks for a deductive approach while Machine Learning an Inductive approach.

Lisp is de�nitely no longer the language for AI, because AI itself has moved into a highly
numerical domain which has traditionally been more of stronghold of C/C++. With cur-
rent emphasis on GPU computing for maximizing compute power, C/C++ is the right
vehicle to build AI systems because GPU computing is still a very low-level exercise.

Additionally, for programmers seeking a higher level of abstraction (by using libraries),
Python has become the language of choice, because of its accessibility and widespread
support, and the necessary packages and bindings becoming available for compute intensive
numeric operations.

DrScheme automatically indents according to the standard style when you type Enter in
a program or REPL expression. For example, if you hit Enter after typing (de�ne (greet
name), then DrScheme automatically inserts two spaces for the next line. If you change
a region of code, you can select it in DrScheme and hit Tab, and DrScheme will re-indent
the code (without inserting any line breaks). Editors like Emacs o�er a Scheme mode with
similar indentation support.

Line breaks and indentation are not signi�cant for parsing Scheme programs, but most
Scheme programmers use a standard set of conventions to make code more readable. For
example, the body of a de�nition is typically indented under the �rst line of the de�nition.
Identi�ers are written immediately after an open parenthesis with no extra space, and
closing parentheses never go on their own line.

Bibliography

[1] Alan Borning. Programming Languages . https://courses.cs.washington.edu/courses/cse341/
03wi/scheme/, 2013. [Online; accessed 16-Feb-2019].

[2] Richard Kelsey et al. Revised5 Report on the Algorithmic Language Scheme. https://schemers.org/
Documents/Standards/R5RS/HTML/r5rs.html, 1998. [Online].

[3] Steven Ganz et al. Revised7 Report on the Algorithmic Language Scheme. https://small.r7rs.org/
attachment/r7rs.pdf, 2013. [Online].

[4] Free Software Foundation. GNU guile manual. https://www.gnu.org/software/guile/manual/,
2019. [Online].

[5] Paul Graham. What made lisp di�erent. http://www.paulgraham.com/diff.html.

25

https://courses.cs.washington.edu/courses/cse341/03wi/scheme/
https://courses.cs.washington.edu/courses/cse341/03wi/scheme/
https://courses.cs.washington.edu/courses/cse341/03wi/scheme/
https://courses.cs.washington.edu/courses/cse341/03wi/scheme/
https://courses.cs.washington.edu/courses/cse341/03wi/scheme/
https://courses.cs.washington.edu/courses/cse341/03wi/scheme/
https://courses.cs.washington.edu/courses/cse341/03wi/scheme/
https://courses.cs.washington.edu/courses/cse341/03wi/scheme/
https://courses.cs.washington.edu/courses/cse341/03wi/scheme/
https://courses.cs.washington.edu/courses/cse341/03wi/scheme/
https://courses.cs.washington.edu/courses/cse341/03wi/scheme/
https://courses.cs.washington.edu/courses/cse341/03wi/scheme/
https://schemers.org/Documents/Standards/R5RS/HTML/r5rs.html
https://schemers.org/Documents/Standards/R5RS/HTML/r5rs.html
https://schemers.org/Documents/Standards/R5RS/HTML/r5rs.html
https://schemers.org/Documents/Standards/R5RS/HTML/r5rs.html
https://schemers.org/Documents/Standards/R5RS/HTML/r5rs.html
https://schemers.org/Documents/Standards/R5RS/HTML/r5rs.html
https://schemers.org/Documents/Standards/R5RS/HTML/r5rs.html
https://schemers.org/Documents/Standards/R5RS/HTML/r5rs.html
https://schemers.org/Documents/Standards/R5RS/HTML/r5rs.html
https://schemers.org/Documents/Standards/R5RS/HTML/r5rs.html
https://schemers.org/Documents/Standards/R5RS/HTML/r5rs.html
https://schemers.org/Documents/Standards/R5RS/HTML/r5rs.html
https://schemers.org/Documents/Standards/R5RS/HTML/r5rs.html
https://small.r7rs.org/attachment/r7rs.pdf
https://small.r7rs.org/attachment/r7rs.pdf
https://small.r7rs.org/attachment/r7rs.pdf
https://small.r7rs.org/attachment/r7rs.pdf
https://small.r7rs.org/attachment/r7rs.pdf
https://small.r7rs.org/attachment/r7rs.pdf
https://small.r7rs.org/attachment/r7rs.pdf
https://www.gnu.org/software/guile/manual/
https://www.gnu.org/software/guile/manual/
https://www.gnu.org/software/guile/manual/
https://www.gnu.org/software/guile/manual/
https://www.gnu.org/software/guile/manual/
https://www.gnu.org/software/guile/manual/
https://www.gnu.org/software/guile/manual/
https://www.gnu.org/software/guile/manual/
https://www.gnu.org/software/guile/manual/
https://www.gnu.org/software/guile/manual/
http://www.paulgraham.com/diff.html
http://www.paulgraham.com/diff.html
http://www.paulgraham.com/diff.html
http://www.paulgraham.com/diff.html
http://www.paulgraham.com/diff.html

	1 Introduction
	2 Lisp/Scheme interpreter
	2.1 Run Lisp code interactively
	2.2 Run Lisp scripts
	2.2.1 Method 1
	2.2.2 Method 2


	3 Type of values
	4 Compound data structure: string, vector, pair/list, procedure, port
	4.1 String
	4.2 Vectors
	4.3 Pair and list
	4.4 Procedure
	4.5 Port

	5 Expressions
	6 Variables \(pointers\), values \(objects\), data type
	6.1 Variable names
	6.2 Define variables and assignments
	6.3 Variable scope

	7 Conditionals
	8 Lambda expression
	8.1 Pass by value or reference?
	8.2 General syntax of lambda expression:
	8.3 Closure

	9 Recursion
	9.1 Loop

	10 Higher order function
	11 I/O
	12 System interface
	12.1 Checking for and deleting files
	12.2 Calling operating-system commands
	12.3 Getting environment variables

	13 A complete Example of using scheme in numerical simulation
	14 Readability of LISP source code
	Appendix A misc
	Bibliography

