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Superthermal particle distributions well-described by the family of �-distributions have been
observed in various astrophysical plasmas. In this paper, the drift kink instability in the current sheet
with a �-distribution is investigated in the framework of linear kinetic theory. The orbit integrals are
treated numerically using the exact unperturbed particle orbits, and the resulting eigenvalue problem
of the integro-differential equations is solved using the spectral method. The growth rate, eigenmode
structure, and parametric dependencies of the kink mode are examined and compared with the case
of the standard Harris current sheet. The results show that the drift kink instability in the
�-distribution current sheet resembles its counterpart in the standard Harris sheet, but has a smaller
growth rate and real frequency for small value of �. It is also demonstrated that a background
population can enhance the growth rate of the kink mode, making the growth rate significant at the
physical value of the ion-electron mass ratio. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2970099�

I. INTRODUCTION

Numerous space observations indicate that nonthermal
electron and ion equilibrium structures are usually present in
various astrophysical plasmas, such as, solar wind, magneto-
sphere, and auroral zone plasma.1–5 The velocity distribu-
tions in these plasma structures deviate from the usual Max-
wellian equilibrium distributions, having nonthermal tails in
the high energy region. These features of the velocity distri-
bution are known to be well modeled by the family of gen-
eralized Lorentzian �kappa� distributions,6–8 a power law in
particle velocity space
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N

�3/2vt
3
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2

�vt
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where ���� is the Gamma function with the argument �. The
spectral index � models the deviation of the distribution from
the Maxwellian equilibrium, with the case �=� recovering
the Maxwellian distribution. N denotes the particle density
and vt is the thermal velocity for a Maxwellian distribution,
i.e., for �=�. An effective thermal speed �

=vt�� / ��−3 /2� can be found from the second moments of
the distribution function �1�, where ��vt for 3 /2����
manifests the existence of a superthermal particle
population.9–12 The �-distribution is quasi-Maxwellian at low
energies and has a nonthermal tail which decreases as a
power law at high energies, see Fig. 1. For typical space
plasmas, the value of � usually lies in the range of 2–6.3

The �-distribution function is not only a convenient
mathematical model to fit the observed velocity distributions,
but also may be a particular consequence of the nonextensive
entropy concepts, accounting for long range forces in astro-
physical plasmas that differ from an ideal gas.5,13 In this

explanation, the spectral index � finds the physical interpre-
tation as the degree of nonextensivity of the system, and the
�-distribution does not need to be viewed as merely an as-
sumption but rather as the default distribution. Every wave
mode in a Maxwellian plasma then has a generalized coun-
terpart in the plasma with a �-distribution. The waves and
instabilities in homogeneous plasma with a � velocity distri-
bution have been investigated in many publications.14–17

Recently,18,19 the �-distribution function was adopted in
constructing the stationary solutions to the Vlasov–Maxwell
system in magnetized inhomogeneous plasmas. These sta-
tionary solutions are generalizations of the standard Harris
current sheet.20 This class of generalized Harris sheets share
many things with the standard Harris sheet and reduce to the
standard Harris in the limit �→�. The current-sheet model
based on the �-distribution function incorporates the kinetic
effects of non-Maxwellian distribution and may provide a
better representation of the Earth’s magnetotail where the
value of � is found to be about 5.21 In this paper, we inves-
tigate the drift kink instabilities �DKI� in this class of current
sheets.

The instabilities in current-sheet equilibria are popular
topics in space physics and have received extensive investi-
gations in the past four decades. It is believed that the trig-
gering of magnetic reconnection in the magnetotail involves
localized instabilities in the current sheet. These collisionless
instabilities are crucial for determining the onset conditions
and time scales of magnetic reconnection and magnetic
annihilation.22 The basic eigenmodes of the various one-
dimensional equilibria are qualitatively similar, which can be
roughly divided into three categories: Tearing mode,23–28

lower-hybrid drift mode,29–31 and drift kink mode.32,33 The
mode investigated in the present paper is a long wavelength,
electromagnetic mode which clearly falls into the category of
drift kink mode found in the thin Harris current sheet.32,33

The drift kink instability was first found in the particle-in-
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cell simulations which assumed quite small values of the
ion-electron mass ratio, mi /me�25,34,35 and later was inves-
tigated theoretically.32,33 DKI is a long wavelength electro-
magnetic mode of odd parity which propagates across the
background magnetic field. It is driven by the relative
streaming between particles where the phase velocity lies in
the direction of the ion drift. At a realistic ion-electron mass
ratio mi /me, the growth rate of DKI is very small, however,
in Refs. 33 and 36, it was found that the relative streaming
between drifting and background ions can drive a general-
ized drift kink instability. The growth rate of this generalized
drift kink mode is significant at the physical value of mi /me.
In the present paper, these properties of DKI are examined in
the context of a �-distribution current sheet using the for-
mally exact method described in Refs. 31–33. It is found that
the basic properties of DKI in the �-distribution current sheet
resemble its counterpart in the standard Harris current sheet,
but has a smaller maximum growth rate for small value of �.
It is also demonstrated that a background population can
enhance the growth rate of the kink mode, making the
growth rate significant at the physical value of the ion-
electron mass ratio.

This paper is organized as follows: The current-sheet
equilibrium with a �-distribution18,19 is given in Sec. II. The
basic equations and methods for the nonlocal instability
analysis are discussed in Sec. III. The properties of DKI in
the �-distribution current sheet are examined in Sec. IV.
Conclusions are given in Sec. V.

II. CURRENT-SHEET EQUILIBRIUM
WITH A �-DISTRIBUTION

With the equilibrium field given by E0=0, B0=B0�x�ez,
we have the following constants of the motion:

H� =
m��vx

2 + vy
2 + vz

2�
2

, �2�

P� = m�vy +
q�

c
A0�x� , �3�

where A0�x�	
B0�x�dx is the magnetic vector potential, m�

and q� are particle mass and charge, respectively. � is the

species label ��= i for the ions and �=e for the electrons�.
Using the above two constants of motion, the following dis-
tribution function can be constructed:

f0��x,v� =
N0

�3/2�2T�/m��3/2
��� + 1�

�3/2��� − 1/2�

	�1 +
H� − U�P� + m�U�

2 /2
�T�

�−�−1

, �4�

which is a solution to the Vlasov equation. Here N0, T�, and
U� are multiplicative constants which are related to the num-
ber density, effective temperature, and drift velocity in the y
direction, respectively. From Eq. �4� it is straightforward to
calculate the following velocity moments of the distribution
function,
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, �5�
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To enforce charge neutrality, Eq. �5� requires

Ui

Ti
= −

Ue

Te
�7�

and all the Maxwell’s equations are satisfied except for the y
component of the Ampere’s law, which requires

−
d2A0�x�

dx2 =
4�e

c
�ni�vy�i − ne�vy�e� . �8�

After substituting Eqs. �5� and �6� into this equation, it takes
the form

d2Ā0

dx̄2 = �1 +
2Ā0

�
�−�+1/2

, �9�

where the dimensionless quantities are given by

x̄ =
x

L
, Ā0 = −

UieA0

2cTi
.

Here L=−2cTi / �b0eUi� and b0	�8�N0�Ti+Te�.
When �→�, we have lim�→��1+2Ā0 /��−�+1/2

=exp�−2Ā0� and Eq. �9� takes the form

d2Ā0

dx̄2 = exp�− 2Ā0� �10�

with its solution being the well-known Harris current-sheet

solution Ā0�x̄�=ln�cosh x̄�, and the corresponding magnetic

field B̄�x̄�=tanh�x̄�.
When � is finite, the solution to Eq. �9� can be expressed

in a formal analytic form.18 From the practical view, how-
ever, it is straightforward to solve Eq. �9� by a direct numeri-
cal method. With the boundary condition
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FIG. 1. Normalized �-distribution functions for �=3, 5, 10, and �.
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Ā0�0� = 0,
dĀ0�0�

dx̄
= 0

the solutions are shown in Fig. 2�a� for �=2, 5, 10, and �.
The corresponding magnetic field and number density are
shown in Figs. 2�b� and 2�c�.

In the above, we briefly give the derivation of the
�-distribution current sheet, which replaces the Gaussian
function exp�−x2� in the distribution function of the standard
Harris current sheet by the �-distribution �1+x2 /��−�−1. It
was pointed out in Ref. 19 that the effective temperature of
this �-distribution current sheet is divergent in the
asymptotic region and a uniform background population can
address this situation, making the effective temperature finite
in the asymptotic region. In the present paper, a uniform
background population of the form

fb��v� =
nb

�3/2vt�
3

��� + 1�
�3/2��� − 1/2��1 +

vx
2 + vy

2 + vz
2

�vt�
2 �−�−1

�11�

is included in the current sheet. The effects of this back-
ground population on the drift kink mode are investigated in
Sec. IV E.

III. BASIC EQUATIONS AND METHODS
FOR THE NONLOCAL STABILITY ANALYSIS

In this section, we provide the basic theory for the non-
local kinetic stability analysis of the �-distribution current-
sheet equilibrium described in Sec. II. The methods for deal-
ing with the orbit integral and solving the resulting
eigenvalue problem of the integro-differential equations are
from Refs. 31–33, where these methods are applied to the
Harris current-sheet equilibrium.

A. Perturbed distribution function
and its velocity moments

The linearized Vlasov equation is given by

�f1�

�t
+ v · �f +

v 	 B0

c
· �vf1�

= −
q�

m�
�E1 +

v 	 B1

c
� · �vf0�, �12�

where B0 is the equilibrium magnetic field, f0� is the equi-
librium distribution function given by Eq. �4�, and f1�, E1,
B1 are the perturbed distribution function, electric field, and
magnetic field, respectively. The perturbed electromagnetic
fields are described by the scalar potential 
1 and vector
potential A1,

E1 = − �
1 −
1

c

�A1

�t
, B1 = � 	 A1

and we consider perturbations of the form


1 = 
̂�x�exp�i�kyy − �t�� ,

A1 = Â�x�exp�i�kyy − �t�� .

Integrating along the unperturbed particle orbits, we get the
perturbed distribution function f1�,

f1��x,v� = −
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Ta
�
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c
Ây�x� + i�� − kyU��

	�
−�
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	exp�iky�y� − y� − i���� , �13�

where x����, y����, v���� are particle orbits in the equilibrium
field. The initial condition at �=0 is x�=x, y�=y, v�=v and
G0� is given by

G�0 =
N0

�3/2vt�
3

��� + 1�
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U�q�A0
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,

where vt�	�2T� /m�.
From the perturbed distribution function Eq. �13�, it is

straightforward to calculate the perturbed charge density
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FIG. 2. Normalized vector potential, magnetic field, and number density of
the �-distribution current sheet for �=2,5 ,10,�. The case of �=� corre-
sponds to the Harris sheet.
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and the perturbed current density in the x direction
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where S� is given by

S� = �
−�

0

d��
̂�x�� −
vx�Âx�x�� + vy�Ây�x��

c


	exp�iky�y� − y� − i��� . �16�

In the equilibrium field B0=B�x�ez, the particle motion in
the z direction is given by

z� = z + vz�, vz� = vz

while x�, y�, vx� and vy� are independent of vz, thus the inte-
gral over the vz component of velocity space can be per-
formed. In the above, the integral over vz has been evaluated
analytically.

B. Methods for treating the orbit integral

The orbit integral in Eq. �16� is an improper integral
with infinite integral limit. As pointed out by Daughton,32,33

using the periodic property of the particle motion, the inte-
gral can be calculated by following particles for a single
period. As for the case of the �-distribution sheet, although
the equilibrium magnetic field are different from the standard
Harris magnetic field, the periodic property of the particle
motion remains the same. To calculate the period of a par-
ticle, we first calculate its location in the x direction where its
vx is zero, then integrate between these two locations �turn-
ing points� to calculate the time the particle spends in trav-
elling between the two turning points. From the constants of
the motion, we have

vx
2�x� =

2H��

ma
−
�P� −

q�

c
A0�x�2

m�
2 , �17�

where H��	m��vx
2+vy

2� /2. The zero points of Eq. �17� are
possible turning points. The time for the particle to travel
between the tuning points is given by

tp� = 2�
x1

x2 dx

vx�x�
,

which is the period for the particle’s vx����, vy����, x����. Here
x1, x2 are two turning points for this particle. Although y����
is not a periodic function, it has the property

y��� + ntp�� = y���� + n� ,

where �	
0
tp�vy����d� and n is an integer. Using these prop-

erties of the unperturbed orbits, the integral in Eq. �16� can
be expressed as

S� =
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I0,
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0
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c


	exp�iky�y� − y� − i���

and this form has the advantage that the orbit of a particle
needs to be followed for only a single period.

C. Maxwell’s equations

We work in the Coulomb gauge

� · A1 = 0. �18�

Maxwell’s equations take the form

− �2
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�2
1

�t�z
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1

c2

�2A1z

�t2 . �22�

When the field perturbation is of the form
h�x�exp�i�kyy−�t��, it can be proved that Eq. �21� is redun-
dant in the Maxwell–Vlasov system, and thus should be re-
moved from the system. In the resulting system, A1z become
independent of all the others, namely, A1x, A1y, and 
1. This
indicates two independent polarizations exist. In this analysis
we focus on the latter polarization, i.e., A1x, A1y, and 
1. For
this polarization, Eqs. �14�, �15�, �19�, and �20� along with
the Coulomb gauge �18� constitute a complete system.
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D. Spectral method for the eigenvalue problem

In the spectral method,33,37 the unknown functions 
̂�x�,
Âx�x�, Ây�x� are assumed to be able to be approximated by
the linear combination of a series of basis functions,


̂�x� = �
n=0

N−1

Cn�n�x�, Âx�x� = �
n=0

N−1

CN+n�n�x� ,

Ây�x� = �
n=0

N−1

C2N+n�n�x� ,

with the coefficients Ci unknown. Using these expression in
the complete system discussed in Sec. III C results in the
following matrix equation:

MijCj = 0, �23�

where the elements of the 3N	3N matrix Mij are computed
from the inner product between the N basis functions and
Eqs. �18�–�20�. The inner product between �n�x� and a func-
tion g�x� is defined by

��n�g� 	 �
−�

�

�n�x�g�x�dx .

Nontrivial solutions to Eq. �23� exist for values of the com-
plex frequency � such that

det�M� = 0

which is the dispersion relation and the nontrivial solutions
give the expansion coefficients for the eigenfunctions.

The basis functions used in the present paper are Her-
mite functions33,37

�n�x� =
1

�1/4�2nn!
exp�−

x2

2
�Hn�x� ,

where Hn�x� is the Hermite polynomial of order n. The Her-
mite functions satisfy the necessary boundary condition that
the field perturbation vanishes at infinity.

IV. RESULTS

In this section, using the method described in Sec. III,
we calculate the growth rate and mode structure of the drift
kink mode in the �-distribution current sheet. In the process
of computing the unperturbed orbits, we use the particle’s
cyclotron frequency in the asymptotic Harris magnetic field
��0	b0e /m�c to normalize time. The space is normalized
by L. The normalized perturbed field is given by


̄ =

̂


0
, Āx =

Âx


0c/vti
, Āy =

Ây


0c/vti
,

where 
0	4�e2N0L2. We use Newton’s method to calculate
the root of det�M�=0, and use singular value decomposition
�SVD� to calculate the corresponding nontrivial solutions. In
addition, for the low frequency, long wavelength mode con-
sidered in the present paper, the displacement current and the
�2� terms in Poisson’s equation can be safely neglected. In
Secs. IV A–IV D, we consider a �-distribution current sheet

without a background population, while in Sec. IV E, we
consider the effect of the background population.

A. Typical eigenfunction

A typical eigenfunction for the drift kink mode is shown
in Fig. 3 for the parameters �=3, mi /me=16, i /L=0.7,
Ti /Te=1, and kyL=0.8. Here i	vti /�i0 is the ion gyrora-
dius defined with a gyrofrequency calculated from the mag-
netic field b0. For this example, the Hermite expansion was
truncated at N=14 terms and the resulting growth rate and
real frequency are Im��� /�i0=0.11 and Re��� /�i0=0.36,
with phase velocity in the direction of the ion drift. For the
standard Harris sheet ��=�� with the same parameter as
above, the growth rate and real frequency are Im���=0.16
and Re��� /�i0=0.36.33 The eigenfunctions shown in Fig. 3

are odd parity in Ây�x�, 
̂�x� and even parity in Âx�x�. These
parity properties are consistent with the results of the stan-
dard Harris sheet.

B. Dependence on �

In Fig. 4, the growth rate and real frequency of the kink
mode are given as a function of kyL for the parameters �
=5, 10, and �. The other parameters are i /L=1, Ti /Te=1,
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FIG. 3. Typical eigenfunction for the kink mode for the parameters �=3,
mi /me=16, i /L=0.7, Ti /Te=1, and kyL=0.8. The solid line represents the
real part of each quantity, while the dashed line is the imaginary part.
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and mi /me=16. The case �=� corresponds to the Harris cur-
rent sheet. Also shown in Fig. 4 are results in Ref. 33 for the
Harris sheet. DKI is a long wavelength instability with typi-
cal wavelength kyL�1. In Fig. 4, the wavelength of maxi-
mum growth for the DKI is about at kyL=1. The maximum
growth rate increases as the value of � increases.

In Fig. 5, the maximum growth rate and the correspond-
ing real frequency are given as a function of � for the pa-
rameters i /L=1, Ti=Te, and mi /me=16. Growth rates are
maximized over wavelength kyL�1. The maximum growth
rate increases with the increasing � and approaches an
asymptotic value at large values of �. The corresponding real
frequency also increases as � increases.

C. Dependence on the sheet thickness
and ion-electron temperature ratio

In Fig. 6, the maximum growth rate are given as a func-
tion of i /L for the parameters �=4, 5, and �. In Fig. 7, the
maximum growth rate are given as a function of Ti /Te for the
parameters �=4 and �. The �=� �Harris� case shown in
Figs. 6 and 7 are the results of Ref. 33.

The driving factor for the kink mode is the relative drift
velocity between the ions and electrons, Ui−Ue, which can
be expressed in dimensionless form as

�Ui − Ue�
vti

=
i

L
�1 +

Te

Ti
� .

Therefore, it is expected that the growth rate should increase
with i /L and Te /Ti. These trends are confirmed in Fig. 6 for
the sheet thickness and in Fig. 7 for the temperature ratio.
These results are consistent with the results of the Harris
current sheet.33

D. Dependence on ion-electron mass ratio

In Fig. 8, the growth rate and real frequency of the kink
mode are given as a function of kyL for the parameters
mi /me=8, 16, and 32. The other parameters are �=5, i /L
=1 Ti=Te. For equal masses mi=me and temperatures Ti

=Te, the kink mode is a purely growing instability. As the
mass ratio increases, the mode develops a real frequency
with phase velocity in the direction of the ion diamagnetic
drift. The wavelength of maximum growth for DKI is in the
range kyL�1 and shifts towards shorter wavelength as the
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mass ratio increases. At larger value of ion-electron mass
ratio mi /me=32, the real frequency of DKI is well approxi-
mated by the ion diamagnetic frequency kyUi in the long
wavelength region. These properties of DKI are consistent
with its counterpart in the Harris current sheet.32,33

It is known that DKI in the Harris current sheet has
significant growth rates only at low ion-electron mass
ratios.33 At the realistic mass ratio, the growth rate decreases
to a very small value. These results remain the same for the
�-distribution current sheet. In Fig. 9, the maximum growth
rate of DKI are given as a function of mi /me for the param-
eters �=5, i /L=1, and Ti /Te=1. In the region of very low
mass ratio, the growth rate increases with the increasing
mass ratio, while in the region of larger ratio, the growth rate
decreases as the mass ratio increases. The corresponding real
frequency increases with the increasing mass ratio and the
wavelength for the maximum growth rate shifts towards
shorter wavelength as the mass ratio increases.

E. Effect of background population

As pointed out in Refs. 32 and 33, a uniform background
population introduces new relative drift between particles,
which can excite a generalized kink mode in the Harris cur-
rent sheet. With a uniform background population included
in the current sheet, the kink mode has significant growth
rate at the physical value of the ion-electron mass ratio. For
a �-distribution current sheet, the background population
takes the form of Eq. �11�. This �-distribution background
population has the same effect as the Gaussian distribution
background population in the Harris sheet. In Fig. 10 the
growth rates are given as a function of background density
for the realistic value of mass ratio mi /me=1836. The other
parameters are �=5, Ti /Te=1, i /L=1, kyL=0.8. The param-
eters for the background plasma ��, mi /me, Ti /Te� are iden-
tical to the drifting distributions. As shown in Fig. 10, the
growth rates of DKI in this case are significant and increase
as the background density increases.

As mentioned above, a background population makes
the temperature finite in the asymptotic region, which shows
that the presence of a background population can be impor-
tant from the standpoint of mathematically modeling the cur-
rent sheet with a �-distribution. On the other hand, there has
been some observational evidence which indicates that a
background population may exist in a real current sheet.36
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For example, in the magnetotail the presence of the ion back-
ground population can be due to the lobe plasma or due to
ionospheric ions. These observations make the generalized
drift kink mode relevant to the stability of the magnetotail.
The cluster observations38 also indicate that the current-sheet
flapping motion in the magnetotail may be a result of the
kink mode.

V. CONCLUSIONS

In this paper, the properties of the drift kink mode in the
current sheet with a �-distribution are examined using the
formally exact method described in Refs. 31–33. The growth
rates, eigenmode structure, and parametric dependencies of
the kink mode are presented and compared with the standard
Harris current sheet. The results indicate that the drift kink
mode in the �-distribution current sheet resembles its coun-
terpart in the standard Harris sheet, but has smaller growth
rate and real frequency. The maximum growth rate of the
kink mode in the �-distribution current sheet decreases with
the decreasing value of �. It was also demonstrated that a
background population can enhance the growth rate of the
kink mode, making the growth rate significant at the physical
value of the ion-electron mass ratio.

The current-sheet model based on the �-distribution
function incorporates the kinetic effects of non-Maxwellian
distribution and provides a new starting point for the inves-
tigation of plasma stability in inhomogeneous plasmas. In
addition to the kink mode considered in this paper, lower-
hybrid and tearing mode in the �-distribution current sheet
can be analyzed by the same method and these remain for the
future work.
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