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Abstract Lower-hybrid drift instability (LHDI) in a Harris current sheet including a uniform
background distribution is investigated in linear local kinetic theory. It is found that the intro-
duction of a uniform background distribution reduces the growth rate and real frequency of LHDI
at all wavelengths. Some physical explanations about the effects of the background distribution
are provided.
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1 Introduction

Lower-hybrid drift instability (LHDI) is a high fre-
quency instability (Ωi � ω � |Ωe|, here Ωi and Ωe

are the ion and electron gyrofrequencies, respectively)
driven by the cross-field current in the presence of
inhomogeneities in density n0(x) and magnetic field
B0(x)ez . It has a maximum growth rate when kz = 0
and kyρe ∼ 1. Here kz and ky are wave vectors paral-
lel to and perpendicular to magnetic field, respectively.
ρe = vte/|Ωe| is the electron thermal cyclotron radius.
The interest in LHDI is motivated by its role in anoma-
lous resistivity and transport. Early theories on LHDI
were developed for applications to laboratory devices
and collisionless shocks [1∼3]. It was also suggested that
LHDI might be the source of anomalous resistivity in
the magnetotail [4]. Many of the works on LHDI in the
magnetotail were based on the Harris current sheet [5]

which is the simplest one-dimension equilibrium with
an antiparallel magnetic field on the two sides and a
maximum density and current at the center. Harris
current sheet has a zero asymptotic density at large
distance from the center. Both the ions and electrons
in Harris current sheet have a uniform drift velocity
across the current sheet. On the other hand, there has
been some observational evidences which indicates that
a static and uniform background population may exist
in a real current sheet [6,7]. So a Harris current sheet
with a background population may provide a better
representation of the magnetotail. DAUGHTON [8] no-
ticed that a uniform background population often exists
in the kinetic simulation of Harris current sheet which
may play important roles in the dynamics of the cur-
rent sheet. He analysed the effects of this background
population in linear nonlocal kinetic theory and found
that the background population can excite the so-called
Ion-Ion kink instability. Later, a longer wavelength

LHDI instability with k
√

ρeρi ∼ 1 in a Harris cur-
rent sheet with a uniform background population was
analyzed [9]. The results show that the growth rates
for both the odd- and even-parity modes of this long
wavelength LHDI are rapidly suppressed by the uni-
form background population. Although it was also sug-
gested that the uniform background population may
suppress the traditional short wavelength LHDI [9], the
conclusion was based on an approximate formula with
the conditions of Te ∼ 0, Te � Ti, Ui < vti (where
Ui is the ion diamagnetic drift velocity). These condi-
tions are usually not appropriate for those observed in
the magnetotail. In this paper, based on the linearized
Maxwell-Vlasov system and in the framework of local
theory, we derive a dispersion relation for the tradi-
tional short wavelength LHDI by taking into account
the effect of the background population. The equilib-
rium configuration adopted in the present study is a
Harris current sheet with a uniform background popu-
lation which we call modified Harris current sheet. The
results of our analysis indicate that this uniform back-
ground population has a stabilizing effect on LHDI at
all wavelengths.

This paper is organized as follows. In section 2 the
equilibrium model used in this study is discussed. The
local dispersion relation for LHDI is derived in sec-
tion 3. Then, in section 4 detailed numerical solutions
to the dispersion relation are presented. Conclusions
are given in section 5.

2 Harris current sheet

equilibrium

The near-Earth current sheet can be described by a
variety of possible equilibria. Among the various one-
dimensional equilibria, the Harris equilibrium [5] is the
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simplest one. Our analysis is restricted to this clas-
sic equilibrium, but with a slight alteration introduced
later. The magnetic field is along z-direction,

B0(x) = Bz(x)ez = b0tanh(
x

L
)ez, (1)

and a cross-field current in the y-direction,

Jy =
cb0

4πL
sech2(

x

L
), (2)

where c is the speed of light in vacuum. The con-
stants of motion for a charged particle moving in the
specified magnetic field are v2

⊥ = v2
x + v2

y, vz and
py = vy + qAy/msc (where Ay =

∫
Bz(x)dx). The

equilibrium distribution function built up from these
constants of motion may be expressed as,

f0α =
n0(x)

π3/2v3
tα

exp
[
− v2

x + (vy − Uα)2 + v2
z

v2
tα

]
, (3)

where Uα is the drift velocity, vtα = (2Tα/mα)1/2 is
the thermal velocity, α = i, e for ions and electrons re-
spectively, and the density profile is given by

n0(x) = N0sech2(
x

L
), (4)

with N0 and b0 being related by the relation,
N0(Ti + Te) = b2

0/8π. To enforce charge neutrality,
one must require Ui/Ti = −Ue/Te and Uα is related to
L by

Uα = − 2cTα

Lb0qα
. (5)

Note that although the density decreases exponentially
in space, the drift velocities are independent of the spa-
tial location. It is a uniform constant across the sheet.

The Harris current sheet equilibrium, which is an ex-
act solution to Vlasov-Maxwell equations, is a equilib-
rium model frequently used in stability analysis [10,11].
In the present paper, following DAUGHTON [8,9], we
modify the standard Harris current sheet by including
a uniform background population for electrons and ions
of the form

fbα =
nb

π3/2v3
tα

exp
(
− v2

x + v2
y + v2

z

v2
tα

)
, (6)

so that the standard Harris current sheet distribution
function is modified to f0α +fbα, which is also an exact
solution to the Vlasov equation. This uniform back-
ground population does not contribute to the plasma
current and it also ensures charge neutrality, so that it
does not destroy the equilibrium discussed above. With
this modification the density of the combined distribu-
tions goes to a nonzero constant in the farther region
(not as standard Harris equilibrium to zero in the far-
ther region). We think that this is a better represen-
tation of magnetotail which is essentially a transition
layer between two uniform regions.

3 Stability analysis

The stability of the standard Harris equilibrium de-
scribed in section 2 is analysed using the linearized
Vlasov equation,

∂f1α

∂t
+ v · ∇f1α +

v × B0

c
· ∇vf1α

= − qα

mα

(
E1 +

v × B1

c

)
· ∇vf0α, (7)

where B0 is given by Eq. (1) and f0α is given by Eq. (3).
The perturbed electromagnetic fields are described by
the scalar potential φ and vector potential A,

E1 = −∇φ − 1
c

∂A
∂t

,

B1 = ∇× A, (8)

where
φ = φ̂(x) exp

[
i(kyy + kzz − ωt)

]
,

A = Â(x) exp
[
i(kyy + kzz − ωt)

]
. (9)

Integrating the Vlasov equation along the unperturbed
particle orbits, we can obtain the perturbed distribu-
tion function f1α,
f1α(x, vx, vy, vz)

= −qαf0α

Tα

{
φ̂(x) − Uα

c
Ây(x) + i(ω − kyUα)

×
∫ 0

−∞

[
φ̂(x′) − v

′ · Â(x′)
c

]
exp

[
iky(y′ − y)

+ikz(z′ − z) − iωτ
]
dτ

}
, (10)

where τ = t
′ − t, x

′
(t

′
), y

′
(t

′
), z

′
(t

′
), v

′
x(t

′
), v

′
y(t

′
),

v
′
z(t

′
) are along the unperturbed orbits and must be

given as functions of t′ or τ . The boundary conditions
at t

′
= t or τ = 0 are x

′
= x, y

′
= y, z

′
= z,

v
′
x = vx, v

′
y = vy and v

′
z = vz .

In the local approximation, it is assumed that Â(x
′
)

and φ̂(x
′
) can be taken out of the orbit integral, so that

f1α(x, vx, vy, vz)

= −qαf0α

Tα

{
φ̂(x) − Uα

c
Ây(x) + i(ω − kyUα)φ̂(x)

×
∫ 0

−∞
exp

[
iky(y′ − y) + ikz(z′ − z) − iωτ

]
dτ

−1
c
i(ω − kyUα)Â(x) ·

∫ 0

−∞
v′ exp

[
iky(y′ − y)

+ikz(z′ − z) − iωτ
]
dτ

}
. (11)
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3.1 Perturbed density and current of
current-carrying electrons

Unperturbed orbits of electrons are approximately
given by a cyclotron motion with a ∇B drift. Using
these orbits and the low frequency approximation
(|ω| � |Ωe|), the perturbed electron density can be
obtained as
n1e(x) =

∫
f1e(x, vx, vy, vz)dv

=
en0(x)

Te

{
φ̂(x) +

kzUe

kyc
Âz(x) + i(ω − kyUe)

× 2
kzv3

te

[
φ̂(x)

∫ ∞

0

−iv⊥e−v2
⊥/v2

teJ2
0Z(ξe)dv⊥

+Âx(x)
∫ ∞

0

−v2
⊥
c

e−v2
⊥/v2

teJ0J1Z(ξe)dv⊥

+Âz(x)
∫ ∞

0

iv⊥e−v2
⊥/v2

teJ2
0

(
− vte

c

Z ′(ξe)
2

−kz

ky

v∇B

c
Z(ξe)

)
dv⊥

]}
, (12)

where J0, J1 are the Bessel functions of the first kind
with argument kyv⊥/Ωe. Z(ξe) is the plasma disper-

sion function [12,13] and Z ′(ξe) = −2
[
1 + ξeZ(ξe)

]
,

ξe = (ω − kyv∇B)/(kzvte), Ωe = −B0(x)e/(mec),
v∇B = εBv2

⊥/(2Ωe), εB = B′
0(x)/B0(x).

In obtaining Eq. (12) we expand Eq. (3) in velocity
space as,

f0α =
n0(x)

π3/2v3
te

(1 +
2Uevy

v2
te

) exp
(
− v2

x + v2
y + v2

z

v2
te

)
.

This expansion is valid when |Ue| � vte which is usu-
ally satisfied by electrons but not by ions. In addition,
we used the Coulomb gauge ∇ · A = 0 to replace Ây

with kzÂz/ky and neglected the term ∂A/∂x.
Similarly we can derive the expressions for the per-

turbed electron current density,

Jex(x) = −e

∫
vxf1edv

= −e2n0(x)
Te

i(ω−kyUe)
2

kzv3
te

∫ ∞

0

e−v2
⊥/v2

tev2
⊥dv⊥

×
{
− J0J1Z(ξe)φ̂ + iJ2

1

v⊥
c

Z(ξe)Âx + J0J1

×
[
− kz

ky

v∇B

c
Z(ξe) − vte

c

Z ′(ξe)
2

]
Âz

}
, (13)

Jez(x) = −e

∫
vzf1edv

= −e2n0(x)
Te

i(ω − kyUe)
2

kzv2
te

∫ ∞

0

e−v2
⊥/v2

tev⊥dv⊥

×
{
iJ2

0

Z ′(ξe)
2

φ̂ + J0J1
v⊥
c

Z ′(ξe)
2

Âx

+iJ2
0

[kz

ky

v∇B

c

Z ′(ξe)
2

− vte

c
ξe

Z ′(ξe)
2

]
Âz

}
. (14)

3.2 Perturbed density of current-
carrying ions

The frequency |ω| of LHDI is much larger than the
ion cyclotron frequency Ωi. In one wave period, the
unperturbed ion orbits are well approximated by a
straight line. Thus we can treat ions as unmagnetized.
In addition, for LHDI, it is adequate to consider ion’s
response to the scalar potential only, and neglect its re-
sponse to the vector potential [14]. From Eq. (11), we
get,

f1i = −ef0i

Ti
φ̂
(
1 +

ω − kyUi

kyvy + kzvz − ω

)
. (15)

Integrating f1i in velocity space, we get the perturbed
ion density,

n1i(x) =
∫

f1idv = −en0(x)
Ti

φ̂

×
[
1 +

ω − kyUi

kyv2
ti

1√
π

∫ +∞

−∞
e−v2

z/v2
tiZ(ξi)dvz

]
(16)

with ξi = (ω − kyUi − kzvz)/(kyvti).
The ion’s contribution to the perturbed current is

neglected due to its smallness compared with the elec-
tron’s .

3.3 Perturbed density of background
electrons and ions

So far we have not included a background population
yet. When a uniform background population is intro-
duced, we must take into account its contribution to
perturbed density and current. By setting Uα = 0 and
replacing n0(x) with nb in Eqs. (12)∼ (14) and (16),
we can obtain the contribution of the background dis-
tribution. For example, the perturbed electron density
of background distribution is given by,

nb1e(x)

=
enb

Te
φ̂+

enb

Te

2iω

kzv3
te

{
φ̂

∫ ∞

0

−iv⊥e−v2
⊥/v2

teJ2
0Z(ξe)dv⊥

+Âx

∫ ∞

0

−v2
⊥
c

e−v2
⊥/v2

teJ0J1Z(ξe)dv⊥

+Âz

∫ ∞

0

iv⊥e−v2
⊥/v2

teJ2
0

[
− vte

c

Z ′(ξe)
2

−kz

ky

v∇B

c
Z(ξe)dv⊥

]}
, (17)

while the perturbed ion density of background distri-
bution is given by,

nb1i = −enb

Ti
φ̂
[
1 +

ω

kyv2
ti

1√
π

∫ +∞

−∞
e−v2

z/v2
tiZ(ξbi)dvz

]
,

(18)
with ξbi = (ω − kzvz)/(kyvti).
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3.4 Dispersion relation

Using the Coulomb gauge ∇ ·A = 0 and neglecting
the displacement current (ω � kc), Maxwell’s equa-
tions then take the form,

∇2φ = −4πρ, (19)

∇2A = −4π

c
J. (20)

From Eq. (19) and the x, z components of Eq. (20), we
get,

k2φ̂ = 4πe(n1i − n1e),

k2Âx =
4π

c
Jex,

k2Âz =
4π

c
Jex, (21)

where k =
√

k2
y + k2

z .

For later use, we write n1i, n1e, Jex, Jez as,

n1i(x) = χi
φφ̂,

n1e(x) = χe
φφ̂ + χe

xÂx + χe
zÂz ,

Jex(x) = σx
φφ̂ + σx

xÂx + σx
z Âz ,

Jez(x) = σz
φφ̂ + σz

xÂx + σz
z Âz. (22)

Comparing Eq. (22) with the expressions of perturbed
density and current, we can write down the expressions
of χi

φ, χe
φ, χe

x, χe
z, σx

φ, σx
x , σx

z , σy
φ, σy

x, σy
z , σz

φ, σz
x, σz

z .
For example, χi

φ takes the form,

χi
φ = −en0(x)

Ti

[
1+

ω − kyUi

kyv2
ti

1√
π

∫ +∞

−∞
e−v2

⊥/v2
tiZ(ξi)dvz

]

−enb

Ti

[
1 +

ω

kyv2
ti

1√
π

∫ +∞

−∞
e−v2

⊥/v2
tiZ(ξbi)dvz

]
.

(23)
In the local theory, we must first set the location of

x to evaluate χi
φ, χe

φ, χe
x, χe

z, σx
φ, σx

x , σx
z , σy

φ, σy
x, σy

z ,
σz

φ, σz
x, σz

z . Then, from Eq. (21), we get the dispersion
relation, ∣∣∣∣∣∣

D11 D12 D13

D21 D22 D23

D31 D32 D33

∣∣∣∣∣∣ = 0, (24)

with Dij given by

D11 =
4πe

k2
(χe

φ−χi
φ)+1, D12 =

4πe

k2
χe

x, D13 =
4πe

k2
χe

z,

D21 =
4π

ck2
σx

φ, D22 =
4π

ck2
σx

x − 1, D23 =
4π

ck2
σx

z ,

D31 =
4π

ck2
σz

φ, D32 =
4π

ck2
σz

x, D33 =
4π

ck2
σz

z − 1. (25)

4 Numerical results

In this section, the LHDI dispersion relation in
Eq. (24) is solved numerically and the effects of the
background population are investigated.

The modified current sheet considered in the present
study is completely characterized by the following four
dimensionless parameters,

nb

N0
,

Ui

vti
,

Ti

Te
,

ω2
pe(0)

Ω2
e(∞)

,

where ωpe(0) =
√

4πe2N0/me is the electron plasma
frequency calculated from the peak density N0;
Ωe(∞) = b0e/mec is the electron gyrofrequency cal-
culated from the asymptotic magnetic field b0. In the
following, unless explicitly specified, we fix the param-
eters as

Ui

vti
= −1,

Ti

Te
= 5,

ω2
pe(0)

Ω2
e(∞)

= 16. (26)

These equilibrium parameters are roughly appropriate
for conditions observed in the magnetotail [15,16]. In
order to investigate the effects of the background pop-
ulation, we choose different values of nb/N0 to evaluate
the growth rate at a spatial location within the current
sheet.

In this paper the complex wave frequency ω is nor-
malized by the local ion cyclotron frequency Ωi, and
wave vectors ky , kz by local electron gyro-radius
ρe = vte/|Ωe|.

First a comparison of our numerical solution with
the previous results is presented. In Fig. 1 we plot
the growth rate and corresponding real frequency as
a function of kyρe, with parameters of x = 0.88 L,
kzρe = 0.002, nb/N0 = 0, Ti/Te = 1, Ui/vti = −1
and ω2

pe(0)/Ω2
e(∞) = 125. In Fig. 2 we compare our

results with those in Ref. [2]. The parameters are set
by closely following the conditions of Fig. 3 in Ref. [2].
However, there is something that needs to be clarified.
First, although the work of Ref. [2] is not based on the

Fig.1 Plots of Re(ω)/Ωi and Im(ω)/Ωi versus kyρe

with parameters of x =0.88 L, kzρe =0.002, nb/N0 = 0,

Ti/Te = 1, Ui/vti = −1 and ω2
pe(0)/Ω

2
e(∞) =125
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Fig.2 Plots of Im(ω)/ΩLH and |Re(ω)|/ΩLH versus |ky |ρe

with the same parameters as in Fig. 1. Note that the

Doppler frequency shift −kyUi has been added to the real

frequency. The local parameters at this spatial location are

βi = 0.5, ω2
pe/Ω

2
ce =125, where βi = 8πn0(x)Ti/B2

0(x),

These are exactly the same parameters of Fig. 3 in Ref. [2]

Harris current sheet equilibrium, from the given local
parameters in Ref. [2], we can infer that this case ac-
tually corresponds to a Harris current sheet with the
following global parameters:

nb

N0
= 0,

Ui

vti
= −1,

Ti

Te
= 1,

ω2
pe(0)

Ω2
e(∞)

= 125, (27)

and the spatial location at which the dispersion relation
is evaluated is x=0.88 L. Second, the normalization in
Ref. [2] is a little different from the method adopted in
the present paper. The complex frequency is normal-
ized by lower-hybrid frequency ΩLH ≈ √

Ωi|Ωe|. Third,
in Fig. 3 of Ref. [2], the coordinate is set in the ion
reference frame, so that the ions have a zero drift ve-
locity in this reference frame. In the present paper, our
equilibrium configuration determines that we are in a
reference frame in which both ions and electrons have
drifts. Therefore, we must add a Doppler frequency
shift −kyUi to the real frequency to compare our re-
sults with Ref. [2]. The comparison in Fig. 2 shows that
our results are in excellent agreement with the results
of Ref. [2] after being transformed to the ion reference
frame.

In Figs. 3∼5, the growth rate of LHDI and the corre-
sponding real frequency are plotted as a function of ky

for different values of Δ ≡ nb/N0 and spatial locations.
From Figs. 3∼5, some basic properties of LHDI can

be deduced. For example, the real frequency is ap-
proximately in the range Re(ω) ∼ 40Ωi ∼ √

ΩeΩi

(ωLH ≈ √
ΩiΩe is the lower-hybrid frequency). An-

other basic property of the traditional LHDI is that it
is a short wavelength instability, with the typical wave-
length on the electron gyroscale kyρe ∼ 1. From Fig. 3
we can see that the growth rate curve peaks around
|ky|ρe ∼ 1. (Note that in Figs. 3∼5, ky is negative be-
cause we set the wave vector component ky along the
ion drift velocity which is in the negative y direction).
In addition, LHDI is a flute instability which has the
maximum growth rate when kz/ky → 0, i.e., when the

Fig.3 Growth rate Im(ω)/Ωi (lower) and the correspond-

ing real frequency Re(ω)/Ωi (upper) as a function of kyρe

with Δ = nb/N0 = 0.00, 0.02, 0.04, 0.06 as a parameter.

The other parameters are x= 0.8 L, kzρe =0.003, Ti/Te = 5,

Ui/vti = −1, ω2
pe(0)/Ω

2
e(∞) = 16

Fig.4 Growth rate Im(ω)/Ωi (lower) and the correspond-

ing real frequency Re(ω)/Ωi (upper) as a function of kyρe

with Δ = nb/N0 = 0.00, 0.02, 0.04, 0.06 as a parameter.

The other parameters are x= 1.0 L, kzρe =0.003, Ti/Te = 5,

Ui/vti = −1, ω2
pe(0)/Ω

2
e(∞) = 16

Fig.5 Growth rate Im(ω)/Ωi (lower) and the correspond-

ing real frequency Re(ω)/Ωi (upper) as a function of kyρe

with Δ = nb/N0 = 0.00, 0.02, 0.04, 0.06 as a parameter.

The other parameters are x= 1.2 L, kzρe =0.003, Ti/Te = 5,

Ui/vti = −1, ω2
pe(0)/Ω

2
e(∞) = 16
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wave vector is perpendicular to B0. So in the above we
have chosen kzρe = 0.003, and in the whole range of
ky, the ratio kz/|ky| is a small quantity (in Figs. 3∼5
the minimum value of |ky|ρe is 0.2).

We now investigate how the properties of LHDI are
influenced by the background population. As shown
in Figs. 3∼5, the growth rate and real frequency
are reduced at all wavelengths by the introduction
of the background population (where, the case of
Δ = nb/N0 = 0.0 corresponding with no background
population). With Δ increasing, the growth rate and
real frequency are both reduced.

The result is not unexpected. It agrees with the
physical intuition that the relative drift between ions
and electrons are the driving source of LHDI. The static
background population reduces the average drift veloc-
ity of electrons and ions, and therefore reduces the rela-
tive drift between electrons and ions. Consequently, the
energy source of LHDI is reduced which results in the
reduction in the growth rate. In Fig. 3 we evaluated the
dispersion relation at the spatial location x = 0.8 L.
When nb/N0 = 0.0 (i.e. the background population
is not included), the relative drift between ions and
electrons at this spatial point is (Ue − Ui)/vti = 1.20.
When nb/N0 = 0.06 the relative drift at this spatial
point drops to (Ue − Ui)/

{
vti

[
1 + nb/n0(x)

]}
= 1.08.

In Fig. 4 we evaluated the dispersion relation at the
spatial location x = 1.0 L. When nb/N0 = 0.0, the
relative drift between ions and electrons at this spatial
location is (Ue − Ui)/vti = 1.20. When nb/N0 = 0.06
the relative drift at this spatial location drops to
(Ue − Ui)/

{
vti

[
1 + nb/n0(x)

]}
= 1.04.

The conclusion also agrees with the results in the
previous literature that β has a stabilizing effect on
LHDI [2] (where β = 8πn0(Ti + Te)/B2

0 , is the ratio
of thermal pressure to magnetic pressure). The back-
ground population leads to an increase in local ther-
mal pressure, but does not influence the local mag-
netic pressure, and therefore increases local β which is
stabilizing for LHDI. In Fig. 5 we evaluated the dis-
persion relation at the spatial location x = 1.2 L.
When nb/N0 = 0.0 (i.e. the background population
is not included), the local β for this spatial location
is 1/ sinh2(x) = 0.43. When nb/N0 = 0.06, the β
increases to [1 + nb/n0(x)]/ sin h2(x) = 0.52.

5 Conclusion

In this paper, we investigated the properties of LHDI
in the Harris current sheet with a uniform background
population. The results show that the growth rate and
real frequency of LHDI are reduced at all wavelengths
due to the introduction of the background population.
The uniform background population has a stabilizing

effect on LHDI at all wavelengths.
These results can be attributed to two effects of the

background population, i.e., the reduction in the aver-
age drift velocity between electrons and ions, and the
increase in the local β.

Before we conclude this paper, we would like to
make some remarks on the diamagnetic current. Al-
though the average drift between ions and electrons
is reduced due to the background population, the
total diamagnetic current in the sheet remains un-
changed. The total diamagnetic current is given by
Jy0(x)= en0(x)(Ui − Ue), which is independent of the
background population. The reduction in the average
relative drift velocity between ions and electrons results
in the reduction in the growth rate of LHDI. This indi-
cates that the relative drift velocity between ions and
electrons determines how fast the instability can grow.
On the other hand, the total diamagnetic current is
not directly related to the growth rate of LHDI. It de-
termines the total energy source that can be given to
LHDI in the process of nonlinear evolution of LHDI.
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