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Kinetic-MHD hybrid simulations are carried out to investigate possible fast-ion-driven modes on

the Experimental Advanced Superconducting Tokamak. Three typical kinds of fast-ion-driven

modes, namely, toroidicity-induced Alfv�en eigenmodes, reversed shear Alfv�en eigenmodes, and

energetic-particle continuum modes, are observed simultaneously in the simulations. The simula-

tion results are compared with the results of an ideal MHD eigenvalue code, which shows agree-

ment with respect to the mode frequency, dominant poloidal mode numbers, and radial location.

However, the modes in the hybrid simulations take a twisted structure on the poloidal plane, which

is different from the results of the ideal MHD eigenvalue code. The twist is due to the radial phase

variation of the eigenfunction, which may be attributed to the non-perturbative kinetic effects of

the fast ions. By varying the stored energy of fast ions to change the fast ion drive in the simula-

tions, it is demonstrated that the twist (i.e., the radial phase variation) is positively correlated with

the fast ion drive. VC 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4941970]

I. INTRODUCTION

Alfv�en eigenmodes (AEs) can be excited in tokamak

plasmas by fast ions from various sources including neutral

beam injection (NBI), RF heating, and fusion reactions.1–8

The electromagnetic fluctuations of the AEs have the possi-

bility of influencing the transport of fast ions and thus are

important in determining the performance of NBI/RF heating

and future burning plasmas.9–17 The Experimental Advanced

Superconducting Tokamak (EAST)18 has recently been

upgraded to include four deuterium neutral beam lines.

Figure 1 shows the beam injection geometry on EAST. It is

expected that, with the NBI generated fast ions, various AEs

will be routinely observed on EAST. In the present work,

kinetic-MHD hybrid simulations using MEGA code19–21 are

carried out to investigate possible fast-ion-driven Alfv�en

eigenmodes on EAST. The simulations use an equilibrium

with a flat profile of safety factor. Anisotropic slowing down

distributions are used to model the distribution of the fast

ions from the neutral beam injection. Perturbations of

multiple toroidal mode numbers are included in the simula-

tions. Plenty of modes in the Alfv�en frequency range

are found in the simulation. The frequency and radial width

of the modes observed in the simulations are compared

with the Alfv�en continua to categorize the modes, which

indicates the modes include the toroidicity-induced Alfv�en

eigenmodes (TAEs),1,3,4,19,22 reversed shear Alfv�en eigenm-

odes (RSAEs),7,8,23–31 and energetic-particle continuum

modes (EPMs).5,20,32,33 The simulation results are also com-

pared with the results of an MHD eigenvalue code,34 which

shows agreement with respect to the frequency, dominant

poloidal mode number, and radial location of the modes.

Measurements from the electron cyclotron emission ra-

diometer show that the phase of AEs usually changes across

the radius.35–37 The radial phase variation makes the two-

dimensional mode structure on the poloidal plane take a

twisted structure. The cause of the twist (or radial phase vari-

ation) is usually attributed to the non-perturbative kinetic

effects of energetic particles (EPs).38–40 In the present hybrid

simulations, two-dimensional mode twist on the poloidal

plane is observed, which is different from the results of the

ideal MHD eigenvalue code. By varying the stored energy of

fast ions to change the fast ions drive in the simulations, the

dependence of the radial phase variation on the energetic

particles drive is examined, which indicates that the radial

phase variation is positively correlated with the fast ions

drive.

The remainder of this paper is organized as follows.

Section II reviews the model used in the simulation code

MEGA. Section III gives the equilibrium used in the simula-

tion. The simulation results are given in Sec. IV. A brief

summary is given in Sec. V.

II. SIMULATION MODEL

MEGA is a numerical code calculating the interaction of

thermal plasmas and EPs in toroidal geometries.20 In

MEGA, the thermal plasmas are described by the nonlinear

full MHD equations, while the EPs are described by the

drift-kinetic equation. The MHD equations solved by MEGA

consist of the mass continuum equation

@q
@t
¼ �r � quð Þ þ �nr2 q� qeqð Þ; (1)

the momentum equation (with modification by the effects of

EPs)a)E-mail: yjhu@ipp.cas.cn
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q
@u

@t
¼ �qX� u� qr u2

2

� �
�rpþ j� j0h

� �
� B

þ 4

3
r �qr � uð Þ � r � �qXð Þ; (2)

the Faraday’s law

@B

@t
¼ �r� E; (3)

and the equation of state

@p

@t
¼ �r � puð Þ � C� 1ð Þpr � u

þ C� 1ð Þ �qX2 þ 4

3
�q r � uð Þ2 þ gj � j� jeq

� �� �

þ �nr2 p� peqð Þ; (4)

where q, u, and p are the mass density, fluid velocity, and

pressure of the thermal plasma, respectively, B and E are the

magnetic field and electric field, the electric field E is given

by E ¼ �u� Bþ gðj� jeqÞ, the current density j is given

by j ¼ l�1
0 r� B, the vorticity X is given by X

¼ r� u; l0 is the vacuum magnetic permeability, C is the

adiabatic constant (C¼ 5/3 in the simulations presented here),

g is the electric resistivity, � and �n are the artificial viscosity

and diffusion coefficients chosen to maintain numerical stabil-

ity (these dissipation coefficients also play a physical role of

enhancing the damping of the modes in the MHD simulation

that does not include kinetic damping from the thermal

plasma), the subscript “eq” represents the equilibrium varia-

bles, and j0h is the current density of EPs without the contribu-

tion of E�B drift (the contribution of E�B drift disappears

due to quasi-neutrality19). Note that the effects of EPs on ther-

mal plasma enter through the j0h term in the momentum equa-

tion (2) of the thermal plasma. This scheme of coupling EPs

with thermal plasma (usually called “current coupling”) is

valid when the density of EPs is low so that the inertia of EPs

can be neglected in the momentum equation.

In MEGA, the MHD equations (1)–(4) are discretized in

space by using a fourth-order finite difference scheme in the

FIG. 1. Top view of the neutral beam injection geometry on EAST tokamak.

The four beams all lie on the midplane of the device with the tangential radii

of the beams being R tan 1 ¼ R tan 3 ¼ 1:26 m and R tan 2 ¼ R tan 4 ¼ 0:73 m

(the tangential radius of a beam line is the perpendicular distance of the

beam line to the axisymmetric axis of the device). The maximum source

power per beam line is 2 MW. The maximum injection energy of particles is

80 keV.

FIG. 2. Flux surfaces shape of EAST discharge #48916 at 4.5 s. The black

rectangle indicates the computational box on the poloidal plane used in the

simulation. The magnetic field at the magnetic axis Bu0 ¼ þ1:72 T and the

toroidal plasma current Ip/ ¼ �417 kA.

FIG. 3. The radial profiles of the safety factor, plasma pressure, and electron

number density for EAST discharge #48916 at 4.5 s. The profile of the safety

factor is flat and has a weak negative shear in the region
ffiffiffiffiffiffi
�W t

p
� 0:4 (the

safety factor reaches its minimum value qmin ¼ 2:373 at
ffiffiffiffiffiffi
�Wt

p
¼ 0:40). The

value of the safety factor at the magnetic axis q0¼ 2.438. The value of the

safety factor at the flux surface enclosing 95% of the poloidal magnetic flux

q95¼ 4.274. The stored plasma energy of the equilibrium is 127 kJ.
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right-handed cylindrical coordinates ðR;/; ZÞ. The time dis-

cretization uses the fourth-order Runge-Kutta method.

The drift-kinetic description is employed for the EPs.

The guiding-center motion of EPs is governed by the follow-

ing equations:

dX

dt
¼ B?

B?k
vk þ vrB þ vE�B; (5)

dvk
dt
¼ � l

mh

B?

B?k
� rBþ Zhe

mh

B?

B?k
� E; (6)

where X is the location of the guiding-centers, vk is the paral-

lel (to the magnetic field) velocity, vrB is the rB drift given

by vrB ¼ lB�rB=ðmhXhB?kÞ; vE�B is the E�B drift given

by vE�B ¼ E� B=ðBB?kÞ; l is the magnetic moment, mh, Zhe,

and Xh are the mass, electric charge, and cyclotron angular

frequency of EPs, respectively, B
? and B?k are defined by

B? ¼ Bþ B
vk
Xh
r� b; (7)

B?k � b � B? ¼ B 1þ
vk
Xh

b � r � b

� �
; (8)

respectively, where b¼B/B. In MEGA, the orbit of the EP

guiding-centers is followed by using the fourth-order Runge-

Kutta method. Expressed in terms of the guiding-center drift,

the current density j0h appearing in Eq. (2) is written

j0h ¼
ð

f
B?

B?k
vk þ vrB

 !
Zhed3v�r�

ð
flbd3v; (9)

where f is the guiding-center distribution function of EPs and

the last term on the right-hand side is the magnetization

current. Note again that the E�B drift does not appear in

Eq. (9) due to the quasi-neutrality.19 In MEGA, the evolution

of the distribution function of EPs is simulated by using the

df particle-in-cell method.

III. EQUILIBRIUM

The EAST equilibrium used here was reconstructed by

the EFIT code41 by using the constraints from experimental

diagnostics in EAST discharge #48916 at 4.5 s. Figure 2

plots the flux surfaces of the equilibrium and the computa-

tional box on the poloidal plane used in the simulation. The

computational box is chosen to enclose the flux surface withffiffiffiffiffiffi
�Wt

p
¼ 99%, where

ffiffiffiffiffiffi
�Wt

p
is the square root of the normal-

ized toroidal magnetic flux.

The profiles of the safety factor q, plasma pressure p0,

and electron number density ne0 of the equilibrium are

plotted in Fig. 3. The profile of the safety factor has a

weak negative shear in the region
ffiffiffiffiffiffi
�Wt

p
� 0:4. The elec-

tron number density ne0 is used here to determine the mass

density of the thermal deuterium plasma through the ap-

proximate relation q0� ne0mi, where mi is the mass of

deuteron.

In this work, the equilibrium distribution of the fast ions

from the deuterium neutral beam injection is modeled by the

anisotropic slowing down distributions, which takes the fol-

lowing form:

feq w; v; kð Þ ¼ C exp �
wp

wscale

 !
1

v3 þ v3
crit

1

2
erfc

v� vb

Dv

� �

� exp � k� k0ð Þ2

D2
k

 !
; (10)

FIG. 4. Contour of the toroidal harmonics of the radial velocity uw on the poloidal plane for different toroidal mode number n (the toroidal mode numbers are

indicated on the corresponding figures) at time t¼ 0.25 ms. The initial stored energy of the fast ions within the boundary flux surface is 35 kJ for this case. The

back line on every figure indicates the last closed flux surface.
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where C is a constant, which is chosen to achieve desired

stored energy of fast ions; wp is the normalized poloidal flux;

wscale is a quantity characterizing the radial gradient; v is the

velocity of fast ions; vb is the injection velocity of the neutral

beam; Dv is a small velocity (compared with vb), which is

used to set the cutoff width near vb; k is the normalized mag-

netic moment defined by k¼lB0/e, where B0 is the strength

of the equilibrium magnetic field at the magnetic axis and e
is the kinetic energy of fast ions; k0 and Dk characterize the

peak location and the width of the distribution over the pitch

angle; and vcrit is the critical velocity for the collisional fric-

tion of fast ions with thermal electrons and ions being equal,

which is given by42

vcrit ¼
me

mi

3
ffiffiffi
p
p

4

� �1=3

vte; (11)

where me and vte are the mass and thermal velocity of the

electrons. In this work, the beam velocity is chosen

vb¼ 2.35� 106 m/s, which is the velocity of a deuteron with

kinetic energy of 58 keV; vcrit¼ 1.89� 106 m/s, which corre-

sponds to the critical velocity given by Eq. (11) evaluated

with the electron temperature Te¼ 2 keV. The small cutoff

width near the beam velocity is chosen as Dv¼ 0.21� 106 m/s.

The central pitch angle variable k0 is chosen as k0¼ 0.5 with

the expansion width Dk chosen as Dk¼ 0.3, which represents

a reasonable distribution over the pitch angle based on the

beam injection geometry on EAST. The parameter wscale,

characterizing the radial gradient of the fast ion pressure, is

chosen as wscale¼ 0.4.

The pressure p0 given in Fig. 3 is the total pressure,

which should include the contributions from both the thermal

plasma and fast ions. However, in the present work, for sim-

plicity, the pressure p0 given in Fig. 3 is assumed to be the

pressure of the thermal plasma.

IV. SIMULATION RESULTS

In the simulations, all the MHD perturbations are set to

be zero at the computational boundary. Initial perturbation

within the computational boundary is set to be random mag-

netic perturbation of order dB/B0� 10�10 (via the curl of a

random vector field, which ensures the divergence-free nature

of the magnetic perturbation). The numbers of grid points for

cylindrical coordinates ðR;/; ZÞ are (128, 64, 128). The num-

ber of particle markers loaded is 220, which approximately

corresponds to one marker per spacial grid. To reduce numeri-

cal noise, the MHD perturbations are filtered to keep only har-

monics of low toroidal mode numbers. In this work,

harmonics out of the range �8� n� 8 are filtered out every

1000 time steps, where n is the toroidal mode number. The

time step dt is chosen to be dt¼ 0.1/Xh0¼ 1.2� 10�9 s, where

Xh0 is the cyclotron angular frequency of the fast ions at the

magnetic axis. This small time step (compared with the cyclo-

tron period of fast ions) is chosen to meet the Courant condi-

tion of the full MHD system (for the present case, the Courant

number dtVmax=dx � 0:9 < 1, where Vmax is the maximum of

the Alfv�en speed in the computational region and dx is one of

the spacial grid intervals). The ratio of the time step dt to the

Alfv�en time tA is dt/tA¼ 2.65� 10�3, where tA is defined by

FIG. 5. The radial profiles of (a) amplitude juwmnj, (b) cosine components u
ðcÞ
wmn, and (c) sine components u

ðsÞ
wmn of the n¼�2 mode. The time for plotting these

figures is chosen to be at the moment when the sine component of the dominant m¼ 5 harmonic reaches zero at the radial location where the amplitude of the

mode is maximal (i.e.,
ffiffiffiffiffiffi
�W t

p
¼ 0:2 for this case). The poloidal mode number range for this case is 0�m� 64.

FIG. 6. Temporal evolution of (a) the cosine component u
ðcÞ
wmn and sine component u

ðsÞ
wmn, (b) the amplitude juwmnj (in logarithm scale), and (c) the frequency of

the m¼ 5 harmonic of the n¼�2 mode. The linear growth rate calculated from these data is c¼ 2.71� 104 s�1. A more convenient way to calculate the fre-

quency (without sign) is to calculate the time interval for the oscillation (u
ðcÞ
wmn or u

ðsÞ
wmn) reaching two successive zero points to get the period of the oscillation

and thus the frequency, which gives x/2p¼ 69.0 kHz.
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tA¼Raxis/VA0 with Raxis being the major radius of the mag-

netic axis and VA0 being the Alfv�en speed at the magnetic

axis. In MEGA, the fluid velocity u is normalized by VA0. In

the simulations, the artificial viscosity and diffusion coeffi-

cients are chosen as � ¼ �n ¼ 1:0� 10�7VA0Raxis. The elec-

tric resistivity is chosen as g ¼ 1:0� 10�7l0VA0Raxis.

Although MEGA code uses cylindrical coordinates

ðR;/; ZÞ in advancing the MHD equations and the orbit of

energetic particles, it uses flux coordinates ðw; h;/Þ in ana-

lyzing the simulation results, where w is a magnetic surface

label (in this article, w is chosen as w ¼
ffiffiffiffiffiffi
�Wt

p
), / is the

usual toroidal angle, and h is chosen to make magnetic field

lines straight on ðh;/Þ plane (the transformation Jacobian

of the coordinates is proportional to h(w)R2, where h(w) is a

flux function). The zero point of h coordinate is chosen at

the low-field side of the midplane and the positive direction

of h is chosen in the counterclockwise direction when

viewed in /̂ direction. In ðw; h;/Þ coordinates system, the

radial component of the fluid velocity uw can be expanded

in two-dimensional Fourier series over h and /, which is

written

uwðw; h;/; tÞ ¼
X1

n¼�1

X1
m¼0

½uðcÞwmnðw; tÞ cosðmhþ n/Þ

þ u
ðsÞ
wmnðw; tÞ sinðmhþ n/Þ�; (12)

where u
ðcÞ
wmnðw; tÞ and u

ðsÞ
wmnðw; tÞ are cosine and sine compo-

nents of the expansion coefficients, respectively. Note that,

in this expansion, the poloidal mode number m is always

positive, while the toroidal mode number n can be negative.

Figure 4 plots the two-dimensional mode structure

observed in the simulation at time slice t¼ 0.25 ms, which

shows that the n¼�8 mode has the largest amplitude. This

mode localizes in a narrow radial region and takes a balloon-

ing structure with a large dominant poloidal mode number

(m¼ 24), as is shown in Figure 4(h). Furthermore, after

examining the temporal evolution of the n¼�8 mode, we

found it is a purely growing mode with zero frequency.

Considering this, this mode is identified as an MHD balloon-

ing mode, which will not be discussed further in this paper.

Similarly, the n¼�7 mode is also an MHD ballooning

mode. Excluding these two modes, the dominant modes

among the modes given in Fig. 4 are the n¼�2, n¼�3, and

n¼�4 modes, which will be analyzed in turn next.

A. Identification of the fast-ion-driven modes

The radial structures of the various poloidal harmonics

of the n¼�2 modes are plotted in Fig. 5, which shows that

the m¼ 5 harmonics is dominant and the mode amplitude

reaches its peak at the radial location
ffiffiffiffiffiffi
�Wt

p
¼ 0:2.

A general harmonic in the Fourier expansion (12) can be

further written as

u
ðcÞ
wmnðw; tÞ cosðmhþ n/Þ þ u

ðsÞ
wmnðw; tÞ sinðmhþ n/Þ

¼ A cos½a� ðmhþ n/Þ�; (13)

FIG. 7. (a) n¼�2 Alfv�en continua

with the frequency and the HHFW of

the n¼�2 mode plotted on. Also plot-

ted on (a) are the m¼ 4 and m¼ 5

Alfv�en continua in the cylindrical ge-

ometry limit. (b) Enlarged part of the

Alfv�en continua in the frequency

range [60 kHz: 70 kHz] to show the

tip of the continua near the zero

magnetic shear point. The Alfv�en con-

tinua is calculated in the slow-sound

approximation.44,45

FIG. 8. The radial profiles of (a) the amplitude juwmnj, (b) cosine components u
ðcÞ
wmn, and (c) sine components u

ðsÞ
wmn of the n¼�3 mode. The time for plotting

these figures is chosen to be at the moment when the sine component of the dominant m¼ 7 harmonic reaches zero at the radial location where the amplitude

of the mode is maximal (i.e.,
ffiffiffiffiffiffi
�Wt

p
¼ 0:28 for this case). The poloidal mode number range for this case is 0�m� 64.
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with the amplitude A given by A ¼ juwmnj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuðcÞwmnÞ

2 þ ðuðsÞwmnÞ
2

q
and the phase angle a given by

a ¼ atanðuðsÞwmn; u
ðcÞ
wmnÞ, where atan() is an arc tangent function

with two arguments that can determine the correct quadrant

of the results. Using this, the instantaneous angular fre-

quency of a harmonic is obtained by calculating the temporal

change rate of the phase angle a, i.e., x¼ da/dt. The growth

rate is given by c¼ dA/dt. The frequency and growth rate of

the n¼�2 mode can be obtained by calculating the fre-

quency and growth rate of the dominant poloidal harmonic

at the radial location where the amplitude of the mode is

maximal. Figure 6 plots the temporal evolution of the m¼ 5

poloidal harmonic at the radial location
ffiffiffiffiffiffi
�Wt

p
¼ 0:2. The

results show that the frequency of the mode x/2p¼ 69.0 kHz

and the linear growth rate c¼ 2.71� 104 s�1.

Using the formula in Eq. (13) and considering the sign

of the mode numbers (m, n), the sign of the frequency, and

the defined positive directions of the poloidal angle h and to-

roidal angle /, we can determine the toroidal and poloidal

propagation directions of the n¼�2 mode. The mode propa-

gates poloidally in þĥ direction and toroidally in �/̂ direc-

tion. In terms of the physical quantities, the mode propagates

poloidally in the diamagnetic drift direction of the ions and

toroidally in the co-current direction, which is consistent

with the general rules for the propagation direction of Alfv�en

modes excited by fast ions.43

To identify which kind of fast-ions driven mode the

n¼�2 mode discussed above belongs to, we plot the fre-

quency and the half height full width (HHFW) of the mode on

the graphic of the Alfv�en continua, as shown in Fig. 7, which

indicates that the mode lies in the TAE gap. Also plotted in

Fig. 7(a) are the m¼ 4 and m¼ 5 Alfv�en continua in the cylin-

drical limit, which shows that the two continua are well sepa-

rated from each other, indicating there will be only weak

coupling between these two harmonics in the corresponding

toroidal geometry. Furthermore, as shown in Fig. 5, the mode

is dominated by the m¼ 5 harmonic with the m¼ 4 harmonic

being much smaller, thus excluding the possibility of being a

TAE mode. Also note that the radial location of the mode is

near the location where the safety factor reaches its minimal

value (
ffiffiffiffiffiffi
�Wt

p
¼ 0:4). Considering these characteristics of the

mode, it is reasonable to identify the mode as a RSAE.

Similar analysis can be applied to the n¼�3 mode. The

results are plotted in Figs. 8 and 9. Figure 8 shows the domi-

nant poloidal mode number is m¼ 7 and all other poloidal

harmonics are negligible. The frequency of the n¼�3 mode

is x/2p¼ 69.0 kHz, which happens to be identical to the

FIG. 9. n¼�3 Alfv�en continua with the frequency and the HHFW of the

n¼�3 mode plotted on. Also plotted are the m¼ 7 and m¼ 8 Alfv�en con-

tinua in the cylindrical geometry limit.

FIG. 11. n¼�4 Alfv�en continua with the frequency and the HHFW of the

n¼�4 mode plotted on. Also plotted on (a) are the m¼ 9 and m¼ 10

Alfv�en continua in the cylindrical geometry limit.

FIG. 10. The radial profiles of (a) the amplitude juwmnj, (b) cosine components u
ðcÞ
wmn, and (c) sine components u

ðsÞ
wmn of the n¼�4 mode. The time for plotting

these figures is chosen to be at the moment when the sine component of the dominant m¼ 10 harmonic reaches zero at the radial location where the amplitude

of the mode is maximal (i.e.,
ffiffiffiffiffiffi
�Wt

p
¼ 0:29 for this case). The poloidal mode number range for this case is 0�m� 64.
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frequency of the n¼�2 RSAE analyzed above. Figure 9 plots

the frequency and the half height full width of the dominant

m¼ 7 harmonics on the graphic of the Alfv�en continua, which

indicates the mode intersect with the m¼ 7 Alfv�en continua.

Considering these characteristics of the mode, it is reasonable

to identify the mode as an EPM, instead of a gap mode.

Similar analysis can also be applied to the n¼�4 mode.

The results are plotted in Figs. 10 and 11. Figure 10 shows

that there are two dominant harmonics for this case, namely,

m¼ 9 and m¼ 10. The frequency of the mode is x/2p
¼ 82.8 kHz. Figure 11 plots the frequency and the HHFW of

the dominant m¼ 10 harmonic on the graphic of the MHD

continua, which indicates the mode lies in the TAE gap

formed due to the coupling of the m¼ 9 and m¼ 10 harmon-

ics. Considering this and that the two dominant harmonics

m¼ 9 and m¼ 10 are comparable in amplitude, it is reasona-

ble to identify the mode as a TAE.

B. Mode twist

Figure 12 compares the two-dimensional mode struc-

tures calculated by MEGA and GTAW (an ideal MHD

eigenvalue code34), which shows agreement with respect to

the radial location and dominant poloidal harmonics of the

modes. However, the n¼�4 mode in the hybrid simulation

takes a twisted structure on the poloidal plane, which is dif-

ferent from the results of the ideal MHD eigenvalue code.

The twist is due to the radial phase variation of the eigen-

functions, which may be attributed to the non-perturbative

kinetic effects of the fast ions.38–40 By varying the stored

energy of fast ions to change the fast ions drive in the simu-

lations, we examined the dependence of the radial phase dif-

ference of the n¼�4 TAE on the fast ions drive, which is

shown in Fig. 13(a). The radial phase difference is defined to

be the phase difference of the m¼ 10 harmonic between the

radial location
ffiffiffiffiffiffi
�Wt

p
¼ 0:173 and

ffiffiffiffiffiffi
�Wt

p
¼ 0:356, which is

the radial range where the mode amplitude is significant, as

is shown in Fig. 14. Figure 13(b) shows that the growth rate

(indication of the fast ions drive) increases with the increas-

ing of the stored energy of fast ions, while the frequency

remains the same. Figure 13(a) shows that the phase differ-

ence increases with the increasing of the stored energy of

fast ions, i.e., the mode twist is positively correlated with the

fast ions drive.

V. SUMMARY

Kinetic-MHD hybrid simulations are carried out to

investigate possible fast-ion-driven modes on the EAST

tokamak. Toroidicity-induced Alfv�en eigenmodes, reversed

shear Alfv�en eigenmodes, and energetic-particle continuum

modes are observed simultaneously in the simulations. The

FIG. 12. Contour of the radial fluid velocity on the poloidal plane calculated

by MEGA ((a) and (b)) and GTAW ((c) and (d)). The n¼�2 mode is an

RSAE with frequency f¼ 69.0 kHZ (67.9 kHz given by GTAW). The n¼�4

mode is a TAE with frequency f¼ 82 kHz (83 kHz given by GTAW). The

initial stored energy of fast ions used in the MEGA simulations is 36 kJ.

FIG. 13. The dependence of (a) the

phase difference, (b) mode frequency,

and (b) growth rate on the initial stored

energy of fast ions for the n¼�4 TAE

mode. The phase difference is defined

as the phase difference of the m¼ 10

harmonic between the radial locationffiffiffiffiffiffi
�Wt

p
¼ 0:173 and

ffiffiffiffiffiffi
�Wt

p
¼ 0:356, as is

shown in Fig. 14.

FIG. 14. The radial profiles of the radial phase, cosine components u
ðcÞ
wmn,

and sine components u
ðsÞ
wmn of the dominant m¼ 10 harmonic of the n¼�4

TAE. The two vertical lines indicate the radial region used in calculating the

phase difference given in Fig. 13.
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slow-sound approximation of the Alfv�en continua proves to

be useful in identifying the modes found in the simulations.

The agreement between the hybrid simulations and linear

eigenvalue analysis provides confidence in the simulation

results. It is demonstrated numerically that the radial phase

variation of the toroidicity-induced Alfv�en eigenmodes is

positively correlated with the fast ion drive in the hybrid

simulations. The present work is limited to the linear proper-

ties of the modes and does not provide any analysis for the

resonant interaction between the fast ions and the modes.

This subject will be investigated in future by examining the

phase space structure of the fast ion distribution function.
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