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The current driven by neutral beam injection (NBI) is the sum of the beam current carried
by fast ions and the electron return current[1, 2, 3]. The electron return current (or called
reverse/shielding current) is generated due to the momentum transfer from the fast ions to elec-
trons. The return current in tokamak equilibrium is usually smaller than the one in uniform
plasma due to the trapped particles effect in tokamak plasma[4, 5]. Previous theoretical calcula-
tion of the electron return current is usually limited to the case in which either the inverse
aspect ratio or the electron collisionality is small. Lin-Liu and Hinton found that the ratio of the
electron returen current to the fast ions current is closely related to one of the bootstrap current
coefficients and use the exsiting formula for the coefficient which is valid in general tokamak
equilibria but for low collisionality regime to epress the electron return current. In this report,
by using the adjoint method, we extend the work in Ref.[5], which is valid for banana regime, to
arbitrary collisionality regime. We show that the ratio of the electron return current to the fast
ion current can still be expressed in terms of one of the bootstap current coefficients. We further
make use of Sauter’s bootstrap current coefficient formula[6], which is valid in general tokamka
equilibra and arbitray collisionality regime, to give a convenient formula for calculating the elec-
tron return current.

In the presence of fast ions generated by NBI, the perturbed electron distribution satifies the
following Fokker-Planck equation

v‖b̂ · ∇fe1−Cl(fe1)=Ce/f(fem), (1)

where ∇ is the gradient operator which is taken by holding the energy and magnetic moment
constant, fem and fe1 are electron equilibrium Maxwellian distribution and perturbed distribu-
tion function, respectively. b̂ =B/B, B is equilibrium magnetic field, v‖ is electron velocity par-

allel to the magnetic field, Cl(fe1) = C(fe1, fem) + C(fem, fe1) + Ce/i(fe1) is the linearized colli-

sion term including electron-electron and electron-ion collision, Ce/f(fem) is the collision term of
electrons with fast ions, which is assumed to be known and acts as an inhomogeneous term in
Eq. (1).

We want to determine the parallel (to the magnetic field) current density je‖ contributed by
fe1. It turns out that we can obtain je‖ via the following way. First solve the following adjoint
equation

− v‖b̂ · ∇χe−Cl(χe)= qev‖Bfem (2)

to obtain the responce funtion χe, then je‖ can be expressed as

〈

je‖B
〉

=

〈
∫

dΓ
χe

fem
Ce/f(fem)

〉

. (3)

where 〈� 〉 is the flux average. (The proof of Eq. (3) can be easily obtained by using the self-

adjoint property of the operator v‖b̂ · ∇ and Cl, i.e.,

〈
∫

dvgv‖b̂ · ∇h
〉

=−
〈
∫

dvhv‖b̂ · ∇g
〉

, (4)

and
∫

dvgCl(femh)=

∫

dvhCl(femg), (5)
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where g and h are two arbitrary functions.)

In the usual situation of NBI, the fast ions beam velocity is much less than the electron
thermal velocity, i.e. uf ≪ vte. In this case, the collision term of electrons with fast ions can be
approximated as

Ce/f(fem) =
me

Te
νefv‖uf ‖fem, (6)

where uf ‖ are the parallel velocity of fast ions, νef = Zf
2nfνei/(Zeffne), here ne and nf are the

number density of electrons and fast ions, respectively, Zf is the charge number of fast ions, Zeff

is the effective charge number of plasma ions, νei=Γe/eZeff/v
3 is the pitch angle scattering rate,

Γe/e = nee
4lnΛe/e/(4πǫ0

2me
2), lnΛe/e is the Coulomb logarithm, − e, me, and Te are respectively

the charge, mass, and temperature of electrons, ǫ0 is the dielectric constant of free space. Using
Eq. (6) in Eq. (3) gives

〈

je‖B
〉

=− Zf

Zeff

1

Ipe

〈

jf ‖B

∫

dΓχeνei
Iv‖

Ωe

〉

, (7)

where jf ‖=Zfenfuf ‖ is the fast ion current, pe=neTe, Ωe=−Be/me, I =BϕR is a flux surface
function, Bϕ is the toroidal magnetic field, R is the major radius. Ref. [6] points out that

∫

dΓχeνeiIv‖/Ωe can be approximately considered to be a function of the flux surface. Using this,

Eq. (7) is written as
〈

je‖B
〉

=−
〈

jf ‖B
〉 Zf

Zeff

1

Ipe

〈
∫

dΓχeνei
Iv‖

Ωe

〉

. (8)

According to the neoclassical bootstap current theory of Sauter et. al .[6], (there is a minus sign
error in Sauter’s formula) we have

1

Ipe

〈
∫

dΓχeνei
Iv‖

Ωe

〉

=1−L31 (9)

where L31 is the bootstrap current coefficient before the electron density gradient. Thus Eq. (8)
is written as

〈

je‖B
〉

=−
〈

jf ‖B
〉 Zf

Zeff
(1−L31) (10)

The formula of L31 given by Sauter et al.[6] is

L31 =

(

1+
1.4

Zeff +1

)

X − 1.9

Zeff +1
X2+

0.3

Zeff +1
X3+

0.2

Zeff +1
X4, (11)

with

X =
ft

1+ (1− 0.1ft) νe⋆
√

+ 0.5(1− ft)νe⋆/Zeff
, (12)

where νe⋆ is a measure of collisionality which is defined as νe⋆= 0.012ne20Zeff qR/ε
3/2Te keV

2 , ne20

and Te keV are electron number density in unit of 1020m−3 and electron temperature Te in unit
of keV, respectively; q and ε are the safety factor and inverse aspect ratio of flux surface, respec-
tively; ft is the effective trapped fraction,

ft=1− 3

4

〈

B2

Bmax
2

〉
∫

0

1 λdλ
〈

1−λB/Bmax

√

〉 . (13)

We note that the formulas given by Eqs. (11)-(13) are valid for general tokamak equilibria and
arbitrary collisionality regime. Thus, using these formulas in Eq. (10), we obtain a formula for
the electron return current which is valid for general tokamak and arbitrary collisionality regime.
The total current is the sum of the beam current carried by the fast ions and the electron return
current, i.e. j‖= jf ‖+ je‖. Then we have

〈

j‖B
〉

=
〈

jf ‖B
〉

[

1− Zf

Zeff
(1−L31 )

]

, (14)
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and the ratio of the total current to the fast ion current

F ≡
〈

j‖B
〉

〈

jf ‖B
〉 =

[

1− Zf

Zeff
(1−L31 )

]

. (15)
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Figure 1. The ratio F of the total current to fast ion current [Eq. (15)] as a function of the inverse

aspect ratio ε in concentric circluar flux surface equilibrium for Zf = 1, Zeff = 1 (left figure), and Zeff = 2

(right figure). The different lines in the figure correspond to different values of the electron collision fre-

quency, νe⋆= 0.1, 0.01, and 0.001. The results of the banana regime is obtained by using Eqs. (21)-26) in

Ref.[5].

The difference between (a) and (b) of Fig. 1 is that in the former Zeff = Zf, while in the
latter Zeff � Zf. When Zeff = Zf and the beam velocity is small, it is well known that the elec-
tron return current can cancel the fast ion current to make the net current zero in uniform
plasmas. This result can be seen in Fig. 1(a) in the region ε→ 0.

In summary, we have showed that, for arbitrary aspect ratio and arbitrary collisionality
regime, the ratio of the electron return current to the fast ion current in neutral beam current
drive can be expressed in terms of electron density gradient coefficients of the bootstrap current,
L31. Thus the existing formula for L31 valid for general tokamak equilibria and arbitrary colli-
sionality regime provides a accurate formyla for calculating the electron return current. This for-
mula for the electron return current can be easily applied to numerical codes modeling neutral
beam current drive to improve the calculation capabilities of the codes.

One of the models of electron shielding current used in ONETWO[7] and TRANSP[8]
trasport codes is a formula given by Hirshman[9, 10, 11, 12].

1 Hirshman’s formula[11]

The ratio of the total current to the fast ion current is

F =1− Zf

Zeff
(1−G). (16)

Hirshman’s fitting formula for G is

G= ft

3

2
Zeff(K12 − 5

2
K11)+ ( 2

√
+

13

4
Zeff)K11

(

2
√

+
13

4
Zeff

)

Zeff −
(

3

2
Zeff

)2
, (17)

Hirshman’s formula[11] 3



where K11, A11, B11, C11, D11, K12, A12, B12, C12, and D12 are given respectively by

K11 =
0.53+Zeff

(

1+ A11νe⋆
√

+B11νe⋆
)

(

1+ C11νe⋆ε
3/2

√

+D11νe⋆ε
3/2
), (18)

A11 = 3.44Zeff +
0.52− 0.42Zeff

1+ 1.35Zeff
, (19)

B11 = 0.56+ 0.96Zeff, (20)

C11 = 0.25Zeff +
0.14+ 0.55Zeff

1+ 5Zeff
, (21)

D11 = 0.51Zeff +
0.7+ 0.78Zeff

1+Zeff
, (22)

K12 =
0.71+Zeff

(1+ A12νe⋆
√

+B12νe⋆)(1+ C12νe⋆ε
3/2

√

)+D12νe⋆ε
3/2
,

A12 = 0.31Zeff +
0.1+ 0.084Zeff

1+ 1.3Zeff
, (23)

B12 = 0.26+ 0.35Zeff, (24)

C12 = 0.081Zeff +
0.072+ 0.15Zeff

1+ 3Zeff
, (25)

D12 = 0.29Zeff +
0.42+ 0.62Zeff

1+ 1.42Zeff
. (26)
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Figure 2. Comparison of the ratio F calculated by Sauter’s formula and the one by Hirshman’s. Hir-

shman’s formula is valid only for 0.016 ε6 0.15, so the comparison limited in this range.

According to Wesson’s book[13], electron-electron collision frequency νee is defined as

νee≡ 2
√

12π3/2

ne e
4

ε0
2 me
√

Te
3/2

lnΛe. (27)

(The definition of νee is different from Karney’s, while it agrees with Eq. (56) in Kraus’ notes,
where νee is written as

νee=
16 π

√

3

nee
4lnΛe

me
2vte

3 , (28)

which is in Gaussian units. By using the trasforming rule, we replace ε0 in Eq. (27) by 1/4π,
which gives Eq. (28). Also we note that Kraus’s formula is identical with the νee defined in Hir-
shman’s paper[11] where νee=1/τee and τee is defined after Eq. (9) in Hirshman’s paper)
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The dimensionless collision parameter νe⋆ is defined as

νe⋆≡ νee

ε3/2vte/(qR)
, (29)

where vte= Te/me

√

, q and ε are respectively the safety factor and inverse aspect ratio of a flux

surface. Eq. () can be rewritten as

νe⋆ =
2

√

12π3/2

e4

ε0
2

ne qR

Te
2ε3/2

lnΛe

=

(

2
√

12π3/2

e2

ε0
2

)

ne qR

Te
2ε3/2

lnΛe, (30)

where Te is electron temperatur in unit of eV, all other dimensional quantities are evaluated in
SI units (i.e., normalized to SI unit). In SI unit we have

2
√

12π3/2

e2

ε0
2 = 6.92× 10−18, (31)

which agrees with constants appearing in Sauter’s formula.

2 Beam driven current in general tokamak equilibria

This section is a review of Ref. [5]. We start with the basic equation

v‖b̂ · ∇f1−C l(f1)=− vd · ∇fem+C(fem, ff), (32)

where f1 is the perturbed electron distribution function, b̂ = B/B, B is equilibrium magnetic
field, vd is the drift velocity of guiding-centers perpendicular to the magnetic field, Cl(f1) =

C(f1, fem) + C(fem, f1) + Ce/i(f1) is the linearized electron collision term including electron-
electron and electron-ion collision, ff is the fast ion distribution and C(fem, ff) is the electron
collisions with fast ions, which is known and acts as an inhomogeneous term of Eq. (32). We
can eleminate the first term on the right-hand side of Eq. (32) by writing f1 in the form

f1=− Iv‖

Ωe

∂fem
∂ψ

+ g, (33)

where ψ is the label of the flux surface (here it is chosen to be poloidal flux), I =BϕR, which is
a function of only ψ, Ω = Bqe/mec (Ωe includes the sign of the charge of electron). Using Eq.
(33) in Eq. (32) gives

v‖b̂ · ∇
(

− Iv‖

Ωe

∂fem
∂ψ

)

+ v‖b̂ · ∇g−C l(g)+C l

(

Iv‖

Ωe

∂fem
∂ψ

)

=− vd · ∇fM +C(fem, ff) (34)

Noting that I∂fM/∂ψ is constant along a magnetic field line, the above equation becomes

− I
∂fem
∂ψ

v‖b̂ · ∇
(

v‖

Ωe

)

+ v‖b̂ · ∇g−Cl(g)=−vd · ∇fem+C(fem, ff)−C l

(

Iv‖

Ωe

∂fem
∂ψ

)

(35)

Using

vd · ∇ψ= Iv‖b̂ · ∇
(

v‖

Ωe

)

(36)

(This is Eq. (7) in Lin-Liu’s paper[5], refer to Sec. 9 for the proof of this identiy (however there
is a minus difference betwwen mine and Lin-Liu’s. I do not know why), then we obtain

vd · ∇fem =
∂fem
∂ψ

vd · ∇ψ

=
∂fem
∂ψ

Iv‖b̂ · ∇
(

v‖

Ωe

)

(37)

Beam driven current in general tokamak equilibria 5



Using this in Eq. (35) gives

v‖b̂ · ∇g−Cl(g)=C(fem, ff)−Cl

(

Iv‖

Ωe

∂fem
∂ψ

)

(38)

Next we give the specific form of the two collision terms on the right-hand side of Eq. (38). We
note that (assuming temperature is uniform)

∂fem
∂ψ

=
∂ne

∂ψ

1

ne
fem. (39)

Then the second inhomogeneous term of Eq. (38) is written as

Cl

(

Iv‖

Ωe

∂fem
∂ψ

)

=
I

Ωe

∂ne

∂ψ

1

ne
C l
(

v‖ fem
)

=
I

Ωe

∂ne

∂ψ

1

ne

[

C(v‖ fem, fem)+C(fem, v‖ fem)+Ce/i(v‖ fem)
]

=
I

Ωe

∂ne

∂ψ

1

ne

[

Ce/i(v‖ fem)
]

, (40)

where the last equality is due to C(v‖ fem, fem) +C(fem, v‖ fem) = 0. We approximate the elec-

tron-ion collision by the pitch-angle scatering operator, Ce/i(h) ≈ νeiL(h), where νei(v) =
Γe/eZeff/v3 is the scattering rate, L is the Legendre operator

L(h)≡ 1

2

1

sinθ

∂

∂θ

(

sinθ
∂

∂θ
h

)

, (41)

where θ is the pitch-angle, which is the included angle between the velocity and the magnetic
field. Then Eq. (40) is written as

C l

(

Iv‖

Ωe

∂fem
∂ψ

)

= femv
I

Ωe

∂ne

∂ψ

1

ne
νeiL(cosθ)

= − femv
I

Ωe

∂ne

∂ψ

1

ne
νeicosθ. (42)

Now we deal with the collision of electrons with fast ions. We consider the case that vte ≫ uf,
where vte and uf are electron thermal velocity and fast ion beam velocity, respectively. In this
case, the collision term can be approximated as

C(fem, ff)=
me

Te
νef(v)v‖uf ‖fem, (43)

where

νef =
Zf

2nf

Zeffne

νei(v). (44)

Using Eqs. (42) and (43), Eq. (38) is written as

v‖b̂ · ∇g −C l(g)=
me

Te

Zf
2nf

Zeffne
νeiv‖uf ‖fem+ femv

I

Ωe

∂ne

∂ψ

1

ne
νeicosθ (45)

⇒ v‖b̂ · ∇g−Cl(g)= femνei
Iv‖

Ωe

(

Ωe

I

me

neTe

Zf
2nf

Zeff
uf ‖+

1

ne

∂ne

∂ψ

)

(46)

Define jf ‖=nfZfeuf ‖, then the above equation is written as

v‖b̂ · ∇g−Cl(g)= femνei
Iv‖

Ωe

(

− 1

I

1

neTe

Zf

Zeff
jf ‖B+

1

ne

∂ne

∂ψ

)

(47)

⇒ v‖b̂ · ∇g−C l(g) = νei
I

Ωe
v‖fem

(

− 1

Ipe

Zf

Zeff
jf ‖B+

1

ne

∂ne

∂ψ

)

, (48)

where pe≡neTe. Eq. (48) agrees with Eq. (8) in Lin-Liu’s paper[5].
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3 Sauter’s theory of neoclassical bootstrap current coeffi-
cients

The trapped particles effect on beam driven current has close relation with the neoclassical
bootstrap current coefficients. Before we discuss the trapped electrons effect on beam driven
current, we should first understand the theory of bootstrap current. The following is a review of
Sauter’s theory of bootstrap current[6]. We start from the basic equation

v‖b̂ · ∇fe1−Ce
l(fe1)=−vde · ∇fem− qeE‖

me

∂fem
∂v

cosθ (49)

⇒ v‖b̂ · ∇fe1−Ce
l(fe1)=− Iv‖b̂ · ∇

(

v‖

Ωe

)

fem
1

ne

∂ne

∂ψ
+
qeE‖

Te
v‖fem. (50)

We want to determine the parallel current

j‖= qe

∫

fe1v‖dΓ, (51)

where dΓ is the volume element of velocity space. Instead of directly solving Eq. (50) to obtain
the parallel current j‖, it turns out that we can obtain j‖ though the following way. First solve
the adjoint equation

− v‖b̂ · ∇χe−Ce
l(χe)= qev‖Bfem. (52)

Then j‖ can be expressed as (proof of this is given in Sec. 4)

〈

j‖B
〉

=

〈
∫

dΓ
χe

fem
S

〉

, (53)

where S is the sum of all the source terms on the right-hand side of Eq. (50). We now calculate
respectively the contribution of the every source term to the j‖. First we consider the contribu-
tion of the parallel electrical field. For this term, Eq. (53) is written as

〈

j‖B
〉

=

〈
∫

dΓ
χe

fem

qeE‖

Te
v‖fem

〉

=
qe
Te

〈

E‖

∫

dΓχe v‖

〉

=
qe
Te

〈

E‖B
1

B

∫

dΓχe v‖

〉

, (54)

Noting that (
∫

dΓχev‖)/B is a function of only ψ (this should be valid only for banana
regime), i.e., it is independent of poloidal angle, thus this term can be taken out of the flux
average, giving

〈

j‖B
〉

=
qe
Te

〈

E‖B
〉 1

B

∫

dΓχe v‖ (55)

Define

σneo =
qe
Te

1

B

∫

dΓχe v‖, (56)

then
〈

j‖B
〉

=σneo
〈

E‖B
〉

. (57)

Next we calculate the contribution of the density gradient term to j‖. In order to make the
result be easily compared with Sauter’s one, I adopt the method used in Sec. 2 to write fe1 in
the form

fe1=− Iv‖

Ωe

∂fem
∂ψ

+ ge1. (58)

Following the same way as in Sec. 2, we can obtain an equation for ge1

v‖b̂ · ∇ge1−C l(ge1)= νei
I

Ωe
v‖fem

1

ne

∂ne

∂ψ
. (59)

Sauter’s theory of neoclassical bootstrap current coefficients 7



Thus the parallel current contributed by ge1 is written as

〈

jg‖B
〉

=

〈
∫

dΓ
χe

fem

(

νei
I

Ωe
v‖fem

1

ne

∂ne

∂ψ

)〉

=

〈
∫

dΓχeνei
Iv‖

Ωe

〉

1

ne

∂ne

∂ψ
, (60)

The parallel current contributed by the first term on the r.h.s of Eq. (58) is

j‖
′ = − qe

∫

dΓv‖
Iv‖

Ωe

∂fem
∂ψ

= − qe
1

ne

∂ne

∂ψ

I

Ωe

∫

dΓv‖
2 fem (61)

Using
∫

dΓv‖
2 fem=ne

Te
me

,

Eq. (61) is written as

j‖
′B=− Ipe

1

ne

∂ne

∂ψ
, (62)

where pe=neTe. Thus, using Eqs. (60) and (62), the total parallel current density is written as

〈

(j‖
′ + jg‖)B

〉

= − Ipe
1

ne

∂ne

∂ψ
+

〈
∫

dΓχeνei
Iv‖

Ωe

〉

1

ne

∂ne

∂ψ

= Ipe

[

− 1+
1

Ipe

〈
∫

dΓχeνei
Iv‖

Ωe

〉]

1

ne

∂ne

∂ψ
, (63)

Comparing Eq. (63) with Eq. (5) in Sauter’s paper, we identify the L31 in Sauter’s equation
with the quantity in the bracket of Eq. (63), i.e.,

L31 =− 1+
1

Ipe

〈
∫

dΓχeνei
Iv‖

Ωe

〉

. (64)

Noting that νei = ZiΓ
e/e/v3 and Γe/e = νe0vte

3 , we find that Eq. (64) agrees with Eq. (8) in
Sauter’s paper. (There is a difference of minus, please check.**)

4 Theory of the adjoint method

The perturbed distribution function satisfies the linearized Fokker-Planck equation,

v‖b̂ · ∇fe1−Ce
l(fe1)=S, (65)

where b̂ is the unit vector along the equilibrium magnetic field, v‖ is the velocity component

parallel to the magnetic field, Ce
l(fe1) is the linearized collision operator, Ce

l(fe1) =C(fe1, fem) +

C(fem, fe1)+Ce/i(fe1), S is a source term which is assumed to be known to us.
We want to determine the first moment of f1,

j‖= qe

∫

fe1v‖dΓ, (66)

where dΓ is volume element of velocity space. It turns out that we can obtain j‖ through the
following way. First solve the following equation (this equation will be called adjoint equation
hereafter)

− v‖b̂ · ∇χ−Ce
l+(χ)= qev‖B, (67)

where Ce
l+(χ)=Ce

l(femχ)/fem. Then multiplying Eq. (67) by fe1, one gets

− fe1v‖b̂ · ∇χ− fe1Ce
l+(χ) = qefe1v‖B (68)

8 Section 4



Integrate both sides of the above equation in velocity space, one gets� ∫

dΓ
[

− fe1v‖b̂ · ∇χ− fe1Ce
l+(χ)

]

= j‖B (69)

Flux averaging both sides of the above equation gives
〈
∫

dΓ
[

− fe1v‖b̂ · ∇χ− fe1Ce
l+(χ)

]

〉

=
〈

j‖B
〉

(70)

Now we need to use the most important properties of the operator v‖b̂ · ∇ and Ce
l+, i.e., adjoint

properties,
〈
∫

dΓfv‖b̂ · ∇g
〉

=−
〈
∫

dΓgv‖b̂ · ∇f
〉

, (71)

and
∫

dΓfe1Ce
l+(χ)=

∫

dΓχCe
l(fe1) (72)

[Refer to another note for the proof of Eq. (71).] Using the above two properties, Eq. (70) is
written as

〈
∫

dΓχ
[

v‖b̂ · ∇f1−Ce
l(f1)

]

〉

=
〈

j‖B
〉

(73)

Using Eq. (65) to rewrite the term in the bracket of the above equation, we obtain

〈

j‖B
〉

=

〈
∫

dΓχS

〉

. (74)

Eq. (74) is the desired formula for calculating j‖.
Note that Eq. (67) can also be written as

− v‖b̂ · ∇χ−Ce
l(χfem)/fem= qev‖B, (75)

⇒− v‖femb̂ · ∇χ−Ce
l(χfem)= qev‖Bfem, (76)

Since fem is independent of the poloidal angle, fem can be moved into the operator b̂ · ∇(),
giving

⇒− v‖b̂ · ∇(χfem)−Ce
l(χfem) = qev‖Bfem. (77)

If we define χ′= χfem, then the above equation is written as

− v‖b̂ · ∇(χ′)−Ce
l(χ′)= qev‖Bfem, (78)

This form of the adjoint equation is almost identical to its original equation (65), the minor dif-
ference being that an additional minus mark appears on the first term and the inhomogenous
term on the right-hand side is replaced with qev‖Bfem. In terms of χ′, Eq. (74) is written as

〈

j‖B
〉

=

〈
∫

dΓ
χ′

fem
S

〉

. (79)

Sauter[6] adopted Eqs. (78) and (79) in the calculation of bootstrap current.

5 Beam driven current in uniform plasmas

In this section we consider the calculation of the beam-driven current in uniform plasmas[2]. We
consider the case that a neutral beam is injected to plasma, ionized to become fast ions beam,
and the steady state has been reached. If the steady-state beam distribution function, fb, is
known, the steady-state perturbed electron distribution function can be determined from the
following equation

Ce(fe1) =−C(fem, fb), (80)

Beam driven current in uniform plasmas 9



where Ce(fe1) ≡ C(fe1, fem) + C(fem, fe1) + C(fe1, fim). We are interested in parallel (to mag-
netic field) current

j‖= qb

∫

v‖fb(v)dv− e

∫

v‖fe1(v)dv , (81)

Using the property of the collision operators that the Legendre harmonics are the eigen-func-
tions of the collision operators,

C(fem, f(v)Pl(cosθ))= g(l, v)Pl(cosθ) (82)

C(f(v)Pl(cosθ), fem) =h(l, v)Pl(cosθ) (83)

we get

Ce(f(v)Pl(cosθ))= y(l, v)Pl(cosθ). (84)

Eqs. (80) and (84) indicate that it is only the first Legendre harmonic of fb that can generate
the first Legendre harmonic perturbation in electron distribution. Further note that the parallel
electron current is the inner product of P1(cosθ) and fe1, and Legendre harmonics are orthog-
onal to each other, thus only the first Legendre harmonic of fe1 can contribute to the parallel
electron current. Considering the above results, in order to calculate the parallel current in Eq.
(81) [Note v‖ = vP1(cosθ)], it is sufficient to consider only the l = 1 Legendre harmonics of the
beam distribution function in Eq. (80), fb

1(v)cosθ, here

fb
1(v)=

3

2

∫

0

π

fb(v, θ)P1(cosθ)sinθdθ (85)

Before treating arbitrary fb(v, θ), we first consider the case that the velocity dependence of fb(v,
θ) is given by the Dirac delta function

fb(v, θ)= δ(v− vb)g(v, θ), (86)

which is equivalent to

fb(v, θ)= δ(v− vb)g(vb, θ). (87)

Then nbub‖ can be written as

nbub‖ ≡
∫

fb(v, θ)v‖dv

= 2π

∫

0

∞ ∫

0

π

δ(v− vb)g(vb, θ)v
3cosθsinθdvdθ

= 2π

∫

0

π

g(vb, θ)vb
3cosθsinθdθ. (88)

This gives the relation of ub‖ and vb. Using this result, fb
1(v) in Eq. (85) is written as

fb
1(v) =

3

2

∫

0

π

δ(v− vb)g(vb, θ)P1(cosθ)sinθdθ

=
3

2

δ(v− vb)

vb
3

∫

0

π

g(vb, θ)vb
3cosθsinθdθ

=
3

2

δ(v− vb)

vb
3

nbub‖

2π
, (89)

which agrees with Hirshman’s result,

fb
1(v)=

3nbub‖δ(v− vb)

4πvb
3 . (90)

Using the property of the Dirac delta function, δ(aξ) = δ(ξ)/a, Eq. (90) can be written as

fb
1(v)=

3nbu‖bδ(v − vb)

4πvb
3vte

, (91)

where v = v/vte, vb= vb/vte. Note that the dimension of fb
1(v) is correct, i.e, fb

1∝n/v3.
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In the following, we calculate the collision term C(fem, fb
1(v)cosθ). According to Eq. (34) in

Karney’s paper[14], we have

C(fam, fb
1(v)cosθ)

famcosθ
=

−∇ ·Sc
a/b

famcosθ

=
4πΓa/b

nb

[

fb
1(v)+

∫

0

v v ′
2

vta
2

(

v ′
3

5vta
2 v2

− v ′

3v2

)

fb
1(v ′)dv ′

+

∫

v

∞ v ′
2

vta
2

(

v3

5vta
2 v ′2

− v

3v ′2

)

fb
1(v ′)dv ′

]

Substituting fb
1(v) in Eq. (91) into the above equation gives

C(fem, fb
1(v)cosθ)

femcosθ
= Γe/b u‖b

vb
3vte

[

3δ(v − vb) +

∫

0

v

v ′2

(

v ′3

5v 2
− v ′

3v 2

)

3δ(v ′− vb)d v ′

+

∫

v

∞ ( v 3

5
− v

3

)

3δ(v ′− vb)dv ′

]

(92)

It follows that

C(fem, fb
1(v)cosθ)

femcosθ
=







































Γe/b

vte
3

u‖b

vte

1

vb

(

3vb
3

5v 2
− vb
v 2

)

For vb<v

Γe/b

vte
3

u‖b

vte

1

vb
3

(

3v 3

5
− v

)

For vb>v

Γa/b

vte
3

u‖b

vte

1

vb
33δ(v − vb) For vb= v

(93)

where

Γa/b=
nbqa

2qb
2

4πǫ0
2ma

2 lnΛ
a/b, Γe/b=

nbe
2qb

2

4πǫ0
2me

2 lnΛ
e/b, Γe/e=

nee
4

4πǫ0
2me

2 lnΛ
e/e (94)

Define the effective charge number of beam ions, Zb, as

Zb≡ nbqb
2

nee2
lnΛe/b

lnΛe/e
, (95)

then Γe/b=ZbΓ
e/e and Eq. (93) is written as

C(fem, fb
1(v)cosθ)

femcosθ
=



































Zbνe0
u‖b

vte

1

v 2

(

3

5
vb
2− 1

)

For vb<v

Zbνe0
u‖b

vte

v

vb
3

(

3

5
v 2− 1

)

For vb>v

Zbνe0
u‖b

vte

1

vb
33δ(v − vb) For vb= v

(96)

where νe0=Γe/e/vte
3 . Hirshman’s result[1] of the above collision term is given by

C(fem, fb
1(v)cosθ) =



















2v‖u‖b

v e
2

nbqb
2

nee2
νefem

1

v 3
(1+

6

5
vb
2) For vb<v

2v‖u‖b

v e
2

nbqb
2

nee2
νefem

1

vb
3

(

6

5
v 2− 2

)

For vb>v

(97)

where ve= 2Te/me

√

, νe= Γe/e/ve
3,v = v/ve,vb= vb/ve. Converted to my normalization, Eq. (97)

takes the form,

C(fem, fb
1(v)cosθ)

femcosθ
=



















Zb
νe0

2 2
√ 2u‖b

2
√

vte

1

v 2/2
(
6

5
vb
2/2+ 1) For vb<v

Zb
νe0

2 2
√ 4u‖b

2
√

vte

v / 2
√

vb
3/2 2

√
(

3

5
v 2/2− 1

)

For vb>v

(98)
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which can be simplified to

C(fem, fb
1(v)cosθ)

femcosθ
=















Zbνe0
u‖b

vte

1

v 2
(
3

5
vb
2+1) For vb<v

Zbνe0
u‖b

vte

v

vb
3

(

3

5
v 2− 2

)

For vb>v
(99)

Note that Eq. (99) is different from my results, Eq. (96). Using Eq. (99) in my code, I can
reproduce Hirshman’s results [Figs. 1 and 2, and the analytic expression Eq. (24c) in his paper].
My question is why Eq. (99) differs from Eq.(96) for vb < v and vb > v , and why Eq. (99) does
not involve the Dirac delta function at v = vb. Using expression Eq. (96), I can not reproduce
Hirshman’s results.

5.1 Collision term of electron with fast ions in the limit vb ≪ vte

In dealing with the electron shielding current in NBCD in the case that vb ≪ vte, the collision
term of electrons with fast ions is approximated as (Eq. (6) in Ref. [15] or the last term of Eq.
(5) in Ref. [5])

Ce/f(fem)=
me

Te
νefv‖uf ‖fem, (100)

which can be rewritten as

Ce/f(fem) =
1

vte
2

Zf
2nfνei

Zeffne
v‖uf ‖fem

=
1

vte
2

Zf
2nfΓ

e/e

v3ne
v‖uf ‖fem

=
Zf

2nf

ne

Γe/e

v3
v‖uf ‖

vte
2

fem (101)

I now prove Eq. (101) by using Eq. (99). According to Eq. (99), in the limit that vb ≪ vte, i.e.,
vb∼ 0, we have

C(fem, fb
1(v)cosθ) = Zbνe0

u‖b

vte

1

v 2
(
3

5
vb
2+1)femcosθ

≈ Zbνe0
u‖b

vte

1

v 2
femcosθ

= Zb
Γe/e

vte
3

u‖b

vte

1

v 2
femcosθ

= Zb
Γe/e

vte
3

u‖b

vte

vte
2

v2
femcosθ

= Zb
Γe/e

v3
u‖b

vte

vte
2

v2
v3

vte
3 femcosθ

= Zb
Γe/e

v3
u‖b

vte

v

vte
femcosθ

= Zb
Γe/e

v3
u‖b

vte

v‖

vte
fem (102)

Using

Zb≡ nbqb
2

nee2
lnΛe/b

lnΛe/e
=
nbqb

2

nee2
≈ nfZf

2e2

nee2
=
nfZf

2

ne
, (103)

in Eq. (102), we obtain

C(fem, fb
1(v)cosθ)=

nfZf
2

ne

Γe/e

v3
u‖b

vte

v‖

vte
fem, (104)

which agrees with Eq. (101).
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6 Adjoint Problem of Eq. (80)

Because of the complexity of the non-homogeneous term C(fem, fb) in Eq. (80), the direct solu-
tion of this equation is usually difficult. We consider a simpler problem,

Ce(femχ(v))= νe0
v‖

vte
fem (105)

whose non-homogeneous term is simpler than C(fem, fb). In the following, we will prove that if
the solution to Eq. (105) is known, the parallel current can be easily obtained without solving
the more complicated equation Eq. (80).

Using the self-adjoint property of the linearized collision operator Ce,
∫

φCe(femχ)dv=

∫

χCe(femφ)dv (106)

(The proof of this property is given in another note.) the parallel current can be written

je‖ ≡ qe

∫

v‖fe1dv

= qe

∫

v‖fem
fe1
fem

dv

= qe
vte
νe0

∫

Ce(femχ)
fe1
fem

dv

= qe
vte
νe0

∫

χCe(fe1)dv

= − qe
vte
νe0

∫

χC(fem, fb)dv (107)

Therefore, the parallel current only involves the velocity integration of χ and C(fem, fb). The
expression of C(fem, fb) is given by Eq. (93) while χ is known from the solution to adjoint
equation Eq. (105). Thus the parallel current is determined without solving Eq. (80).

7 Beam current ratio

F ≡ 1+
je‖

qbnbu‖b

= 1+
e
vte

νe0

∫

χC(fem, fb)dv

qbnbu‖b

= 1+
evte

∫

χC (fem, fb)femcosθdv

νe0qbnbu‖b

= 1+
evte

∫

χ1C (fem, fb)femcos2θdv

νe0qbnbu‖b

= 1+
4π

3

evte
∫

0

∞
χ1C (fem, fb)femv2dv

νe0qbnbu‖b

= 1+
4π

3

evtef0
∫

0

∞
χ1C (fem, fb)femv

2dv

νe0qbnbu‖b

= 1+
4π

3

ene

qbnb

v te

u‖b

1

νe0

∫

0

∞

χ1C (fem, fb)femv
2d v

where

χ(v)= χ1(v)cosθ

C (fem, fb)=
C(fem, fb

1(v)cosθ)

femcosθ

fem= femf0, f0=
ne

vte
3
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Using

C (fem, fb)=



































Zbνe0
u‖b

vte

(

3vb
2

5v 2
− 1

v 2

)

For vb<v

Zbνe0
u‖b

vte

1

vb
3

(

3v 3

5
− v

)

For vb>v

Zbνe0
u‖b

vte

1

vb
3
3δ(v − vb) For vb= v

(108)

one gets

F = 1+
4π

3

ene

qbnb

v te

u‖b

1

νe0

∫

0

∞

χ1C (fem, fb)femv
2d v

= 1+
4π

3

ene

qbnb
Zb

×
[

χ1(vb)
3

vb
fem(vb) +

∫

0

vb

χ1 1

vb
3

(

3v 3

5
− v

)

femv
2d v +

∫

vb

∞

χ1

(

3vb
2

5v 2
− 1

v 2

)

femv
2d v

]

Define Zb≡ qb/e, which is the charge number of the fast ions, then

Zb=Zb
nbqb
nee

(109)

The expression of F reduces to

F = 1+
4π

3
Zb

×
[

χ1(vb)
3

vb
fem(vb)+

1

vb
3

∫

0

vb

χ1fem

(

3v 5

5
− v 3

)

d v +

(

3vb
2

5
− 1

)
∫

vb

∞

χ1femd v

]

(110)

8 Results
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Figure 3. The ratio of net current to beam current as a function of beam velocity vb. Here Zi = niqi
2/

nee
2. Zb= qb/e.

As mentioned above, the results in Fig. 3 is obtained by using Eq. (99) as the collision term.
In this case, the expression of F takes the form,

F = 1+
4π

3
Zb

×
[

1

vb
3

∫

0

vb

χ1fem

(

3v 5

5
− 2v 3

)

d v +

(

3vb
2

5
+ 1

)
∫

vb

∞

χ1femd v

]

The analytic solution is from Eq. (24c) in Hirshman’s paper[2]. In this case the numerical solu-
tion agree well with the analytic solution as shown in Fig. 3. However, if we use Eq. (110) to
calculate F (i.e., Eq. (96) is used as collision term), the results does not agree with the analytic
solution. The results are plotted in Fig. 4.
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Figure 4. F calculated using Eq. (110), which does not agree with Hirshman’s analytic solution in the

region of small values of vb.

Why Eq. (110) can not reproduce the correct results is still a mystery to me.
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Figure 5. The ratio of the net current to beam current as a function of Zb/Zi. The analytic solution is

given by F = 1 −
Zb

Zi

(

1 +
6

5

(

vb

ve

)2
)

which is valid only for vb/ve ≪ 1. So in this case the value of vb/ve is

chosen to be small, vb/ve= 0.01.

9 To prove vd · ∇ψ=− Iv‖b̂ · ∇
(

v‖

Ω

)

We start from Eq. (4.6.3) in Wesson’s book[13]

vd=
v‖
2+

1

2
v⊥
2

ωc

B ×∇B
B2

, (111)

where ωc=Bq/m (here q is the charge of particle, including its sign). Then we write

vd · ∇ψ =
v‖
2+

1

2
v⊥
2

ωc

B×∇B
B2

· ∇ψ

= − v‖
2+ µB/m

ωc
∇B · B ×∇ψ

B2
, (112)

where µ=mv⊥
2 /(2B). Eq. (4.6.7) in Wesson’s book is (I have checked this equation)

(

v‖
2+

µ

m
B
)

∇B=− v‖B
2∇
( v‖

B

)

. (113)

Using this in Eq. (112), we obtain

vd · ∇ψ=
v‖

ωc
(B×∇ψ) · ∇

( v‖

B

)

. (114)

To prove vd · ∇ψ=− Iv‖b̂ · ∇

(

v‖

Ω

)
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Writing

B=Bφeφ+
1

R
(∇ψ× eφ), (115)

we obtain

B×∇ψ = Bφeφ×∇ψ+
1

R
(∇ψ× eφ)×∇ψ

= Bφeφ×∇ψ+
1

R
|∇ψ |2eφ, (116)

where use has been made of eφ · ∇ψ=0. Then Eq. (114) is written as

vd · ∇ψ =
v‖

ωc

(

Bφeφ×∇ψ+
1

R
|∇ψ |2eφ

)

· ∇
( v‖

B

)

=
v‖

ωc
(Bφeφ×∇ψ) · ∇

( v‖

B

)

, (117)

where the second equality is due to

eφ · ∇
( v‖

B

)

=0, (118)

since we are considering toroidal symmetric case. Eq. (117) is further written as

vd · ∇ψ = − v‖

ωc
I

(

∇ψ×eφ
R

)

· ∇
( v‖

B

)

, (119)

where I =BφR. Using Eq. (115) in the above equation gives

vd · ∇ψ=− v‖

ωc
I(B −Bφeφ) · ∇

( v‖

B

)

, (120)

Because of Eq. (118), the above equation is reduced to

vd · ∇ψ=− v‖

ωc
IB · ∇

( v‖

B

)

, (121)

which agrees with Eq. (4.6.9) in Wesson’s book[13].
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