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The current driven by neutral beam injection (NBI) is the sum of the beam current carried
by fast ions and the electron return current[l, 2, 3]. The electron return current (or called
reverse/shielding current) is generated due to the momentum transfer from the fast ions to elec-
trons. The return current in tokamak equilibrium is usually smaller than the one in uniform
plasma due to the trapped particles effect in tokamak plasmal4, 5]. Previous theoretical calcula-
tion of the electron return current is usually limited to the case in which either the inverse
aspect ratio or the electron collisionality is small. Lin-Liu and Hinton found that the ratio of the
electron returen current to the fast ions current is closely related to one of the bootstrap current
coeflicients and use the exsiting formula for the coefficient which is valid in general tokamak
equilibria but for low collisionality regime to epress the electron return current. In this report,
by using the adjoint method, we extend the work in Ref.[5], which is valid for banana regime, to
arbitrary collisionality regime. We show that the ratio of the electron return current to the fast
ion current can still be expressed in terms of one of the bootstap current coefficients. We further
make use of Sauter’s bootstrap current coefficient formula[6], which is valid in general tokamka
equilibra and arbitray collisionality regime, to give a convenient formula for calculating the elec-
tron return current.

In the presence of fast ions generated by NBI, the perturbed electron distribution satifies the
following Fokker-Planck equation

VbV fe1 = Ci fer) = C/F (fem), (1)

where V is the gradient operator which is taken by holding the energy and magnetic moment
constant, fem and fe1 are electron equilibrium Maxwellian distribution and perturbed distribu-
tion function, respectively. b= B/B, B is equilibrium magnetic field, v is electron velocity par-

allel to the magnetic field, Ci(fe1) = C(fe1, fem) + C(fem, fe1) + Ce/i(fel) is the linearized colli-

sion term including electron-electron and electron-ion collision, C'// (fem) is the collision term of
electrons with fast ions, which is assumed to be known and acts as an inhomogeneous term in

Eq. (1).

We want to determine the parallel (to the magnetic field) current density j| contributed by
fe1. It turns out that we can obtain j.| via the following way. First solve the following adjoint
equation

_’U”E'vxe_cl(xe):Qe'UHBfem (2)
to obtain the responce funtion x., then j.| can be expressed as
(JeiB) = < /dfg—;Ce/f(fem)>- (3)

where (...) is the flux average. (The proof of Eq. (3) can be easily obtained by using the self-
adjoint property of the operator le; -V and C}, i.e.,

</dvgv”6-w>=—</dvhv”6-vg>, (4)

/dvgcl(femh) = /dvhcl(femg)7 (5)

and
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where g and h are two arbitrary functions.)

In the usual situation of NBI, the fast ions beam velocity is much less than the electron
thermal velocity, i.e. uf < v¢e. In this case, the collision term of electrons with fast ions can be
approximated as

e Me
C /f(fe’rn):TVef'UHufoemv (6)

where wu || are the parallel velocity of fast ions, v,y = Z?‘nfl/ei/(zeffne), here n. and ny are the
number density of electrons and fast ions, respectively, Z is the charge number of fast ions, Z.g
is the effective charge number of plasma ions, ve; = I'¢/¢ Zot/v? is the pitch angle scattering rate,
/¢ = n.e*lnA®/¢/(4redm?), InA®/¢ is the Coulomb logarithm, — e, m., and T, are respectively
the charge, mass, and temperature of electrons, ¢; is the dielectric constant of free space. Using
Eq. (6) in Eq. (3) gives

. Zy 1 /. Iv
By == g (1B farxregl), @

where jr=Zysenguy| is the fast ion current, p. =n.Te, Qe=— Be/me, I =B,R is a flux surface
function, B, is the toroidal magnetic field, R is the major radius. Ref. [6] points out that [
dI'xeVeilv) /§2e can be approximately considered to be a function of the flux surface. Using this,

Eq. (7) is written as
. . Zy 1 Iv)
<JeIIB>:—<Jf|B>Z—&EI—%< /dFXeVei o, /) (8)

According to the neoclassical bootstap current theory of Sauter et. al.[6], (there is a minus sign
error in Sauter’s formula) we have

1 I’U” o
Ipe< /dFXeVezQ_e > =1—-Ls (9)

where L£3; is the bootstrap current coefficient before the electron density gradient. Thus Eq. (8)
is written as

<J'e||B>=—<jan>%(1—531) (10)

The formula of L3; given by Sauter et al.[6] is

(11)

1.4 1.9 0.3 0.2
L= 1+ _ 2 3 X4,
3 ( Zeff+1) Zeﬁ+1 Zeff+1 Zeff+1

with

ft

X = , 12

T+ (1= 0.1f)/Ter +0.5(1 = fo)Ver/Zet (12)

where v, is a measure of collisionality which is defined as ve, = 0.012n.90Zcs g R/ g3/ 2T(32kc\/7 Te20

and T,y are electron number density in unit of 102°m =3 and electron temperature 7, in unit

of keV, respectively; g and ¢ are the safety factor and inverse aspect ratio of flux surface, respec-
tively; f; is the effective trapped fraction,

L3 BN [
fi=1 4<BQ>/0 (VT B/ Bus ). 1)

We note that the formulas given by Eqgs. (11)-(13) are valid for general tokamak equilibria and
arbitrary collisionality regime. Thus, using these formulas in Eq. (10), we obtain a formula for
the electron return current which is valid for general tokamak and arbitrary collisionality regime.
The total current is the sum of the beam current carried by the fast ions and the electron return
current, i.e. jjj=js| + je|- Then we have

(41B) = (iriB) 1—%(1 —L31) |, (14)
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and the ratio of the total current to the fast ion current

r= <<jj;lnlj3>> - 17%(1753” ' 1
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Figure 1. The ratio F of the total current to fast ion current [Eq. (15)] as a function of the inverse
aspect ratio € in concentric circluar flux surface equilibrium for Zy =1, Z.g =1 (left figure), and Z.g = 2
(right figure). The different lines in the figure correspond to different values of the electron collision fre-
quency, vexr =0.1, 0.01, and 0.001. The results of the banana regime is obtained by using Eqs. (21)-26) in
Ref.[5].

The difference between (a) and (b) of Fig. 1 is that in the former Z.g = Zj, while in the
latter Ze.g # Zy. When Z.g = Zy and the beam velocity is small, it is well known that the elec-
tron return current can cancel the fast ion current to make the net current zero in uniform
plasmas. This result can be seen in Fig. 1(a) in the region € — 0.

In summary, we have showed that, for arbitrary aspect ratio and arbitrary collisionality
regime, the ratio of the electron return current to the fast ion current in neutral beam current
drive can be expressed in terms of electron density gradient coefficients of the bootstrap current,
L31. Thus the existing formula for £3; valid for general tokamak equilibria and arbitrary colli-
sionality regime provides a accurate formyla for calculating the electron return current. This for-
mula for the electron return current can be easily applied to numerical codes modeling neutral
beam current drive to improve the calculation capabilities of the codes.

One of the models of electron shielding current used in ONETWO[7] and TRANSP[§]
trasport codes is a formula given by Hirshman|9, 10, 11, 12].

1 Hirshman’s formula|11]

The ratio of the total current to the fast ion current is

Zy
Zeff

F=1-2L1-q). (16)

Hirshman'’s fitting formula for G is

%ZCH(KM*EKH) (\/_+ Zcff)Kn

G=1, dhitiy
(V2+ 27 ) Zen (gZeﬁ“)
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where KU, AU, Blh 0117 Dlla Kl?, Al?, Bl?, 0127 and D12 are given respectively by
0.53 + Zegt

K1 = , (18)
(1+ VA Ver + Blll/e*)(l +VC11ve e + D11Ve*53/2)
0.52 — 0.42Z.¢
A1 =3.447 = e 1
11=3 off + 11135705 (19)
B11=0.56 +0.96 7.4, (20)
. 0.14 4 0.55Z.g
C11=0.257Z.4+ 145700 s (21)
. 0.7+ 0.78Z.g
Diy=0.51Zes+ = 5= (22)
Koo — 0.71 + Zew
12 — )
(1 + v AloVes + BlZVe*)(l +V 0121/6*53/2) + D12Ve*53/2
. 0.140.084Z.¢
A5 =0.31Z.g + 111370 (23)
Bi12=0.26 + 0.35Z.4, (24)
0.0724+0.15Zg
=0.081Z7 _ 2
C12=0.081Z.¢ + 17320 (25)
. 0.42+0.62Zcg
D15,=0.29Z.5 + 114270 (26)
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Figure 2. Comparison of the ratio F' calculated by Sauter’s formula and the one by Hirshman’s. Hir-

shman’s formula is valid only for 0.01 <& <0.15, so the comparison limited in this range.

According to Wesson’s book[13], electron-electron collision frequency ve. is defined as

_ \/§ Ne e
S 12r2 &2 e

InA.. (27)

V&G

(The definition of v, is different from Karney’s, while it agrees with Eq. (56) in Kraus’ notes,
where v, is written as
164/7 nee*lnA.

2
3 m2v3, (28)

Vee=

which is in Gaussian units. By using the trasforming rule, we replace gy in Eq. (27) by 1/4m,
which gives Eq. (28). Also we note that Kraus’s formula is identical with the v.. defined in Hir-
shman’s paper[11] where vee =1/7ce and 7. is defined after Eq. (9) in Hirshman’s paper)
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The dimensionless collision parameter v, is defined as
Vee

é‘?’/Qz)te/((]R)7

where vie = /T/m., g and e are respectively the safety factor and inverse aspect ratio of a flux
surface. Eq. () can be rewritten as

(29)

Vex =

V2 6_4 neqR
127%/2 € T2e3/?

_ < V2 6_2> neghy o (30)

127372 €2 i2€3/2

InA.

Vex =

where T, is electron temperatur in unit of eV, all other dimensional quantities are evaluated in
ST units (i.e., normalized to SI unit). In SI unit we have

V2 e?

1273/2 2

=6.92 x 10718, (31)

which agrees with constants appearing in Sauter’s formula.

2 Beam driven current in general tokamak equilibria
This section is a review of Ref. [5]. We start with the basic equation
1)”6'Vfl*Cl(fl):*Ud'vfemJFC(femaff)a (32)

where f7 is the perturbed electron distribution function, b=0B /B, B is equilibrium magnetic
field, vy is the drift velocity of guiding-centers perpendicular to the magnetic field, C!(f;) =
C(f1, fem) + C(fem, f1) + C/*(f1) is the linearized electron collision term including electron-
electron and electron-ion collision, f is the fast ion distribution and C( fem, ff) is the electron
collisions with fast ions, which is known and acts as an inhomogeneous term of Eq. (32). We
can eleminate the first term on the right-hand side of Eq. (32) by writing f; in the form

1) Ofem
Qe &l/} g,
where 1 is the label of the flux surface (here it is chosen to be poloidal flux), I = B,R, which is

a function of only ¥, Q = Bg./m.c (Q includes the sign of the charge of electron). Using Eq.
(33) in Eq. (32) gives

fi= (33)

U|5'V< —%la{ﬁ> +ujb- Vg —C'(g) +Cl<%"%) =—va-Viu+C(fem: fr)  (34)

Noting that I0fa/0 is constant along a magnetic field line, the above equation becomes

A ) I
—1 3£va||b : V(é—'ﬁ) +oyb-Vg—CUg)= =04V formn+C(fem, ff) — Cl(ﬂij—agj/}m) (35)

Using
vd-v¢=1u|5-v<g—') (36)

(This is Eq. (7) in Lin-Liu’s paper[5], refer to Sec. 9 for the proof of this identiy (however there
is a minus difference betwwen mine and Lin-Liu’s. I do not know why), then we obtain

Ud~vfem - agj/}m/vd'v/l/}

= afem[vﬂ;-V(g—l) (37)

Hp
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Using this in Eq. (35) gives

. Iv of,
Vg—Clg)= _olf LG em
0 Vg - )= Clm 1) - O L e ) 39
Next we give the specific form of the two collision terms on the right-hand side of Eq. (38). We
note that (assuming temperature is uniform)

Ofem _ One 1
¥ Ko

Then the second inhomogeneous term of Eq. (38) is written as

I 0 em I an 1
Ol<%{W> = @ o 0, C (V1 fem)
= ée glzz 771{ (’U|| fems fem) +C(fem,’()” fem) —|—C (U” fem)
— ée %7;; 1 {Ce/l(v” fem)} (40)

where the last equality is due to C'(v|| fem, fem) + C(fem,v|| fem) =0. We approximate the elec-

(39)

tron-ion collision by the pitch-angle scatering operator, C®/*(h) ~ v;L(h), where ve;(v) =
re/e Zegi/v3 is the scattering rate, L is the Legendre operator

11 9 0

where 6 is the pitch-angle, which is the included angle between the velocity and the magnetic
field. Then Eq. (40) is written as

Tv) of, I One 1

1 I em e )

C <_Qe 50 ) = femv— f —neyeZL(COSQ)
I One

femUQ 81/)

Now we deal with the collision of electrons with fast ions. We consider the case that vi. > uy,
where v, and uy are electron thermal velocity and fast ion beam velocity, respectively. In this
case, the collision term can be approximated as

1/61(3059 (42)

C(fem, fr)= Vef( Jot s fem, (43)
where
2
Vef= ZQ{;Z; i(V). (44)

Using Eqs. (42) and (43), Eq. (38) is written as

2
- l _ Me anf I One 1
vb-Vg—C'yg) =T Zoene Vei|tf || fem + fevae o0 nel/eiCOS(g (45)
. Ivy { Q. me Zn 1 One
éUHb -Vg— Cl(g) = femyeiQ_l|<Tm Zfeﬁf wr| +n_e a’lb ) (46)

Define jr=mnsZseuy ), then the above equation is written as

. Iv 1 1 Z 1 One
v”b.ngCl( )= femVei Qll( Tn T Z; f”BJrn—e ) (47)

~ I A 1 One
:’Uﬂb'v.g_cl(g):VeiQ_z”fem( f >a

1
Tp. Zad 1P 0 00

where p. =n.T.. Eq. (48) agrees with Eq. (8) in Lin-Liu’s paper|[5].
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3 Sauter’s theory of neoclassical bootstrap current coeffi-
cients

The trapped particles effect on beam driven current has close relation with the neoclassical
bootstrap current coefficients. Before we discuss the trapped electrons effect on beam driven
current, we should first understand the theory of bootstrap current. The following is a review of
Sauter’s theory of bootstrap current[6]. We start from the basic equation

N eE 0 em
0BV for = Ol ) = = eV fun — 220 Aemg (49)
~ 10 e QeE
é’UHb-er1*0é(fe1):*1v”b V< )fem [;; I erm (50)
We want to determine the parallel current
J) = Qe /felUHdFa (51)

where dI" is the volume element of velocity space. Instead of directly solving Eq. (50) to obtain
the parallel current j, it turns out that we can obtain jj though the following way. First solve
the adjoint equation

—UHE-Vxe—Cé(xe):qevHBfem. (52)
Then j| can be expressed as (proof of this is given in Sec. 4)
BY={( [dr2Xes (53)
(31B) P
where S is the sum of all the source terms on the right-hand side of Eq. (50). We now calculate

respectively the contribution of the every source term to the j). First we consider the contribu-
tion of the parallel electrical field. For this term, Eq. (53) is written as

<‘7||B> = </drf>:;qee |fem>

ge
= E<E” /dl—‘xe ’U||>

: 1
= ;{—<E”B§ dTxe U|>, (54)

Noting that ( [ dl'xev)/B is a function of only ¢ (this should be valid only for banana
regime), i.e., it is independent of poloidal angle, thus this term can be taken out of the flux
average, giving

. e 1
(31B) =%—€<E|\B>§/dfxe V) (55)
Define
Oneo = T B dl'xe Uy (56)
then
(J1B) = 0neo( E) B). (57)

Next we calculate the contribution of the density gradient term to jj. In order to make the
result be easily compared with Sauter’s one, I adopt the method used in Sec. 2 to write f.; in
the form

_ Ty Ofem
fel - Qe &/) + Jel- (58)
Following the same way as in Sec. 2, we can obtain an equation for ge;
~ I 1 One
UHb'vgel*Cl(gel)*Vez v||fem (59)

ne O
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Thus the parallel current contributed by g.; is written as

| (1 1 dn.
(Jg1B) = </ng—m<VeiQ—ev|femn—e@)>

1 One
_>n_e o’ (60)

The parallel current contributed by the first term on the r.h.s of Eq. (58) is
, Tv) Ofem
J|I| = - Qe/dFUHQ—e o

1 0ne I
= 4 gy Q—e/dl"vﬁ fem (61)

Il
P
=

=

>
o
N
N
~
SIS

Using

T.
F2 em = Tle e’

€

Eq. (61) is written as

y 1 One
= Ip— )
AB==1pe, 5y (62)
where p. =n.T.. Thus, using Egs. (60) and (62), the total parallel current density is written as
i+ L One v\ 1 one
(Gi+daB) = ~Ipey—57 +</dFXeVeiQ—e —
! Top\ 11 one
=1 € -1 dr eVei—<— — s
p|: +Ipe</ Xeb, Qe>:|7’be 61/1 (63)

Comparing Eq. (63) with Eq. (5) in Sauter’s paper, we identify the L£3; in Sauter’s equation
with the quantity in the bracket of Eq. (63), i.e.,

1 I’UH
£31 1 + Ipe < /d XeVei Qe > (6 )

Noting that v.; = Z;I'/¢/v® and T'/¢ = vev., we find that Eq. (64) agrees with Eq. (8) in
Sauter’s paper. (There is a difference of minus, please check.**)

4 Theory of the adjoint method

The perturbed distribution function satisfies the linearized Fokker-Planck equation,
1)||bA~Vf61*Cé(fe1):S, (65)

where b is the unit vector along the equilibrium magnetic field, v is the velocity component
parallel to the magnetic field, CL( f.1) is the linearized collision operator, CL(fo1) = C(fe1, fom) +
C(fom, fe1) +C*(fe1), S is a source term which is assumed to be known to us.

We want to determine the first moment of fi,

JI= Qe /felvndf, (66)

where dI' is volume element of velocity space. It turns out that we can obtain j; through the
following way. First solve the following equation (this equation will be called adjoint equation
hereafter)

7“H6'VX*Cé+(X>:(JeUHBv (67)
where C'T(x) = CL(femX)/ fem. Then multiplying Eq. (67) by fe1, one gets

— fervb - Vx = frCLT(X) = geferv B (68)
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Integrate both sides of the above equation in velocity space, one gets
dr| = fvib - Vx = faCl ()| =58 (69)
Flux averaging both sides of the above equation gives
</d1“[ _felv|6'vx_felcé+(X)}>:<j|B> (70)

Now we need to use the most important properties of the operator le; -V and C’é*‘, i.e., adjoint

properties,
</dffv|l;~Vg></ngv|6~Vf>, (71)

/ 0T [ CHH(x) = / AT XCY( fon) (72)

and

[Refer to another note for the proof of Eq. (71).] Using the above two properties, Eq. (70) is
written as

</dl“x{ml;-Vfl—Cé(fl)D:<j||B> (73)

Using Eq. (65) to rewrite the term in the bracket of the above equation, we obtain

(7B </deS>. (74)

Eq. (74) is the desired formula for calculating jj.
Note that Eq. (67) can also be written as

,’UHbA~VX70é(Xfem)/fem:q(z’U”B, (75)
:>7’U||fe’mbA~VX7C’é(xfe'm):qe’UHBfeml7 (76)

Since fe,, is independent of the poloidal angle, fe.,, can be moved into the operator b - V),
giving

:>_U||6'V(Xfem)_Cé(Xfem)ZQGUHBfem- (77)
If we define ' = X fem, then the above equation is written as
— b V(x') = CLUX') = qevy B fem, (78)

This form of the adjoint equation is almost identical to its original equation (65), the minor dif-
ference being that an additional minus mark appears on the first term and the inhomogenous
term on the right-hand side is replaced with g.v|B fem. In terms of x', Eq. (74) is written as

<j|B>< drf’::ns>. (79)

Sauter|[6] adopted Eqs. (78) and (79) in the calculation of bootstrap current.

5 Beam driven current in uniform plasmas

In this section we consider the calculation of the beam-driven current in uniform plasmas[2]. We
consider the case that a neutral beam is injected to plasma, ionized to become fast ions beam,
and the steady state has been reached. If the steady-state beam distribution function, fj, is
known, the steady-state perturbed electron distribution function can be determined from the
following equation

Ce(fel)zfc(femvfb)v (80)
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where Ce(fe1) = C(fe1, fem) + C(fem, fe1) + C(fe1, fim). We are interested in parallel (to mag-
netic field) current

JI=av /UHfb(v)dv — e/v”fel(v)dv, (81)

Using the property of the collision operators that the Legendre harmonics are the eigen-func-
tions of the collision operators,

C(fem, f(v)Pi(cost)) = g(l,v) Pi(cost) (82)
C(f(v)Pi(cost), fem)="n(l,v)P(cosd) (83)

we get
Ce(f(v)Pi(cosh)) = y(l,v)Pi(cosh). (84)

Eqgs. (80) and (84) indicate that it is only the first Legendre harmonic of f; that can generate
the first Legendre harmonic perturbation in electron distribution. Further note that the parallel
electron current is the inner product of Pj(cosf) and f.i, and Legendre harmonics are orthog-
onal to each other, thus only the first Legendre harmonic of f.; can contribute to the parallel
electron current. Considering the above results, in order to calculate the parallel current in Eq.
(81) [Note v = vPy(cosh)], it is sufficient to consider only the [ =1 Legendre harmonics of the
beam distribution function in Eq. (80), fi(v)cosf, here

fi(v) :%/Oﬂ fo(v,0)Py(cosf)sinfdl (85)

Before treating arbitrary fp(v, ), we first consider the case that the velocity dependence of fi(v,
0) is given by the Dirac delta function

fb(vae):(s(v_vb)g(vae)a (86)

which is equivalent to
fo(v,0)=3d(v —vp)g(v, 0). (87)

Then nyup|| can be written as
npup| = /fb(v, 0)v)dv

27r/ / §(v —wvp) g(vp, O)v3coshsinfddvdd
0

0
27r/ g(vy, 0)vicoshsinddb. (88)
0

This gives the relation of uy| and vp. Using this result, fi(v) in Eq. (85) is written as

filv) = g/oﬂ §(v — wvp) g(vp, 0) Py(cosf)sinfdb

= 30v—w) / 9(vp, 0)vicosbsingdd
2 vy 0
_ 30(v— ) netp)
- 5 Ug, 27T ) (89)
which agrees with Hirshman’s result,
3npuy 0 (v — vy
i) = o ), (90
TV,
Using the property of the Dirac delta function, §(a&) =48(&)/a, Eq. (90) can be written as
3npu) 0 (T — Ty
fi(o) = 200~ 1) (o1)

471'1}5’1),5@

where 7 = v/vte, Tp=vp/vie. Note that the dimension of fi(v) is correct, i.e, fi ocn/v3.
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In the following, we calculate the collision term C( fem, fi(v)cos). According to Eq. (34) in
Karney’s paper[14], we have

C(fam, fy(v)cost) *V'Sg/b

famcost famcost

471'1"“”’ vl P v’
= [fb() /om 52?30 fo(w")dv’

0o 2 3
v’ v v 100 I\ o/
+ L
A Uga<5v?av’2 3v’2>fb( ) ]

Substituting fi(v) in Eq. (91) into the above equation gives

1 v — 3 —/
C(fem, fo(v)cosh) — Te/b ZIIb l36(5_6b)+/ 17’2(“——“—)35(’17’—171,)6[17’
0

fEmCOSG VpUte

+A°°<‘ _

cnl <
w|
N———
o
(%)
—~
<
|
i~
=
N~—
Y
<
|_\|
—
©
[\}
»

It follows that

Fe/b up 1 3,Ub3 T
[ R — 29 F — —
V3, Vte Tp\ DT2 T2 or Uy <7
C(fem, fi(v)cost) re/bup, 1 (303
N 5 Y 0> T 93
femcost 0 e 7P\ 5 v | Forty>7 (93)
Fa/bu”b 1
—330 For 7y = 7
Ut3@ Vie Ub3 ( b) or vp =170

where

4
Fa/b anaqb 1 Aa/b Fe/b nbe qb 1 Ae/b Fe/e Ne€ Ae/e (94)
dmedm? dme3m? 47Tegm

Define the effective charge number of beam ions, Z, as

7 — ang InAe/?

~ nee?InAe/e (95)
then I'*/® = Z,I'/¢ and Eq. (93) is written as
7 Ul (3 5 -
ZbyeO’UteF<gvb —1) For v, < v
C(fem, fy (v)cosh) o upp T (3,
: = — | =72 - Ty, > T 96
Fomcost ZyVeo " ?7b3 51} 1 For oy > o (96)
7o, Wb L g -
peo———530(7 — ) Fory=70
Vte Uy
where v,o=1"%°/v},. Hirshman’s result[1] of the above collision term is given by
2uu b Np 6 _ —
%n qb efemU3( gvl?) For Up <V
C(fema fbl(’l})COSQ)Z 2 ,Z 1/6 (97)
2opugprngy o 1 (65 L
UQe neeQVEfemUb3<5v 2) For oy >

where ve = /2T, /M, Ve = Fe/e/vg,ﬁ =0/ Ve,Up = Up/ve. Converted to my normalization, Eq. (97)
takes the form,
= Veo 2ujp 1 (
C(fem, fo(v)cosh) 2\/_ V20, 7%/2 5"
) - 4
femeost Z, 0 U 7/ ( 72/2 - )Forﬁb>17
"2V2 V2. 57 /2V2 \ 5

2/2+1) For o< T

(98)
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which can be simplified to

_ 3
ZbVeO_‘_( 02 +1) For 7, < T
C(fem, fi(v)cosh) _ i 5 (99)
femcost Ziveo ulb%<§52—2)ForUb>U
Vte Uy )

Note that Eq. (99) is different from my results, Eq. (96). Using Eq. (99) in my code, I can
reproduce Hirshman’s results [Figs. 1 and 2, and the analytic expression Eq. (24c) in his paper].
My question is why Eq. (99) differs from Eq.(96) for 7, <7 and @ > 7, and why Eq. (99) does
not involve the Dirac delta function at v = 7. Using expression Eq. (96), I can not reproduce
Hirshman’s results.

5.1 Collision term of electron with fast ions in the limit v, < v,

In dealing with the electron shielding current in NBCD in the case that v, < vy, the collision
term of electrons with fast ions is approximated as (Eq. (6) in Ref. [15] or the last term of Eq.
(5) in Ref. [5])

e Me
C /f(fem):TVef'UHufoema (100)
which can be rewritten as
1 Z2nf1/ ;
ct(fo) = 2 fei o
(fom) = T Vs f
1 Znge/e
= o, Ulwsifem
Z%n s T vju
— f f H 2f” fem (101)

ne vd  wi,

I now prove Eq. (101) by using Eq. (99). According to Eq. (99), in the limit that vy < vee, i.e.,
Up~ 0, we have

= 1,3
C(fems fi (v)cost) = zbueoi—2<g % +1) femeosd
~ ZbVeO UH _—2femCOSG
_Fe/e u”b 1
= Lpy— emcost
Utge Uterf cos
__1e/e
- Zbl;_3 Z”bvtefemcosﬂ
te “te
Fe/e u||b'Ut
= Z c
[ fem0089
__Tele
= ng d L femcost
v Vte Vte
_ Te/e
= Zbl—‘_w bl fem (102)

V3 Vge Uge
Using
2 2
7 i A g ngZge’ niZ5 (103)

T nee2 InA%e  nee? nee2 Ne

in Eq. (102), we obtain

”fo Te/e upp v

C(fema fbl(’U)COSG) fem, (104)

03 Ve Vre

which agrees with Eq. (101).
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6 Adjoint Problem of Eq. (80)

Because of the complexity of the non-homogeneous term C( fepm, fp) in Eq. (80), the direct solu-
tion of this equation is usually difficult. We consider a simpler problem,

Cel fermx(®)) = veorg - fem (105)

whose non-homogeneous term is simpler than C(fem, fp). In the following, we will prove that if
the solution to Eq. (105) is known, the parallel current can be easily obtained without solving
the more complicated equation Eq. (80).

Using the self-adjoint property of the linearized collision operator C.,

JeCutemntdo= [XCulfnd)av (106)
(The proof of this property is given in another note.) the parallel current can be written
Jel = Qe /vnfddv

= Qe/vﬂfemf{%dv

— g te /Ce(femx) Jet gy

Veo fem

= Qezte /Xce(fel)dv

e0
v

U [XCfem fi)dv (107)

Therefore, the parallel current only involves the velocity integration of x and C(fem, f»). The
expression of C(fem, fo) is given by Eq. (93) while x is known from the solution to adjoint
equation Eq. (105). Thus the parallel current is determined without solving Eq. (80).

= — (e

7 Beam current ratio
Je|
Q1Y ||b
Vte
= 14+ eueo f Xc(fem; fb)dv
qpny|| b
evie [ X C (fems fo) femcosfdv
VeoquTpl || b
evie [ X' C (fem, fv) femcos®0dv
Veo QoMo ||p
L Awevie [ XEC (fem, Jo) femv®dv
3 VeoquTpl||b
4 eviefo fooo XL C (foms fo) Fomv2dv
3 VeoQuMot||p
AT ene Vie 1

= 14+ /OOO Xla(femafb)femvzdv

3 qunp U Veo

F =1+

= 1+

=1

= 14

where
X(9) = x}(v)cost
C(fema fbl(v)cose)

femcost

a(fema fb) -

fem:f_emea fO: n3€

Vte
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Using
2
= 1
VA I (3—_1’2—_—2) For p < v
Ve \ DU v
— _ U 1 73
C (fems o) =9 Zpveo 'b_—3(3i17) For o, >0 (108)
Vte 'Ub 5
= 1
Zbyeom\b_335(17 —7) Fort,=7
Vte Uy
one gets
drencvie 1 [ | = 9
F o= 1 e e L [0 C (o f) oo
qpnp U||p Veo Jo
_ 1 +4_7r €Ne 7z,
3 g
3 - "1 (303 - e 302 1\~
% 132 - 14 (207 52d T 1 20 L 72d T
X (Ub)Ubfem(Ub)+/0 X Ub3 5 v femv U+ 5 X ET2 o2 femv v
Define Z, = gp/e, which is the charge number of the fast ions, then
Zp = Zp 0 (109)
Nee
The expression of F reduces to
F = 1+4§Zb
03 L (305 L\, (30 ® i
X Xl(vb)ffem(vb)+—_3/ leem<__’03>dv +<_b_ / leemdv (110)
Vb (UX 0 5) 5 Up
8 Results
1 F T T T T T ] 11 | T T T T T ]
0.8 — 09 i
g 06 4 ¢ o8} -
g Analytic soluti 1 & o7} , . -
3 Numerical solution o 12 o6 Analytic solution. — ]
=] ’ - 0.5 i
0 Z=Zp=1 7 0.4 Z=2, 771 i
-0.2 B 0.3 i
_04 1 1 1 1 1 02 1 1 1 1 1
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Vp/Ve Vp/Ve

Figure 3. The ratio of net current to beam current as a function of beam velocity v,. Here Z; = nlq%/
nee?. Zy=qp/e.

As mentioned above, the results in Fig. 3 is obtained by using Eq. (99) as the collision term.
In this case, the expression of F' takes the form,

F = 1+4%Zb

TUp _ —5 —2 e o] _
X {_ig/ leem(gi2’l73)d17+(3i+1)/ xlfemdﬁ}
Uy Jo 5 5 Ty

The analytic solution is from Eq. (24c) in Hirshman’s paper[2]. In this case the numerical solu-
tion agree well with the analytic solution as shown in Fig. 3. However, if we use Eq. (110) to
calculate F' (i.e., Eq. (96) is used as collision term), the results does not agree with the analytic
solution. The results are plotted in Fig. 4.



TO PROVE vy Vb = — T b- v(%)

2 : T T T T T 1.6 T T T T T
: 14 B i
L5n il !
| 2=7,=1 12 B 2=2,2,=1 .
e L 1 = '
i -1 F 1 -
3 \ 2 !
T 05! / . . 1 3 o8|} i
-~ 2% // Analytic solution = ]
' / Numerical solution ------- 0.6 | —
0 R 7] \ Analytic solution |
/ 0.4 \ ) ;
/ Numerical solution -------
.05 M| 1 1 1 1 0.2 > 1 1 1 1
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Vp/Ve Vp/Ve
Figure 4. F calculated using Eq. (110), which does not agree with Hirshman’s analytic solution in the
region of small values of vy.

Why Eq. (110) can not reproduce the correct results is still a mystery to me.

1 T T T T T T
Numerical solution o]
0 ¢oy Analytic solution ------- 7
Q,
-1+ 9@% -
£ 5L S i
g -2 @%
2 S,
30T % A
Q,
24l SSeq ]
%&
5 | @@% -
6 | B9 4
7 1 1 1 1 1 1

22,
Figure 5. The ratio of the net current to beam current as a function of Z,/Z;. The analytic solution is
given by F'=1— ?

=1+ g(%) which is valid only for vp/ve < 1. So in this case the value of vp/ve is
chosen to be small, vy/ve =0.01.

~ v
9 To prove vg-Vp=—1Tvb- V(%)
We start from Eq. (4.6.3) in Wesson’s book|[13]

vi+301 BxvB
SR LS LA (111)

Vq

where w.= Bq/m (here q is the charge of particle, including its sign). Then we write

i +5v1 BxVB

Ud'v’l/) e B2 V’l/}
2
v+ uB/m B xVy
VB (112)

where u=muv?/(2B). Eq. (4.6.7) in Wesson’s book is (I have checked this equation)

(uﬁ +%B)VB: —’U||B2V(%).

(113)
Using this in Eq. (112), we obtain

<

We

vd-w:ﬂ(wa).v( ) (114)

|
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Writing .
B=B¢e¢+§(vw ><6¢), (115)

we obtain
B x Vi = Bgegy X vw+%(w X ey) X Vi
= Byey x Vit 5|V ey, (116)

where use has been made of ey- Vi) =0. Then Eq. (114) is written as

vy = 2 Livuie, ) (ﬂ)
Vq V’l/) = wC<B¢6¢X V’l/)+ R|V1/)| 6¢) \Y% B
=4 : ﬂ) 11
wC(B¢6¢ x V1)) V( B ) (117)
where the second equality is due to
. ﬂ) = 11
ey v( ) =0, (118)
since we are considering toroidal symmetric case. Eq. (117) is further written as
(Vi xeg (vn)
: = A Xr2%e ) . y(-L 11
vq- VY CI( i ) \Y 5 ) (119)
where I = BgR. Using Eq. (115) in the above equation gives
vy=—rB- : (ﬂ) 12
Vq V’L/J ch(B B¢e¢,) \% B) ( 0)

Because of Eq. (118), the above equation is reduced to
vd~V1/):—%IB~V(ﬂ), (121)

which agrees with Eq. (4.6.9) in Wesson’s book[13].

10 Manuscript
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