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Abstract

The notes review the Lagrangian mechanics of guiding center motion and some aspects of

the linear gyrokinetic theory. These notes were initially written when I read Porcelli’s

paper[1] and were later revised to include more contents.

1 Guiding-center motion

The phase-space Lagrangian for guiding-center motion was first given in Littlejohn’s paper[1],
which takes the following form

L(X, v‖, y, α, Ẋ, v̇‖, ẏ , α̇, t)=
(

Ze

c
A+mv‖b

)

· Ẋ+
1

Ω
yα̇− 1

2
mv‖

2− y−Zeφ, (1)

where X is the location of the guiding-center, v‖ is the parallel (to magnetic field) velocity of the
particle (will be proved later that v‖ is also the parallel velocity of the guiding center) y≡mv⊥

2 /
2 with v⊥ the perpendicular (to magnetic field) velocity of the particle, α is the gyrophase, Ω =
ZeB/(mc) with Z being the charge number and e being the elementary charge, b=B/B. Note
that here the (phase-space) Lagrangian of guiding center is considered to be a function of vari-

ables X, v‖, y, α, Ẋ, v̇‖, ẏ , α̇, and t. Also note that three variables, α, v̇‖ and ẏ happens not to
appear in Eq. (1). Further note that the explicit dependence of L on X and t is through the
electromagnetic field A, φ, and the cyclotron frequency Ω. The Euler-Lagrange equation corre-
sponding to variable y is written as

d

dt

(

∂L
∂ẏ

)

=
∂L
∂y
, (2)

which, after evaluating the partial derivatives, is reduced to

α̇=Ω, (3)

which indicates, as expected, that the time change rate of the gyrophase α equals the cylcotron
frequency Ω. The Euler-Lagrange equation corresponding to the variable α is written as

d

dt

(

∂L
∂α̇

)

=
∂L
∂α
, (4)

which can be written as
d

dt

(

y

Ω

)

=0, (5)

which indicats that the magnetic moment µ ≡ y /B is a constant of the motion. The Euler-
Lagrange equation for the variable v‖ is

d

dt

(

∂L
∂v̇‖

)

=
∂L
∂v‖

, (6)

which can be simplified to

v‖=b · Ẋ, (7)

which indicates that v‖ is also the parallel velocity of the guiding center. Next, consider the
Euler-Lagrange equation corresponding to the coordinate X, which is given by

d

dt

(

∂L
∂Ẋ

)

=
∂L
∂X

, (8)
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which should be understood as a shorthand of the three Euler-Lagrange equations coorre-
sponding to three coordinates. Is the above equation still valid in arbitrary coordinates system if
we consider ∂/∂Ẋ and ∂/∂X as gradient operators? The answer is yes. However it is not trivial
for me to find the proof (the proof is provided in Sec. (4)). Using Eq. (1) and vector identies,
we obtain

∂L
∂Ẋ

=
Ze

c
A+mv‖b, (9)

and
∂L
∂X

= Ẋ×
(

Ze

c
B+mv‖∇×b

)

+ Ẋ · ∇
(

Ze

c
A+mv‖b

)

− 1

Ω2
yα̇∇Ω−Ze∇φ, (10)

where ∇≡ ∂/∂X. Using Eqs. (9) and (10), Eq. (8) is written as

Ze

c

(

∂A

∂t
+ Ẋ · ∇A

)

+mv‖

(

∂b

∂t
+ Ẋ · ∇b

)

+mv̇‖b= Ẋ×
(

Ze

c
B+mv‖∇×b

)

+ Ẋ · ∇
(

Ze

c
A+

mv‖b

)

− 1

Ω2
yα̇∇Ω−Ze∇φ (11)

Using Ω=BZe/(mc) and α̇=Ω, the second last term can be reduced to −µ∇B. Then Eq. (11)
is written

Ze

c

∂A

∂t
+ mv‖

∂b

∂t
+ Ẋ ·

(

Ze

c
∇A + mv‖∇b

)

+ mv̇‖b = Ẋ ×
(

Ze

c
B + mv‖∇ × b

)

+ Ẋ ·

∇
(

Ze

c
A+mv‖b

)

− µ∇B −Ze∇φ (12)

Noting that mv‖∇b = ∇(mv‖b) (this is because ∇ ≡ (∂ / ∂X)v‖
, i.e., holding v‖ constant), so

that the second term on the right-hand side of the above equation is canceled by terms on the
right-hand, yielding

Ze

c

∂A

∂t
+mv‖

∂b

∂t
+mv̇‖b= Ẋ×

(

Ze

c
B+mv‖∇×b

)

− µ∇B −Ze∇φ. (13)

Equation (13) can be further written in compact form by defining new magnetic-like and elec-
tric-like quantities. Define

A
⋆=A+

mc

Ze
v‖b, (14)

and

B
⋆=∇×A

⋆, (15)

then
∂A⋆

∂t
=
∂A

∂t
+
mc

Ze
v‖
∂b

∂t
(16)

B
⋆=B+

mc

Ze
v‖∇×b, (17)

(Note that the time partial differential does not operate on v‖ because it is an independent vari-
ables.) Using these, Eq. (13) is written as

Ze

c

∂A⋆

∂t
+mv̇‖b=

Ze

c
Ẋ×B

⋆− µ∇B −Ze∇φ (18)

=⇒ Ze

c
Ẋ×B

⋆−Ze∇φ− Ze

c

∂A⋆

∂t
= µ∇B+mv̇‖b (19)

Define

E⋆=−∇φ− 1

c

∂A⋆

∂t
(20)

then Eq. (19) is written as

Ze

(

E
⋆+

1

c
Ẋ×B

⋆

)

= µ∇B+mv̇‖b, (21)

which agrees with Eq. (23) of Porcelli’s paper[1].
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1.1 Time evolution of v‖

The time evolution of v‖ can be obtained by dotting Eq. (13) by b, which gives

Ze

c

∂A

∂t
·b+mv‖

∂b

∂t
·b+mv̇‖=b · Ẋ× (mv‖∇×b)− µb · ∇B −Zeb · ∇φ. (22)

Noting that

b · ∂b
∂t

=
1

2

∂b2

∂t
=0, (23)

Eq. (22) is written as

Ze

c

∂A

∂t
·b+mv̇‖=b · Ẋ× (mv‖∇×b)− µb · ∇B −Zeb · ∇φ. (24)

Using

E=−∇φ− 1

c

∂A

∂t
, (25)

Eq. (24) is written as

mv̇‖=−Ẋ ·b× (mv‖∇×b)− µb · ∇B+Zeb ·E (26)

Noting that the magnetic curture is given by κ=−b×∇×b, the above equation is written as

mv̇‖=mv‖Ẋ ·κ− µb · ∇B+Zeb ·E, (27)

which governing the time evolution of v‖.

1.2 Energy conservation

Dotting Eq. (21) with Ẋ, we obtain

ZeE⋆ · Ẋ= µẊ · ∇B+mv̇‖b · Ẋ. (28)

Using

E
⋆=−∇φ− 1

c

∂A

∂t
− mv‖

Ze

∂b

∂t
, (29)

Eq. (28) is written

mv̇‖b · Ẋ=−
(

Ze∇φ+ Ze

c

∂A

∂t
+mv‖

∂b

∂t
+ µ∇B

)

· Ẋ. (30)

Using Eq. (7), i.e., b · Ẋ= v‖, the above equation is written

mv‖v̇‖=−
(

Ze∇φ+ Ze

c

∂A

∂t
+mv‖

∂b

∂t
+ µ∇B

)

· Ẋ, (31)

which gives the time change rate of the parallel velocity v‖. By using µ̇ = 0 and y = µB, the
time change rate of the perpendicular velocity is written as

ẏ = µ
dB

dt

= µ

(

∂B

∂t
+ Ẋ · ∇B

)

(32)

Next, calculate the total time derivative of the particle energy. The particle energy ε is the sum
of the kinetic and potential energy, i.e.,

ε=
1

2
mv‖

2+ y+Zeφ, (33)

from which we obtain

ε̇=mv‖v‖̇+ ẏ+Zeφ̇. (34)

Using Eqs. (31) and (32), the right-hand side of Eq. (34) is written as

mv‖v‖̇+ ẏ+Zeφ̇ = −
(

Ze

c

∂A

∂t
+mv‖

∂b

∂t
+Ze∇φ+ µ∇B

)

· Ẋ+ µ

(

∂B

∂t
+ Ẋ · ∇B

)

+Zeφ̇.

= −
(

Ze

c

∂A

∂t
+mv‖

∂b

∂t

)

· Ẋ+ µ
∂B

∂t
+Ze

∂φ

∂t
. (35)
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For the equilibrium case, electromagnetic field is independent of time, so the result of the above
expression is zero, indicating that energy is a constant of the motion.

1.3 Guiding center drift

Next, we derive the guiding center drift. Using equation (13), we obtain

−ZeE+ µ∇B+mv‖
∂b

∂t
+mv̇‖b= Ẋ×

(

Ze

c
B+mv‖∇×b

)

(36)

Taking cross product of the above equation with b/(mΩ), we obtain

1

mΩ
b×

(

−ZeE+ µ∇B+mv‖
∂b

∂t

)

=
1

mΩ
b×

[

Ẋ×
(

Ze

c
B+mv‖∇×b

)]

(37)

The right-hand side of the above equation is simplified as

− 1

mΩ

(

b · Ẋ
)

(

Ze

c
B+mv‖∇×b

)

+

[

1

mΩ
b ·
(

Ze

c
B+mv‖∇×b

)]

Ẋ

=−v‖
(

b+
v‖

Ω
∇×b

)

+

[

1+
1

Ω
v‖b · ∇×b

]

Ẋ

=−v‖b− 1

Ω
v‖
2∇×b+ Ẋ+

(

1

Ω
v‖b · ∇×b

)

Ẋ (38)

Using this, Eq. (37) is written as

1

mΩ
b×

(

−ZeE+ µ∇B+mv‖
∂b

∂t

)

=−v‖b− 1

Ω
v‖
2∇×b+ Ẋ+

(

1

Ω
v‖b · ∇×b

)

Ẋ

⇒Ẋ= v‖b+
1

mΩ
b×

(

−ZeE+ µ∇B+mv‖
∂b

∂t

)

+
1

Ω
v‖
2∇×b−

(

1

Ω
v‖b · ∇×b

)

Ẋ (39)

⇒ Ẋ = v‖b +
1

mΩ
b × (−ZeE + µ∇B) +

1

mΩ

[

b × mv‖
∂b

∂t
+ mv‖

2∇ × b − (mv‖b · ∇ ×

b)Ẋ

]

(40)

Equation (40) contains E×B drift and ∇B drift. The term v‖/Ωb× ∂b/∂t, (which is one kind
of inertial drift since it is proportional to the mass), is small compared with other terms and
thus is usually ignored (this term appears in equation (181) of Boozer’s paper[2], and is said to
be ignorably small in his paper, I do not check this). Using this, Eq. (40) is written

Ẋ= v‖b+
1

mΩ
b× (−ZeE+ µ∇B)+

1

mΩ

[

mv‖
2∇×b− (mv‖b · ∇×b)Ẋ

]

(41)

Next we examine the terms in the square bracket of Eq. (41), which can be further written

1

mΩ

[

mv‖
2∇×b− (mv‖b · ∇×b)Ẋ

]

=
1

mΩ

{

mv‖
[

(b · Ẋ)∇×b− (b · ∇×b)Ẋ
]}

=
1

mΩ

{

mv‖b×
[

(∇×b)× Ẋ
]}

=
1

mΩ
b×

{

mv‖(∇×b)× Ẋ
}

=
1

mΩ
b×

{

mv‖(∇×b)×
(

v‖b+ Ẋ⊥

)}

=
1

mΩ
b×

{

mv‖
2κ+mv‖(∇×b)× Ẋ⊥

}

. (42)

The first term of expression (42) is the curvature drift. It is not yet clear what the last term
stands for. We now examine this term, i.e.,

1

mΩ
b×mv‖(∇×b)× Ẋ⊥, (43)
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which can be written

− v‖

Ω
(b · ∇×b)Ẋ⊥. (44)

In Eq. (66) of Ref. [3], it is pointed out that ∇×b≈−b× (b×∇×b) =b×κ, which is correct
in the order considered here (I do not check this). This indicates that b · ∇ × b≈ 0. Using this,
we know the expression in Eq. (44) is approximately zero. Thus, Eq. (41) is written

Ẋ= v‖b+
1

mΩ
b×

(

−ZeE+ µ∇B+mv‖
2κ
)

. (45)

Note that Eq. (45) does not include the polarization drift, which is proportional to the time
derivative of the electric field.

1.4 A more accurate form of the guiding center drift

Equation (41) can also be written

(

1+
v‖

Ω
b · ∇×b

)

Ẋ= v‖

(

b+
v‖

Ω
∇×b

)

+
1

mΩ
b× (−ZeE+ µ∇B) (46)

Define

B‖
⋆=B

(

1+
v‖

Ω
b · ∇×b

)

, (47)

which is related to B
⋆ defined in Eq. (17) through B‖

⋆=b ·B⋆, then Eq. (46) is written

Ẋ=
v‖

B‖
⋆

(

B+B
v‖

Ω
∇×b

)

− Ze

mΩB‖
⋆B×E+

1

mΩB‖
⋆B× µ∇B, (48)

i.e.,

Ẋ=
B

⋆

B‖
⋆v‖−

Ze

mΩB‖
⋆B×E+

1

mΩB‖
⋆B× µ∇B (49)

which agrees with Eqs. (8)-(14) in Todo’s paper[4]. Note that, in this form of the guiding center
drift, the curvature drift is included in the B⋆v‖ /B‖

⋆ term. Compared with Eq. (45), equation

(49) is more accurate because it does not use the approximation that b · ∇ × b≈ 0. The numer-
ical results from my numerical code indicate that Eq. (49) can conserve the toroidal angular
momentum more accurately than Eq. (45). It is easy to verify that Eq. (49) reduces to Eq. (45)
if we use the approximation b · ∇ × b ≈ 0. Note again that both Eqs. (49) and (45) do not
include the polarization drift.

1.5 A more compact form of the time evolution of v‖

The time evolution of v‖ is given by Eq. (27), i.e.,

mv‖v̇‖=mv‖
2
Ẋ ·κ− v‖µb · ∇B+ v‖Zeb ·E, (50)

which involves the term Ẋ · κ. Next we try to simplify this term. Using Eq. (48), this term is
written as

mv‖
2
Ẋ ·κ = −

mv‖
2Ze

mΩB⋆
(B×E) ·κ+

mv‖
2

mΩB⋆
(B× µ∇B) ·κ

=
Zev‖

2

ΩB⋆
(B×E) · (b×∇×b)−

v‖
2

ΩB⋆
(B× µ∇B) · (b×∇×b)

=
Zev‖

2

ΩB⋆
(BE · ∇×b−B · ∇×bE ·b)−

v‖
2

ΩB⋆
(Bµ∇B · ∇×b−B · ∇×bµ∇B ·b)

Using this in Eq. (50) gives

mv‖v̇‖=
Zev‖

2

ΩB⋆
(BE · ∇× b−B · ∇×bE · b)−

v‖
2

ΩB⋆
(Bµ∇B · ∇×b−B · ∇× bµ∇B ·b)− v‖µb ·

∇B+ v‖Zeb ·E,
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which can be arranged as

mv‖v̇‖=

[

v‖
2

ΩB⋆
(B∇×b−B · ∇×bb) + v‖b

]

·ZeE,−
[

v‖
2

ΩB⋆
B∇×b−

v‖
2

ΩB⋆
(B · ∇×b)b+ v‖b

]

·

µ∇B,

which, after some straightforward algebras, can be arranged into the following forms

mv‖v̇‖=
B

⋆

B‖
⋆v‖ · (ZeE− µ∇B), (51)

i.e.,

v̇‖=
1

m

B
⋆

B‖
⋆ · (ZeE− µ∇B), (52)

which agrees with Eq. (15) in Todo’s paper[4].

1.6 Summary of equations of guiding center motion

Equations (49), (52), (72), and (47) are repeated here:

Ẋ=
B⋆

B‖
⋆v‖−

Ze

mΩB⋆
B×E+

1

mΩB⋆
B× µ∇B (53)

v̇‖=
1

m

B
⋆

B‖
⋆ · (ZeE− µ∇B), (54)

B
⋆=B+B

v‖

Ω
∇×b (55)

B‖
⋆=B

(

1+
v‖

Ω
b · ∇×b

)

, (56)

1.7 Generalized toroidal angular momentum

Next, we work in cylindrical coordinates (R, ϕ, Z) and prove that the generalized momentum
conjugating to the toroidal angle ϕ is a constant of motion for axisymmetric electromagnetic
field. The generalized momentum conjugating to ϕ is defined by

Pϕ=

(

∂L
∂ϕ̇

)

R,Z,ϕ,v‖,y,α,Ṙ,Ż ,v̇‖, ẏ,α̇,t

. (57)

Using the Lagrangian given in Eq. (1), Eq. (57) is written

Pϕ =
∂

∂ϕ̇

[(

Ze

c
A+mv‖b

)

· Ẋ
]

=

(

Ze

c
A+mv‖b

)

· ∂Ẋ
∂ϕ̇

(58)

Noting that X=X(R,Z, ϕ), we obtain

Ẋ=
∂X

∂R
Ṙ+

∂X

∂Z
Ż +

∂X

∂ϕ
ϕ̇, (59)

from which we obtain

∂Ẋ

∂ϕ̇
=
∂X

∂ϕ
. (60)

Further we note that

X(R,Z, ϕ) =RêR(ϕ)+ZêZ =⇒ ∂X

∂ϕ
=Rêϕ, (61)

where êϕ is the toroidal unit vector. Thus we obtain that

∂Ẋ

∂ϕ̇
=Rêϕ, (62)
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Using this, Eq. (58) is written as

Pϕ =

(

Ze

c
A+mv‖b

)

·Rêϕ

=
Ze

c
AϕR+mv‖

RBϕ

B

Define ψ=AϕR, then the above equation is written as

Pϕ=
Ze

c
ψ+mv‖

RBϕ

B
, (63)

which agrees with Eq. (17) in Porcelli’s paper[1]. Next we calculate the total time derivative of
Pϕ, which is given by the Euler-Lagrangian equation corresponding to ϕ,

Ṗϕ=
∂L
∂ϕ

. (64)

In order to calculate the partial derivative of L with respect to ϕ, we write X in terms of the
cylindrical coordinate,

X=RêR(ϕ)+ZêZ , (65)

the time derivative of which is

Ẋ= ṘêR+Rϕ̇êϕ+ ŻêZ. (66)

(Note that ∂Ẋ/∂ϕ=/ 0.) Then we have

A · Ẋ=ARṘ+AϕRϕ̇+AzŻ , (67)

from which we obtain

∂(A · Ẋ)

∂ϕ
=

∂AR

∂ϕ
Ṙ+

∂Aϕ

∂ϕ
Rϕ̇+

∂Az

∂ϕ
Ż

=

(

∂AR

∂ϕ
êR+

∂Aϕ

∂ϕ
êϕ+

∂Az

∂ϕ
êZ

)

· Ẋ (68)

Similarly, we obtain

∂(b · Ẋ)

∂ϕ
=

(

∂bR
∂ϕ

êR+
∂bϕ
∂ϕ

êϕ+
∂bz
∂ϕ

êZ

)

· Ẋ (69)

Using these, the partial derivative of L with respect to ϕ can be calculated as

∂L
∂ϕ

=

[

Ze

c

(

∂AR

∂ϕ
êR +

∂Aϕ

∂ϕ
êϕ +

∂Az

∂ϕ
êZ

)

+mv‖

(

∂bR
∂ϕ

êR +
∂bϕ
∂ϕ

êϕ +
∂bz
∂ϕ

êZ

)]

· Ẋ+ yα̇
∂

∂ϕ

(

1

Ω

)

−

Ze
∂φ

∂ϕ
. (70)

The second last term on the right-hand side of Eq. (70) can be further calculated as

yα̇
∂

∂ϕ

(

1

Ω

)

= yα̇

(

− 1

Ω2

)

∂Ω

∂ϕ

= yα̇

(

− 1

BΩ

)

∂B

∂ϕ
. (71)

Using y= µB and α̇=Ω in the above equation, we obtain

yα̇
∂

∂ϕ

(

1

Ω

)

=−µ∂B
∂ϕ

. (72)

Using Eq. (72) in Eq. (70) yields

∂L
∂ϕ

=

[

Ze

c

(

∂AR

∂ϕ
êR +

∂Aϕ

∂ϕ
êϕ +

∂Az

∂ϕ
êZ

)

+ mv‖

(

∂bR
∂ϕ

êR +
∂bϕ
∂ϕ

êϕ +
∂bz
∂ϕ

êZ

)]

· Ẋ − µ
∂B

∂ϕ
−

Ze
∂φ

∂ϕ
. (73)
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For toroidal symmetrical equilibrium, the partial derivatives with respect to ϕ are all zeros. In
this case Eq. (73) reduces to ∂L/∂ϕ= 0. Using the Euler-Lagrange equation, we obtain Ṗϕ = 0,
i.e., Pϕ is a constant of the motion in symmetrical field. [Note that Eq. (73) is different from
Eq. (32) in Porcelli’s paper[1], which is given by

∂L
∂ϕ

=

[

Ze

c

∂A

∂ϕ
+mv‖

∂b

∂ϕ

]

· Ẋ− µ
∂B

∂ϕ
−Ze

∂φ

∂ϕ
. (74)

Porcelli’s equation is obviously wrong since it can not recover the correct result Ṗφ = 0 for
axisymmetrical electromagnetic field.]

1.8 A new constant of motion in coherent modes

The time change rate of ε and Pϕ is given respectively by Eqs. (35) and (73), i.e.,

ε̇=−
(

Ze

c

∂A

∂t
+mv‖

∂b

∂t

)

· Ẋ+ µ
∂B

∂t
+Ze

∂φ

∂t
, (75)

Ṗϕ =

[

Ze

c

(

∂AR

∂ϕ
êR +

∂Aϕ

∂ϕ
êϕ +

∂Az

∂ϕ
êZ

)

+ mv‖

(

∂bR
∂ϕ

êR +
∂bϕ
∂ϕ

êϕ +
∂bz
∂ϕ

êZ

)]

· Ẋ − µ
∂B

∂ϕ
−

Ze
∂φ

∂ϕ
. (76)

From Eqs. (75) and (76), we know that the energy ε is conserved for motion in time indepen-
dent field while Pϕ is conserved for motion in toroidally symmetrical field. For the motion in a
toroidal symmetrical equilibrium field superposed by a coherent perturbation h1(R, Z)e

i(−nϕ−ωt)

with n=/ 0, ω =/ 0, neither of ε and Pϕ is conserved. In this case we can construct a new conserv-
ative quantity by combining ε and Pϕ. Define

ε′≡ ε+
ω

n
Pϕ, (77)

then it can be proved that dε′/dt = 0 when including only the contribution of the perturbation
up to the order O(h1/h0) (proof is needed).

1.9 Approximate expression of the drift velocity

The the combined drift due to magnetic curvature and gradient is written

vd=
1

B‖
⋆B

v‖

Ω
∇×bv‖+

µ

mΩB‖
⋆B×∇B. (78)

Using the approximation B‖
⋆≈B, ∇× b≈ b×κ, κ≈−1/RR̂, ∇B /B =−1/RR̂, equation (78)

is written

vd = −
v‖
2

ΩR
b× R̂+

mv⊥
2 /2

mΩB
b×∇B

= −
[

v‖
2

ΩR
+
v⊥
2 /2

Ω

1

R

]

b× R̂

= −
v‖
2+ v⊥

2 /2

ΩR
b× R̂ (79)

Equation (79) can also be approximatedly written as

vd=
v‖
2+ v⊥

2 /2

Ω

B×∇B
B2

, (80)

which is the equation (2.6.9) in Wesson’s book[5].

For a strongly trapped particle, the toroidal drift velocity of the banana orbit is written

8 Section 1



2 Drift kinetic equation

The guiding center distribution function is constant along the trajectory of the guiding center in
phase space, i.e.,

df

dt
=0. (81)

Consider the case that the distribution function is independent of the gyro-phase angle α, i.e.,
f = f(X, v‖, y, t), then Eq. (81) is written as

∂f

∂t
+ Ẋ · ∇f + v‖̇

∂f

∂v‖
+ ẏ

∂f

∂y
=0, (82)

(which is equation (15) in Porcelli’s paper) where the guiding center orbits, Ẋ, v‖̇, and ẏ, are
given by Eqs. (45), (27), and (32), i.e.,

Ẋ= v‖b+
1

mΩ
b×

(

y

B
∇B+mv‖

2κ−ZeE
)

, (83)

v‖̇=
1

m

(

− y

B
b · ∇B+Zeb ·E+mv‖κ · Ẋ

)

, (84)

and

ẏ=

(

∂B

∂t
+ Ẋ · ∇B

)

y

B
. (85)

We note that, besides the independent variables (X, v‖, y), the right-hand side of the Eqs. (83),
(84), and (85) depends on the electromagnetic field. Note that, in the perturbation theory, only
the electromagnetic field can be perturbed, the independent variables (variables used as the
phase space coordinates) are kept fixed.

2.1 Linearized drift kinetic equation

Next, we derive the linearized version of Eq. (82). The perturbation in electromagnetic field

causes perturbation in both distribution function and particle orbits Ẋ, v‖̇, and ẏ. Thus we
write

f = f0+ f1 (86)

Ẋ= Ẋ
(0)+ Ẋ

(1), (87)

v‖̇= v‖̇(0)+ v‖̇(1), (88)

ẏ= ẏ(0)+ ẏ(1). (89)

and substitute this into Eq. (82), we obtain

∂f0
∂t

+
∂f1
∂t

+
(

Ẋ
(0) + Ẋ

(1)
)

· ∇f0 +
(

Ẋ
(0) + Ẋ

(1)
)

· ∇f1 + (v‖̇(0) + v‖̇(1))
∂f0
∂v‖

+ (v‖̇(0) + v‖̇(1))
∂f1
∂v‖

+

(

ẏ(0)+ ẏ(1)
)∂f0
∂y

+
(

ẏ(0)+ ẏ(1)
)∂f1
∂y

=0. (90)

The zero order equation is

∂f0
∂t

+ Ẋ
(0) · ∇f0+ v‖̇(0)

∂f0
∂v‖

+ ẏ(0)
∂f0
∂y

=0. (91)

The first order equation is

∂f1
∂t

+ Ẋ
(0) · ∇f1+ v‖̇(0)

∂f1
∂v‖

+ ẏ(0)
∂f1
∂y

=−
[

Ẋ
(1) · ∇f0+ v‖̇(1)

∂f0
∂v‖

+ ẏ(1)
∂f0
∂y

]

(92)

Define
D

Dt
=
∂

∂t
+ Ẋ

(0) · ∇+ v‖̇(0)
∂

∂v‖
+ ẏ(0)

∂

∂y
, (93)

Drift kinetic equation 9



which is the unperturbed orbit propagator, then Eq. (92) is written as

Df1
Dt

=−
[

Ẋ
(1) · ∇f0+ v‖̇(1)

∂f0
∂v‖

+ ẏ(1)
∂f0
∂y

]

, (94)

which agrees with Eq. (21) in Porcelli’s paper[1].

At this point, I would like to discuss the equilibrium distribution function. We know that
functions of constants of the motion are solutions to the kinetic equation. Noting that Pϕ0, ε0,
and µ0 are constants of the motion in equilibrium field. Then f0= F (Pϕ0, ε0, µ0) is a solution to
the kinetic equation Eq. (82). Noting that the right-hand side of Eq. (94) contains partial deriv-
ative with respect to variables (X, v‖, y), we would like to transform the partial derivatives with
respect to (X, v‖, y) to one with respect to (Pϕ0, ε0, µ0) because f0 is usually specified in terms

of the vairables (Pϕ0, ε0, µ0). The right-hand side of Eq. (94) can be written term by term as

Ẋ
(1) · ∇f0 = Ẋ

(1) ·
(

∂F

∂Pϕ0
∇Pϕ0+

∂F

∂ε0
∇ε0+

∂F

∂µ0
∇µ0

)

= Ẋ
(1) ·
(

∂F

∂Pϕ0
∇Pϕ0+

∂F

∂ε0
Ze∇φ0−

∂F

∂µ0

y

B0
2∇B0

)

(95)

v‖̇(1)
∂f0
∂v‖

= v‖̇(1)

(

∂F

∂Pϕ0

∂Pϕ0

∂v‖
+
∂F

∂ε0

∂ε0
∂v‖

+
∂F

∂µ0

∂µ0

∂v‖

)

= v‖̇(1)

(

∂F

∂Pϕ0

∂Pϕ0

∂v‖
+
∂F

∂ε0
mv‖

)

(96)

ẏ(1)
∂f0
∂y

= ẏ(1)
(

∂F

∂Pϕ0

∂Pϕ0

∂y
+
∂F

∂ε0

∂ε0
∂y

+
∂F

∂µ0

∂µ0

∂y

)

= ẏ(1)
(

∂F

∂ε0
+
∂F

∂µ0

1

B0

)

(97)

Using these results, Eq. (94) is written as

Df1
Dt

= −
[

Ẋ
(1) ·

(

∂F

∂Pϕ0
∇Pϕ0 +

∂F

∂ε0
Ze∇φ0 − ∂F

∂µ0

y

B0
2
∇B0

)

+ v‖̇(1)

(

∂F

∂Pϕ0

∂Pϕ0

∂v‖
+

∂F

∂ε0
mv‖

)

+

ẏ(1)
(

∂F

∂ε0
+
∂F

∂µ0

1

B0

)]

,

which can be arranged in the form

Df1
Dt

= −
[

(

Ẋ
(1) · ∇Pϕ0 + v‖̇(1)

∂Pϕ0

∂v‖

)

∂F

∂Pϕ0
+
(

ZeẊ(1) · ∇φ0 + mv‖v‖̇(1) + ẏ(1)
) ∂F

∂ε0
+

(

ẏ(1)

B0
−

y

B0
2Ẋ

(1) · ∇B0

)

∂F

∂µ0

]

, (98)

which agrees with Eq. (22) in Porcelli’s paper[1]. Next, we need to express Ẋ(1), v̇‖
(1)

, and ẏ(1) in

terms of the perturbed electromagnetic field. Let us first consider the coefficient befor the ∂F /
∂ε0 term in Eq. (98). We note that Eq. (35) takes the following form:

mv‖v‖̇+ ẏ+Zeφ̇=−
(

Ze

c

∂A

∂t
+mv‖

∂b

∂t

)

· Ẋ+
y

B

∂B

∂t
+Ze

∂φ

∂t
, (99)

whose linearized version is (noting that A(0), b(0), and B(0) is time independent, thus ∂A(0)/∂t,
∂b(0)/∂t, and ∂B(0)/∂t are all zeros)

mv‖v‖̇(1)+ ẏ(1)+Zeφ̇(1)=−
(

Ze

c

∂A(1)

∂t
+mv‖

∂b(1)

∂t

)

· Ẋ(0)+ µ0
∂B(1)

∂t
+Ze

∂φ(1)

∂t
, (100)
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where µ0= y/B0. Using

φ̇(1) ≡
(

dφ

dt

)

(1)

=

(

∂φ

∂t
+ Ẋ · ∇φ+0+0+0

)

(1)

=
∂φ(1)

∂t
+ Ẋ

(0) · ∇φ(1)+ Ẋ
(1) · ∇φ(0)

=
Dφ(1)

Dt
+ Ẋ

(1) · ∇φ(0) (101)

(Note that
D

Dt
here denotes total time derivative along the unperturbed orbit, instead of the per-

turbed orbit ) in Eq. (100) gives

mv‖v‖̇(1)+ ẏ(1)+ZeẊ(1) · ∇φ(0)=−Lt
(1)−Ze

Dφ(1)

Dt
, (102)

where, for notation ease, we have defined

−Lt
(1)

=−
(

Ze

c

∂A(1)

∂t
+mv‖

∂b(1)

∂t

)

· Ẋ(0)+ µ0
∂B(1)

∂t
+Ze

∂φ(1)

∂t
. (103)

Equation (102) agrees with Eq. (30) in Porcelli’s paper[1]. The right-hand side of Eq. (102) pro-
vides the desired expression for the coefficent before the ∂F /∂ε0 term of Eq. (98).

The first order equation of Eq. (73) is written as (Noting that we are considering toroidal

symmetrical equilibrium, thus terms such as ∂AR
(0)/∂ϕ, ∂bR

(0)/∂ϕ, and ∂B(0)/∂ϕ are all zeros.)

(

∂L
∂ϕ

)

(1)

=

[

Ze

c

(

∂AR
(1)

∂ϕ
êR+

∂Aϕ
(1)

∂ϕ
êϕ+

∂Az
(1)

∂ϕ
êZ

)

+mv‖

(

∂bR
(1)

∂ϕ
êR+

∂bϕ
(1)

∂ϕ
êϕ+

∂bz
(1)

∂ϕ
êZ

)]

· Ẋ(0)−

µ0
∂B(1)

∂ϕ
−Ze

∂φ(1)

∂ϕ
. (104)

Using this in the Euler equation (64), we obtain

(

Ṗϕ

)

(1)=

(

∂L
∂ϕ

)

(1)

(105)

Note that

Pϕ=
Ze

c
AϕR+mRv‖

Bϕ

B
, (106)

then

Ṗϕ =
∂Pϕ

∂t
+ Ẋ · ∇Pϕ+ v̇‖

∂Pϕ

∂v‖

Using this in Eq. (105), we obtain
(

∂Pϕ

∂t
+ Ẋ · ∇Pϕ+ v̇‖

∂Pϕ

∂v‖

)

(1)

=

(

∂L
∂ϕ

)

(1)

, (107)

which can be further written as

Ẋ
(1) · ∇Pϕ

(0)+ v̇‖
(1)∂Pϕ

(0)

∂v‖
+
∂Pϕ

(1)

∂t
+ Ẋ

(0) · ∇Pϕ
(1)+ v̇‖

(0)∂Pϕ
(1)

∂v‖
=

(

∂L
∂ϕ

)

(1)

. (108)

=⇒ Ẋ
(1) · ∇Pϕ

(0)
+ v̇‖

(1)∂Pϕ
(0)

∂v‖
=

(

∂L
∂ϕ

)

(1)

−
DPϕ

(1)

Dt
(109)

The right-hand side of Eq. (109) gives desired expression for the coefficient before the term ∂F /
∂Pϕ0 of Eq. (98). The linearized version of Eq. (32)

ẏ= µ

(

∂B

∂t
+ Ẋ · ∇B

)

, (110)
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is written as

ẏ(1)= µ0

(

∂B1

∂t
+ Ẋ

(0) · ∇B1+ Ẋ
(1) · ∇B0

)

+ µ(1)
Ẋ

(0) · ∇B0. (111)

Noting that µ0= y/B0, µ
(1)=−(y/B0

2)B1, the above equation is written as

ẏ(1)

B0
=

y

B0

(

∂B1/B0

∂t
+ Ẋ

(0) · 1

B0
∇B1+

1

B0
Ẋ

(1) · ∇B0

)

− y

B0
2B1Ẋ

(0) · 1

B0
∇B0 (112)

ẏ(1)

B0
− y

1

B0
2Ẋ

(1) · ∇B(0)= µ0

(

∂B(1)/B0

∂t
+ Ẋ

(0) · 1

B0
∇B(1)−B(1)

Ẋ
(0) · 1

B0
2∇B

(0)

)

(113)

ẏ(1)

B0
− y

1

B0
2
Ẋ

(1) · ∇B(0)= µ0

[

∂B(1)/B0

∂t
+ Ẋ

(0) ·
(

1

B0
∇B(1)−B(1) · 1

B0
2
∇B(0)

)

]

(114)

ẏ(1)

B0
− y

1

B0
2Ẋ

(1) · ∇B(0)= µ0

(

∂B(1)/B0

∂t
+ Ẋ

(0) · ∇B(1)

B(0)

)

(115)

ẏ(1)

B0
− y

1

B0
2Ẋ

(1) · ∇B0= µ0
D

Dt

(

B1

B0

)

. (116)

Eq. (116) agrees with Eq. (31) in Porceli’s paper. The right-hand side of Eq. (116) provide the
desired expression for the coefficient before ∂F /∂µ0 term in Eq. (98). Using Eqs. (102), (109),
and (116), Eq. (98) is finally written as

Df1
Dt

=−
{[

(

∂L
∂ϕ

)

(1)

−
DPϕ

(1)

Dt

]

∂F

∂Pϕ0
+

(

−Lt
(1)−Ze

Dφ(1)

Dt

)

∂F

∂ε0
+ µ0

D

Dt

(

B1

B0

)

∂F

∂µ0

}

, (117)

2.2 Separation of perturbed distribution into adiabatic and non-adia-
batic parts

Write f1 as

f1=Pϕ
(1) ∂F

∂Pϕ0
+Zeφ(1) ∂F

∂ε0
− µ0

B1

B0

∂F

∂µ0
+ h(1), (118)

and substitute this into Eq. (117), giving an equation of h(1),

Dh(1)

Dt
=−

(

∂L
∂ϕ

)

(1) ∂F

∂Pϕ0
+Lt

(1) ∂F

∂ε0
. (119)

Eq. (119) agrees with Eq. (35) in Porcelli’s paper[1]. For notation convenience, we define L(1) as

L(1)=

(

Ze

c
A

(1)+mv‖b
(1)

)

· Ẋ(0)− µ0B
(1)−Zeφ(1), (120)

which can be called “perturbed Lagrangian” (I do not care the name of L(1), which is only a
notation without any physical meaning since I do not need this meaning to derive anything).
Since we are considering toroidal symmetrical case, different toroidal harmonics of perturbation
are independent. Thus we can consider a single toroidal harmonic, i.e, the ϕ dependence of com-

ponents of A(1) and b
(1) is exp(−inϕ). Further due to that the equilibrium is time-independent,

we can consider a single time harmonic, i.e., the time dependence of the perturbation is exp(−
iωt). Then, using Eq. (120), Eq. (104) is written as

(

∂L
∂ϕ

)

(1)

=−inL(1), (121)
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and Lt
(1) in Eq. (103) is written as

Lt
(1)=−iωL(1). (122)

Using Eqs. (121) and (122), Eq. (119) is written as

Dh(1)

Dt
= inL(1) ∂F

∂Pϕ0
− iωL(1) ∂F

∂ε0
. (123)

Define

ω⋆≡
∂F

∂Pϕ0

/

∂F

∂ε0
, (124)

then Eq. (123) is written as

Dh(1)

Dt
=−i (ω −nω⋆)

∂F

∂ε0
L(1). (125)

Eq. (125) agrees with Eq. (40) in Porcelli’s paper. Define g(1) as

h(1)=−i (ω −nω⋆)
∂F

∂ε0
g(1), (126)

then g(1) satisfies (note that ω⋆ and ∂F /∂ε0 are both functions of constants of motion, thus can
be taken out of the orbit integration)

Dg(1)

Dt
=L(1). (127)

2.3 Further simplification of the perturbed Lagrangian L
(1)

The expression L(1) in Eq. (120) can be further simplified, by noticing that the term mv‖b
(1) ·

Ẋ
(0) is of the order O(δ2) thus can be neglected, giving

L(1)=
Ze

c
A

(1) · Ẋ(0)− µ0B
(1)−Zeφ(1). (128)

Next, we provide the proof that the term mv‖b
(1) · Ẋ(0) is on the order O(δ2). The unperturbed

velocity of guiding center is given by

Ẋ
(0) = v‖b+

1

mΩ
b
(0)×

(

y

B0
∇B0+mv‖

2κ(0)

)

= v‖b+vd (129)

where v‖∼O(δ0), vd∼O(δ). Next, we derive the expression of b(1). Using

1

B
=

1

B0
2+
(

B(1)
)

2+2B0 ·B(1)
√

≈ 1

B0
− 1

2B0
3

[(

B(1)
)

2+2B0 ·B(1)
]

(130)

we obtain

b =
B0+B

(1)

B

=
(

B0+B
(1)
)

{

1

B0
− 1

2B0
3

[(

B(1)
)

2+2B0 ·B(1)
]

}

≈ b
(0)− B0

2B0
3

(

2B0 ·B(1)
)

+
B

(1)

B0

= b
(0)−b

(0)

(

b
(0) · B

(1)

B0

)

+
B

(1)

B0
.
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Therefore

b
(1) = −b

(0)

(

b
(0) · B

(1)

B0

)

+
B

(1)

B0
(131)

Using this, the term mv‖b
(1) · Ẋ(0) is written as

mv‖b
(1) · Ẋ(0) = −mv‖2b(0) · B

(1)

B0
+mv‖

2
b
(0) · B

(1)

B0
+mv‖b

(1) ·vd (132)

= 0+mv‖b
(1) ·vd, (133)

where the first two terms on the right-hand side of Eq. (132), which are on the order O(δ),

happen to cancel each other. Since b
(1) ∼ O(δ) and vd ∼ O(δ), the product of these two terms

are on the order O(δ2). Therefore Eq. (133) indicates that the term mv‖b
(1) · Ẋ(0) is on the

order O(δ2).

Next we show that, in the linear approximation, the perturbation in the strength of the mag-

netic field, B(1), is equal to B‖
(1)

, where B‖
(1) ≡ b

(0) · B
(1). The total magnetic field can be

written as

B = B ·B
√

=
(

B0+B
(1)
)

·
(

B0+B
(1)
)

√

= B0
2+
(

B(1)
)

2+2B0 ·B(1)
√

(134)

Expanding the right-hand side of the above equation at B0, we obtain

B ≈ B0
2

√

+
1

2 B0
2

√

[(

B(1)
)

2+2B0 ·B(1)
]

+ ... (135)

Neglecting the second order term, the above equation is written as

B ≈ B0+
B0 ·B(1)

B0

= B0+b
(0) ·B(1)

= B0+B‖
(1)

(136)

Thus we obtain

B(1)=B‖
(1)
. (137)

Eq. (137) seems strange at first glance (actually I think it is wrong at first glance, Dr. Fu let me
know it is right and how to prove it (as given in the above)). Using Eq. (137), the Lagrangian in
Eq. (128) is written as

L(1)=
Ze

c
A

(1) · Ẋ(0)− µ0B‖
(1)−Zeφ(1). (138)

2.4 Unperturbed orbit integration——–not finished————

For the ease of notation, in the following we drop the zero superscript on the unperturbed orbit.
And to distinguish instantaneous and the initial value of orbit, we add a prime to X and v‖ to
denote the instantaneous value. Integrating along the unperturbed orbit, Eq. (127) is written as

g(1)(X, v‖, y)=

∫

−∞

0

L(1)(τ )dτ . (139)

with the boundary condition

X
′(τ =0)=X, (140)

v‖
′ (τ =0)= v‖, (141)
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and the value of the conserved magnetic moment is determined byµ = y / B(X). Using the
expression of L(1) in Eq. (128), Eq. (139) is written as

g(1) =

∫

−∞

0
[

Ze

c
A

(1) · Ẋ′− µ0B‖
(1)−Zeφ(1)

]

dτ

=

B(1)(ψ, θ, ϕ, t)= B̂(1)(ψ, θ)exp[−i(ωt+nϕ)] (142)

ψ̇= Ẋ · ∇ψ (143)

θ̇= Ẋ · ∇θ (144)

ϕ̇= Ẋ · ∇ϕ (145)

ϕ′(t+ ltp)= ϕ′(t)+ 2lπ (146)

3 Perturbed Lagrangian for ideal MHD perturbation

For ideal MHD perturbation, the perturbed magnetic field is written as

B
(1) = ∇× (ξ⊥×B0) (147)

= −B0(∇ · ξ⊥)+B0 · ∇ξ⊥− ξ⊥ · ∇B0, (148)

Using Eq. (147), the vector potential of magnetic perturbation is written as

A1= ξ⊥×B0 (149)

Using Eq. (148), the parallel component of the magnetic perturbation is written as

B‖
(1) ≡ b

(0) ·B(1)

= −B0(∇ · ξ⊥)+ [B0 · ∇ξ⊥] ·b(0)− [ξ⊥ · ∇B0] ·b(0) (150)

Here I have some important remarks about tensor identities (I had not known these identities
before CaiHuiShan told me). First we note the associate law applies in this case (Important!),
thus

B‖
(1)

=−B0(∇ · ξ⊥) +B0 ·
(

∇ξ⊥ ·b(0)
)

− ξ⊥ ·
(

∇B0 ·b(0)
)

. (151)

Second we have the tensor identity (Important!, CaiHuiShan let me know this identity),

∇(A ·B)= (∇A) ·B+(∇B) ·A (152)

Using this, the second term of Eq. (151) is written as

B0 · (∇ξ⊥ ·b) = B0 · [∇(ξ⊥ ·b)−∇b · ξ⊥]
= B0 · [0−∇b · ξ⊥]
= −B0κ · ξ⊥, (153)

where κ=b · ∇b. The last term of Eq. (151) is written as

ξ⊥ · (∇B0 ·b) = ξ⊥ · [∇(B0b) ·b]
= ξ⊥ · [(b∇B0+B0∇b) ·b]. (154)

We note that ∇b · b = 0 (CaiHuiShan let me know this), since the tensor identity in Eq. (152)
indicates

0=∇(b ·b) = 2∇b ·b. (155)
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(It is interesting to note that b · ∇b≡κ=/ 0 while the above result proves that ∇b ·b=0.) Thus
Eq. (154) becomes

ξ⊥ · (∇B0 ·b) = ξ⊥ · [(b∇B0) ·b]
= ξ⊥ · ∇B0 (156)

Using the above results, the parallel component of the perturbed magnetic field Eq. (151)
becomes

B‖
(1)

=−B0(∇ · ξ⊥)−B0κ · ξ⊥− ξ⊥ · ∇B0 (157)

The perturbed Lagrangian, Eq. (138), is

L(1)=
Ze

c
A

(1) · Ẋ(0)− µ0B‖
(1)−Zeφ(1) (158)

Using Eq. (149) in Eq. (158) yields

L(1)=
Ze

c
(ξ⊥×B0) · Ẋ(0)− µ0B‖

(1)−Zeφ(1) (159)

Using Eq. (83) for Ẋ(0), Eq. (159) is written as

L(1) =
Ze

c

(

ξ⊥ × B
(0)
)

·
[

v‖b
(0) +

1

mΩ
b
(0) ×

(

y

B(0)
∇B(0) + mv‖

2κ(0) − ZeE(0)

)]

− µ0B‖
(1) −

Zeφ(1)

=
Ze

c

(

ξ⊥×B
(0)
)

·
[

1

mΩ
b
(0)×

(

y

B(0)
∇B(0)+mv‖

2κ(0)+Ze∇ϕ(0)

)]

− µ0B‖
(1)−Zeφ(1)

=
Ze

c
ξ⊥ ·

{

B
(0)×

[

1

mΩ
b
(0)×

(

y

B(0)
∇B(0)+mv‖

2κ(0)+Ze∇ϕ(0)

)]}

− µ0B‖
(1)−Zeφ(1)

=
Ze

c
ξ⊥ ·

{

− 1

mΩ
B(0)

(

y

B(0)
∇B(0) + mv‖

2κ(0) + Ze∇ϕ(0)

)

+
1

mΩ
b
(0)(....)

}

− µ0B‖
(1) −

Zeφ(1)

=
Ze

c
ξ⊥ ·

{

− 1

mΩ
B(0)

(

y

B(0)
∇B(0)+mv‖

2κ(0)+Ze∇ϕ(0)

)}

− µ0B‖
(1)−Zeφ(1)

=
Ze

c
ξ⊥ ·

{

− c

Ze

(

µ0∇B(0)+mv‖
2κ(0)+Ze∇ϕ(0)

)

}

− µ0B‖
(1)−Zeφ(1)

= −ξ⊥ ·
(

µ0∇B(0)+mv‖
2κ(0)+Ze∇ϕ(0)

)

− µ0B‖
(1)−Zeφ(1)

= −mv‖2ξ⊥ ·κ(0)− µ0

(

ξ⊥ · ∇B(0)+B‖
(1)
)

−Ze
(

φ(1)+ ξ⊥ · ∇φ(0)
)

, (160)

Equation (160) agrees with Eq. (55) in Porcelli’s paper[1]. The perturbed electrical field is

E
(1)=−1

c
u
(1)×B

(0)=
iω

c
ξ⊥×B

(0). (161)

On the other hand, E(1) can be expressed as

E
(1) = −1

c

∂A(1)

∂t
−∇φ(1)

= −1

c

∂
(

ξ⊥×B
(0)
)

∂t
−∇φ(1)

=
iω

c
ξ⊥×B

(0)−∇φ(1) (162)

Comparing Eqs. (161) and (162), we obtain

∇φ(1)=0. (163)

which indicates the perturbed scalar potential is a constant. We can choose φ(1) = 0. We con-
sider the case that there is no electrical field in the equilibrium, i.e., φ(0)= 0. Using φ(0)= 0 and
φ(1)=0, the Lagrangian in Eq. (160) is written as

L(1)=−mv‖2ξ⊥ ·κ−
(

B‖
(1)

+ ξ⊥ · ∇B0

)

µ0. (164)
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Substituting the expression of B‖
(1)

in Eq. (157) into the above equation, we obtain

L(1) = −mv‖2ξ⊥ ·κ− (−B0(∇ · ξ⊥)−B0κ · ξ⊥− ξ⊥ · ∇B0+ ξ⊥ · ∇B0)µ0

= −mv‖2ξ⊥ ·κ− (−B0(∇ · ξ⊥)−B0κ · ξ⊥)µ0

= −
(

mv‖
2− µ0B0

)

ξ⊥ ·κ+ µ0B0∇ · ξ⊥ (165)

We note an important fact that magnetic curvature κ is perpendicular to b. This is because
that κ≡b · ∇b=−b×∇×b. The last equality is due to the vector identity ∇(A ·B)=A×∇×
B+B×∇×A+B · ∇A+B · ∇A. Using this fact, Eq. (165) can also be written as

L(1)=−
(

mv‖
2− µ0B0

)

ξ ·κ+ µ0B0∇ · ξ⊥. (166)

Eq. (166) agrees with Eq. (58) in Porcelli’s paper[1].

4 Proof of equilavenc between Eq. (8) and Euler-Lagrange
equation (168)

Equation (8) is repeated here, i.e.,
d

dt

(

∂L
∂Ẋ

)

=
∂L
∂X

, (167)

where ∂ / ∂Ẋ and ∂ / ∂X are considered as gradient operators. Note that, in Cartisian coordi-
nates, the components of Eq. (8) are obviously equivalent to the respective Euler-Lagrange
equations. We now check whether the component equations in arbitrary coordinate system
obtained by evaluating the gradient of the Lagrangian L in Eq. (8) are equivalent to the respec-
tive Euler-Lagrange equations in that coordinates system. The Euler-Lagrange equation in any
coordinates is given by

d

dt

(

∂L
∂q̇i

)

=
∂L
∂qi

, (168)

which is expressed in terms of a single coordinate component, and is coordinate independent,
i..e, it takes the same form for every components of any coordinate systems.

In this section, I prove that the components of Eq. (8) are equivalent to the Euler-Lagrange

equation (168) in cylindrical coordinates (R, Z, ϕ). First, let us consider the term ∂L / ∂Ẋ,
which, in Cartesian coordinators, is written as

∂L
∂Ẋ

=
∂L
∂ẋ

êx+
∂L
∂ẏ

êy+
∂L
∂ż

êz. (169)

Using the chain rule, the above equation is written as

∂L
∂Ẋ

=

(

∂L
∂R

∂R

∂ẋ
+
∂L
∂ϕ

∂ϕ

∂ẋ
+
∂L
∂Z

∂Z

∂ẋ
+
∂L
∂Ṙ

∂Ṙ

∂ẋ
+
∂L
∂ϕ̇

∂ϕ̇

∂ẋ
+
∂L
∂Ż

∂Ż

∂ẋ

)

êx

+

(

∂L
∂R

∂R

∂ẏ
+
∂L
∂ϕ

∂ϕ

∂ẏ
+
∂L
∂Z

∂Z

∂ẏ
+
∂L
∂Ṙ

∂Ṙ

∂ẏ
+
∂L
∂ϕ̇

∂ϕ̇

∂ẏ
+
∂L
∂Ż

∂Ż

∂ẏ

)

êy

+

(

∂L
∂R

∂R

∂ż
+
∂L
∂ϕ

∂ϕ

∂ż
+
∂L
∂Z

∂Z

∂ż
+
∂L
∂Ṙ

∂Ṙ

∂ż
+
∂L
∂ϕ̇

∂ϕ̇

∂ż
+
∂L
∂Ż

∂Ż

∂ż

)

êz

Using the transformation relation






















R= x2+ y2
√

ϕ=ArcSin

(

y

x2+ y2
√

)

Z = z

(170)
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we obtain ∂R/∂ẋ=0, ∂R/∂ẏ=0, etc. Thus ∂L/∂Ẋ reduces to

∂L
∂Ẋ

=

(

∂L
∂Ṙ

∂Ṙ

∂ẋ
+
∂L
∂ϕ̇

∂ϕ̇

∂ẋ
+
∂L
∂Ż

∂Ż

∂ẋ

)

êx+

(

∂L
∂Ṙ

∂Ṙ

∂ẏ
+
∂L
∂ϕ̇

∂ϕ̇

∂ẏ
+
∂L
∂Ż

∂Ż

∂ẏ

)

êy +

(

∂L
∂Ṙ

∂Ṙ

∂ż
+
∂L
∂ϕ̇

∂ϕ̇

∂ż
+

∂L
∂Ż

∂Ż

∂ż

)

êz (171)

Using the transformation relation Eq. (170), we obtain

Ṙ=
x ẋ

x2+ y2
√ +

yẏ

x2+ y2
√ , (172)

ϕ̇=− y

x2+ y2
ẋ+

x

x2+ y2
ẏ , (173)

and

Ż = ż (174)

Noting that ∂Ż /∂ẋ=0, ∂Ż/∂ẏ=0, ∂Ṙ/∂ż=0, ∂ϕ̇/∂ż=0, Eq. (171) is further written as

∂L
∂Ẋ

=

(

∂L
∂Ṙ

∂Ṙ

∂ẋ
+
∂L
∂ϕ̇

∂ϕ̇

∂ẋ

)

êx+

(

∂L
∂Ṙ

∂Ṙ

∂ẏ
+
∂L
∂ϕ̇

∂ϕ̇

∂ẏ

)

êy+

(

∂L
∂Ż

)

êz (175)

Using Eqs. (172) and (173), we obtain

∂Ṙ

∂ẋ
=
x

R
= cosϕ (176)

∂Ṙ

∂ẏ
=
y

R
= sinϕ (177)

∂ϕ̇

∂ẋ
=− y

R2
(178)

∂ϕ̇

∂ẏ
=

x

R2
(179)

Using these, Eq. (175) is written as

∂L
∂Ẋ

=

(

∂L
∂Ṙ

cosϕ− ∂L
∂ϕ̇

sinϕ
1

R

)

êx+

(

∂L
∂Ṙ

sinϕ+
∂L
∂ϕ̇

cosϕ
1

R

)

êy+

(

∂L
∂Ż

)

êz

=
∂L
∂Ṙ

(cosϕêx+ sinϕêy)+
∂L
∂ϕ̇

1

R
(−sinϕêx+ cosϕêy)+

(

∂L
∂Ż

)

êz

=
∂L
∂Ṙ

êR+
∂L
∂ϕ̇

1

R
êϕ+

∂L
∂Ż

êz (180)

Using this, the left-hand side of Eq. (8) is written as

d

dt

(

∂L
∂Ẋ

)

=
d

dt

(

∂L
∂Ṙ

)

êR+
d

dt

(

∂L
∂ϕ̇

)

1

R
êϕ+

d

dt

(

∂L
∂Ż

)

êz+
∂L
∂Ṙ

dêR
dt

+
∂L
∂ϕ̇

d

dt

(

1

R
êϕ

)

=
d

dt

(

∂L
∂Ṙ

)

êR +
d

dt

(

∂L
∂ϕ̇

)

1

R
êϕ +

d

dt

(

∂L
∂Ż

)

êz +
∂L
∂Ṙ

ϕ̇êϕ +
∂L
∂ϕ̇

[

−ϕ̇ 1

R
êR −

êϕ
Ṙ

R2

]

(181)

Next, consider the right-hand side of Eq. (8), which is the space gradient of Lagrangian L.
When I at first considered this problem, I took it for granted that the space gradient in cylin-
drical coordinates should be

∂L
∂X

=
∂L
∂R

êR+
∂L
∂Z

êZ +
∂L
∂ϕ

1

R
êϕ, (182)
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which turns out to be wrong because this formula does not take into account that L depends on
Ẋ which in turn depends on the spatial coordinates. The correct way to calculate the space gra-
dient is as follows:

∂L
∂X

=
∂L
∂x

êx+
∂L
∂y

êy+
∂L
∂z

êz

=

[

∂L
∂R

∂R

∂x
+
∂L
∂ϕ

∂ϕ

∂x
+
∂L
∂Ṙ

∂Ṙ

∂x
+
∂L
∂ϕ̇

∂ϕ̇

∂x

]

êx +

[

∂L
∂R

∂R

∂y
+
∂L
∂ϕ

∂ϕ

∂y
+
∂L
∂Ṙ

∂Ṙ

∂y
+
∂L
∂ϕ̇

∂ϕ̇

∂y

]

êy +

∂L
∂Z

êz (183)

It is important to note that L depends on Ṙ, ϕ̇ which in turn depend on x and y. As a result,
there exist additional terms (the last two terms in both the brackets), which would be missed if
we used the formula in Eq. (182). Equation (183) is further written as

∂L
∂X

=

[

∂L
∂R

cosϕ +
∂L
∂ϕ

(

− y

R2

)

+
∂L
∂Ṙ

∂Ṙ

∂x
+
∂L
∂ϕ̇

∂ϕ̇

∂x

]

êx +

[

∂L
∂R

sinϕ +
∂L
∂ϕ

(

x

R2

)

+
∂L
∂Ṙ

∂Ṙ

∂y
+

∂L
∂ϕ̇

∂ϕ̇

∂y

]

êy+
∂L
∂Z

êz

=
∂L
∂R

êR+
∂L
∂ϕ

1

R
êϕ+

∂L
∂Z

êz+

[

∂L
∂Ṙ

∂Ṙ

∂x
+
∂L
∂ϕ̇

∂ϕ̇

∂x

]

êx+

[

∂L
∂Ṙ

∂Ṙ

∂y
+
∂L
∂ϕ̇

∂ϕ̇

∂y

]

êy (184)

Using

∂Ṙ

∂x
= ẋ

y2

R3
− yẏ

x

R3

=
ẋ

R
sin2ϕ− ẏ

R
sinϕcosϕ

= −ϕ̇sinϕ (185)

∂Ṙ

∂y
= ẏ

x2

R3
− xẋ

y

R3

=
ẏ

R
cos2ϕ− ẋ

R
sinϕcosϕ

= ϕ̇cosϕ, (186)

∂ϕ̇

∂x
= −yẋ

(

−2x

R4

)

+ ẏ

(

1

R2
− 2x2

R4

)

=
2ẋ

R2
cosϕsinϕ+

ẏ

R2
(1− 2cos2ϕ)

=
2ẋ

R2
cosϕsinϕ+

ẏ

R2
(sin2ϕ− cos2ϕ)

= −cosϕ

R
ϕ̇+

sinϕ

R2
Ṙ, (187)

∂ϕ̇

∂y
= −ẋ

(

−2y2

R4
+

1

R2

)

−xẏ
2y

R4

= − 2ẏ

R2
cosϕsinϕ+

ẋ

R2
(2sin2ϕ− 1)

= − 2ẏ

R2
cosϕsinϕ+

ẋ

R2
(sin2ϕ− cos2ϕ)

= − ẏ

R2
cosϕsinϕ− ẋ

R2
cos2ϕ− ẏ

R2
cosϕsinϕ+

ẋ

R2
sin2ϕ

= −cosϕ

R2
Ṙ− sinϕ

R
ϕ̇ (188)

Using these results, the last two terms in Eq. (184) is written as
[

−∂L
∂Ṙ

ϕ̇sinϕ+
∂L
∂ϕ̇

(

−cosϕ

R
ϕ̇+

sinϕ

R2
Ṙ

)]

êx+

[

∂L
∂Ṙ

ϕ̇cosϕ+
∂L
∂ϕ̇

(

−cosϕ

R2
Ṙ− sinϕ

R
ϕ̇

)]

êy

=
∂L
∂Ṙ

ϕ̇êϕ+
∂L
∂ϕ̇

(

− ϕ̇

R
êR− Ṙ

R2
êϕ

)

. (189)
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Using this, Eq. (184) is written as

∂L
∂X

=
∂L
∂R

êR+
∂L
∂Z

êZ +
∂L
∂ϕ

1

R
êϕ+

∂L
∂Ṙ

ϕ̇êϕ+
∂L
∂ϕ̇

[

− ϕ̇
R
êR− Ṙ

R2
êϕ

]

. (190)

Note that, compared with Eq. (182), the above expression contains additional terms. The addi-
tional terms are the source of confusion when I at first tried to prove the equivalence between
Eqs. (8) and (168). (I was confused for many days before I fininaly found the solution given
here.) Using Eqs. (190) and (181) in Eq. (167), we recover the Euler-Lagrange equation in cylin-
drical coordinates, i.e.,

d

dt

(

∂L
∂Ṙ

)

=
∂L
∂R

, (191)

d

dt

(

∂L
∂ϕ̇

)

=
∂L
∂ϕ
, (192)

d

dt

(

∂L
∂Ż

)

=
∂L
∂Z

. (193)

5 tmp (wrong! do not read this)

On the other hand we have

ε̇=
dH

dt
,

which H is the Hamiltonian. We note that it is the energy expressed in terms of generalized
coordinate and momentum that can be called Hamilton. Using the Hamilton’s equation, it can
be easily proved that

dH

dt
=
∂H

∂t
.

Further we note that
∂H

∂t
+
∂L
∂t

=
∂

∂t

∑

i

piq̇i. (194)

In usual case, pi and q̇i are not an explicit function of time, thus we have

∂H

∂t
+
∂L
∂t

=0. (195)

Using these results, we have

ε̇=−∂L
∂t
. (196)

Then using Eq. (35) we obtain

− ∂L

∂t
=−

(

Ze

c

∂A

∂t
+mv‖

∂b

∂t

)

· Ẋ+ µ
∂B

∂t
+Ze

∂φ

∂t
. (197)

L=

(

Ze

c
A+mv‖b

)

· Ẋ+
1

Ω
yα̇− 1

2
mv‖

2− y−Zeφ. (198)

∂L

∂t
=

(

Ze

c

∂A

∂t
+mv‖

∂b

∂t

)

· Ẋ− 1

Ω2

∂Ω

∂t
yα̇−Ze

∂φ

∂t

∂L

∂t
=

(

Ze

c

∂A

∂t
+mv‖

∂b

∂t

)

· Ẋ− 1

BΩ

∂B

∂t
yα̇−Ze

∂φ

∂t

∂L

∂t
=

(

Ze

c

∂A

∂t
+mv‖

∂b

∂t

)

· Ẋ− 1

Ω

∂B

∂t
µα̇−Ze

∂φ

∂t
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The first order equation of Eq. (197) is (noting that A(0), b(0), and B(0) is time independent,

thus ∂A(0)/∂t, ∂b(0)/∂t, and ∂B(0)/∂t are all zeros)

−
(

∂L

∂t

)

(1)

=−
(

Ze

c

∂A(1)

∂t
+mv‖

∂b(1)

∂t

)

· Ẋ(0)+ µ0
∂B(1)

∂t
+Ze

∂φ(1)

∂t
. (199)

In writing the above expression, we have used the fact that ∂ / ∂ϕ here is taken by holding

constant (Ẋ, v‖̇, ẏ, α̇; ψ, θ, v‖, y, α), instead of holding constantnt (ψ̇, θ̇ , ϕ̇, v‖̇, ẏ , α̇; ψ, θ, v‖, y, α).

In this case obviously ∂Ṙ/∂ϕ = 0. If we calculate in the second case, then we would have ∂Ṙ/
∂ψ=/ 0, since

Ẋ=
∂X

∂ψ
ψ̇+

∂X

∂θ
θ̇+

∂X

∂ϕ
ϕ̇, (200)

in which the terms such as ∂X / ∂ψ would explicitly contain ϕ. The second term on the right-
hand side of Eq. (74) can be further calculated as

yα̇
∂

∂ϕ

(

1

Ω

)

= yα̇

(

− 1

Ω2

)

∂Ω

∂ψ

= yα̇

(

− 1

BΩ

)

∂B

∂ψ
. (201)

Then we can use y= µB and α̇=Ω in the above equation, yielding

yα̇
∂

∂ϕ

(

1

Ω

)

=−µ∂B
∂ψ

. (202)

Here I have some important comments. First, we note that α̇ = Ω is one of the components of
the Euler-Lagrange equation, thus of course can not be substituted into the original Lagrangian
L (if we do this, we can no longer use the resulting Lagrangian as a correct Lagrangian to
obtain correct Euler-Lagrange equation). In contrast to this, it is obvious we can use one com-
ponent of the Euler-Lagrangian equation in another component equation. Thus we can substi-
tute α̇=Ω into Eq. (201) to get Eq. (202). Second, we also substitute y = µB into Eq. (201) in
obtaining Eq. (202). This is trivial since what we do is only to rewrite the final result in a dif-
ferent form. However this kind of rewriting may be misleading to someone (including me)
because the new form can be viewed as being written in terms of a new variable µ, instead of
the original variable y. Of course, for this case, no matter which variable the right-hand side of
Eq. (202) is understood to be written in terms of, the results are both correct. But it is crucial
to understand correctly which variables Lagrangian L is written in terms of, since different
choice of variables will give different forms of perturbed Lagrangian because the perturbed
Lagrangian is obtained by keeping the independent variables constant.

Now I calculate the perturbed Lagrangian. The full Lagrangian is given by Eq. (1), i.e.,

L=

(

Ze

c
A+mv‖b

)

· Ẋ+
1

Ω
yα̇− 1

2
mv‖

2− y−Zeφ.

Then the perturbed and linearized version is (note that only the electromagnetic field is per-
turbed, the independent variables are keep constant)

L(1)=

(

Ze

c
A

(1)+mv‖b
(1)

)

· Ẋ+

(

1

Ω

)

(1)

yα̇−Zeφ(1). (203)

Using
(

1

B

)

(1)

= − 1

B0
2
B(1), (204)

in Eq. (203), we obtain

L(1)=

(

Ze

c
A

(1)+mv‖b
(1)

)

· Ẋ− mc

Ze

1

B0
2
B(1)yα̇−Zeφ(1).
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Using y= µB and α̇=Ω in the above equation, we obtain

L(1)=

(

Ze

c
A

(1)+mv‖b
(1)

)

· Ẋ− µB(1)−Zeφ(1). (205)

My question is whether it is valid to substitute one of the Euler-Lagrangian equation α̇=Ω into
the perturbed Lagrangian.**wrong!!**
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