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1 Introduction

Physics becomes concrete, impressive, and fun when we compute it numerically and visualize the
process by graphics. Computational physics are primarily about numerically solving three types
of partial di�erential equations (PDEs), namely hyperbolic, parabolic, and elliptic PDEs, which
respectively correspond to advection (wave) equations, di�usion equations, and Poisson's equa-
tions.

2 Advection equation

In one-dimensional case, an advection equation takes the following form:

@y
@t
=¡c@y

@x
; (1)

where c is a constant. A natural choice of di�erencing scheme for the above equation is
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which however is unconditionally unstable (tested by me numerically. the stability analysis can
prove that the above scheme is unconditional unstable[2]). The Lax-Friedrichs scheme modi�es
the above scheme to the following form:
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which is stable if the CFL condition is satis�ed. However this scheme introduces heavy damping
in the solution, as is shown in Fig 1. The Lax-Friedrichs scheme is an explicit scheme. Let us
try implicit schemes. One natural choice of implicit scheme is of the following form:
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which is called the Crank�Nicolson implicit scheme. An implicit scheme usually requires that an
linear equations system be solved because the unknown future values are usually coupled
together. The scheme (4) can be organized in the following form
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which is a traditional equation system. Figure 1 compares the results calculated by the Lax-
Friedrichs scheme and the Crank�Nicolson scheme, which shows that no damping is introduced
by the Crank-Nicolson scheme.
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Figure 1. Evolution of the waveform computed by the Lax-Friedrichs scheme (left) and the Crank�Nicolson
implicit scheme (right). Simulations are performed with the Initial condition given by y(x; t= 0)= exp(¡100(x¡
0.5)2), time-step size dt = 0.05dx / c, grid spacing dx = 1/ (Nx ¡ 1), Nx = 200. Both schemes give correct the
propagation speed, but the Lax-Friedrichs scheme introduces heavy damping in the solution.

3 Wave equation
A wave equation in one-dimension takes the following form:

@2y
@t2

=c
@2y
@x2

; (6)

which is a second order di�erential equation and can be written as two coupled advection equa-
tions. De�ne a new function � by

@�
@t
=
@y
@x

(7)
Then Eq. (6) can be written as
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; (8)
which can be simpli�ed as

@y
@t
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@�
@x
: (9)

Equation (7) and (9) are two couple advection equations.

3.1 Maxwell's equation in 1D case
For Maxwell's equation in one-dimension case, there are two independent TEM modes, one of
which is described by

@By

@t
=
@Ez
@x

; (10)
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= c2
@By

@x
; (11)

where c= 1/ �0"0
p

is the speed of light in vacuum. In an electromagnetic wave, Ez is c times of
Bz in SI units. To make the two variables in the above equation takes similar magnitude, de�ne
Ez=Ez/c. Then using (Ez ; By) as variables, the above equations are written

@By
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= c

@Ez
@x

; (12)
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= c
@By

@x
; (13)

3.2 The Lax scheme
Similar to the case of advection equation, the following simple differencing scheme for the
vacuum TEM equations (12) and (13):
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is unstable (tested numerically by me). The Lax scheme modi�es the above scheme to the fol-
lowing form:
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I tested this and found it induces heavy damping as it does in the case of advection equation.

3.3 The Crank�Nicolson scheme
Let us try the Crank-Nicolson implicit scheme:
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The above di�erencing scheme can be organized in the following form:
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which is a linear equation system for
¡
Byi
(n+1)

; Ezi
(n+1)� with i = 1; 2; :::Nx, where Nx is the

number of grids in the x direction. This linear system is solved by using LU decomposition of
the coe�cient matrix (the LU decomposition can be viewed as the matrix form of Gaussian
elimination.). The evolution of the wave form calculated by this scheme is plotted in Fig. 2.
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Figure 2. Evolution of the TEM waveform (By; Ez) computed by the Crank�Nicolson implicit scheme. Simula-
tions are performed with the initial condition Ez(x; t=0)=0, By(x; t=0)= exp(¡(x¡ x0)

2/(0.1L)2), x0= 0.5m,
L= 1m, time-step size dt= 0.01dx/c, grid spacing dx= 1/(Nx¡ 1), Nx= 100. Fixed zero boundary condition is
used: Ez(x= 0)=Ez(x=L) = 0, By(x=0)=By(x=L) = 0. Since the waveform has not reach the boundary, the
boundary has no e�ect on the evolution. The results show that two traveling waves emerge from the Gaussian
waveform of By, propagating in the opposite directions. The propagation speed is correct.
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4 Di�usion equation
The stencil used in the explicit, implicit, and Crank�Nicolson implicit method is given in Figure
(3).
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Figure 3. Stencil of an explicit scheme (left) implicit scheme (middle) and the Crank-Nicolson implicit
scheme (right) for the di�usion equation ut=uxx.

This part is to be continued.

5 Poisson's equation
Poisson's equation is written

r2'=S; (22)

where S is a known source term. In Cartesian coordinates and in the 2D case, the above equa-
tion is written

@2'

@x2
+
@2'

@x2
=S(x; y): (23)

Consider solving the above equation in a rectangular domain with xa 6 x 6 xb and ya 6 y 6 yb
and with '=0 on the boundary.

5.1 Discretized form using �nite di�erencing
Discretize x as xi= xa+ (i+1)�x, where �x= (xb¡ xa)/(M +1) and i=0; 1; 2; :::;M ¡ 1. Simi-
larly, discretize y as yj = ya+ (j +1)�y, where �y= (yb¡ ya)/(N + 1) and j = 0; 1; 2; :::; N ¡ 1.
Then the above equation can be discretized by using the following �nite di�erence:

'i+1;j ¡ 2'i;j+ 'i¡1;j
�x
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�y
2 =Si;j ; (24)

where 'i;j= '(xi; yj) and Si;j=S(xi; yj). Equation (24) can be arranged as

a'i+1;j+ a'i¡1;j+ c'i;j+ b'i;j+1+ b'i;j¡1=Si;j ; (25)
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. This is a 5-points stencil, as is illustrated in

Fig. 4.
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Figure 4. Five-points stencil of the �nite di�erencing scheme in Eq. (25).
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In this discritization, the boundary conditions are written as '¡1;j = 'M;j = 0 and 'i;¡1 =
'i;N =0.

5.2 Matrix form of the di�erence scheme
In order to solve the linear equation system (25), we prefer to formulate it in a matrix form. In
order to do this, we need to order the 2D discrete unknowns 'i;j in a 1D sequence. Two natural
ordering schemes are the row-ordering and the column ordering. I choose the row ordering, as is
illustrated in Fig. 5.

ϕ00

ϕ01

ϕ02

ϕ20

ϕ22

ϕ21

ϕ2

ϕ3 ϕ5

ϕ8ϕ6

ϕ0

ϕ10

ϕ11

ϕ12

ϕ1

ϕ4

ϕ7

x

y

Figure 5. Row-ordering of the 2D discrete unknowns 'i;j on a 3� 3 mesh.

Using the above ordering, the linear equation system (25) for the special case of a 3� 3 mesh
is written as the following matrix form:0BBBBBBBBBBBB@

c a b
a c a b
a c b

b c a b
b a c a b
b a c b
b c a
b a c a
b a c

1CCCCCCCCCCCCA

0BBBBBBBBBBBB@

'0
'1
'2
'3
'4
'5
'6
'7
'8

1CCCCCCCCCCCCA
=

0BBBBBBBBBBBB@

S0
S1
S2
S3
S4
S5
S6
S7
S8

1CCCCCCCCCCCCA
; (26)

where all the blank elements are zeros. This 9 � 9 matrix is sparse but is not tridiagonal. Each
row of the matrix corresponds to one di�erence equation at a grid point. It is not di�cult to
generalize the above 9 � 9 matrix to a general MN �MN matrix. The general pattern is that
those rows that corresponds to inner grid points have the following pattern (:::; b; :::; a; c; a; :::;
b; :::), where c is on the diagonal location and the distance between b and c is M . For those rows
that correspond to boundary grid points, some b and/or a can be absent. Speci�cally, (1) the
left a is absent for all the rows corresponding to the left boundary grids; (2) the right a is absent
for all the rows corresponding to the right boundary grids; (3) the left b is absent for all the
rows corresponding to bottom boundary grids; (4) the right b is absent for all the rows corre-
sponding to the top boundary grids. The following Fotran code illustrates how to set up the
matrix elements for this kind of sparse matrix:

dx=1.0/(m+1)
dy=1.0/(n+1)
a_coef= 1./dx**2
b_coef=1./dy**2
c_coef = -2*(a_coef+b_coef)
A=0 !initialize coefficent matrix
do II=0,m*n-1

A(II,II)=c_coeff !diagonal elements

Poisson's equation 5



j = II/m !recover the original index in the y direction of the 2D mesh
if (j.gt.0) A(II,II-m)=b_coef
if (j.lt.n-1) A(II,II+m)=b_coeff
i = II - j*m !recover the original index in the x direction of the 2D mesh
if (i.gt.0) A(II,II-1)=a_coeff
if (i.lt.m-1) A(II,II+1)=a_coeff

enddo

I use PETSc parallel library[1] to solve the above linear system. In this case, the corre-
sponding code for setting up the matrix in parallel is as follows:

dx=1.0/(m+1)
dy=1.0/(n+1)
a_coef= 1./dx**2
b_coef=1./dy**2
c_coef = -2*(a_coef+b_coef)
call MatGetOwnershipRange(A,Istart,Iend,ierr)
do II=Istart,Iend-1

call MatSetValues(A,ione,II,ione,II,c_coef,INSERT_VALUES,ierr) !diagonal
elements

j = II/m !recover the original index in the y direction of the 2D mesh
if (j.gt.0) then

JJ = II - m
call MatSetValues(A,ione,II,ione,JJ,b_coef,INSERT_VALUES,ierr)

endif
if (j.lt.n-1) then

JJ = II + m
call MatSetValues(A,ione,II,ione,JJ,b_coef,INSERT_VALUES,ierr)

endif

i = II - j*m !recover the original index in the x direction of the 2D mesh
if (i.gt.0) then

JJ = II - 1
call MatSetValues(A,ione,II,ione,JJ,a_coef,INSERT_VALUES,ierr)

endif
if (i.lt.m-1) then

JJ = II + 1
call MatSetValues(A,ione,II,ione,JJ,a_coef,INSERT_VALUES,ierr)

endif
enddo
call MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY,ierr)
call MatAssemblyEnd (A,MAT_FINAL_ASSEMBLY,ierr)

All the elements that are not updated by MatSetValues in the above code are by default
zero.

5.3 Veri�cation of the numerical solution
For the particular source term given by

S(x; y)= sin(�x)sin(�y); (27)

then

' (x; y)=¡ 1

2�2
sin(�x)sin(�y); (28)
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satis�es the equation and the boundary condition  = 0 at xa = 0, xb = 1, ya = 0, and yb = 1.
Therefore the above expression is an analytic solution to the problem. PETSc code for setting
the source term (right-hand-side of the linear equation system Ax=b) is similar to setting the
coe�cient matrix. The code is as follows:

call VecCreateMPI(PETSC_COMM_WORLD,PETSC_DECIDE,m*n,b,ierr)
call VecSetFromOptions(b,ierr)
call VecDuplicate(b,x,ierr) !We form 1 vector from scratch and then duplicate as
needed.
call VecGetOwnershipRange(b, i_low, i_upp, ierr)
ns=i_upp-i_low
do k=1,ns

ix(k)=i_low+k-1
j = ix(k)/m
i = ix(k) - j*m
xp=xa+(i+1)*dx
yp=ya+(j+1)*dy
val(k)=sin(pi*xp)*sin(pi*yp) !for the source term, anlaytic solution exists

enddo
call VecSetValues(b, ns, ix, val, Insert_values, ierr)
call VecAssemblyBegin(b,ierr)
call VecAssemblyEnd(b,ierr)

The last step is to call PETSc KSP solver to solve the linear equation system. The code is as
follows:

call KSPCreate(PETSC_COMM_WORLD,ksp,ierr)
call KSPSetOperators(ksp,A,A,ierr)
call KSPSetFromOptions(ksp,ierr)
call KSPSolve(ksp,b,x,ierr)

Figure 6 compares the numerical solution with the analytic one, which indicates the two
results agree with each other, and thus verifying the correctness of the numerical solution.
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Figure 6. Comparison between the numerical solution and analytic solution of Poisson' equation.
Numerical parameters: grid number M = 50, N = 50. The resulting linear system has 2500 unknowns.
PETSc provides a �exible way of choosing di�erent algorithms for solving the linear system via command
line options. The command line options used for this case is: mpiexec -n 3 ./poisson -pc_type bjacobi
-sub_pc_type ilu -ksp_type bcgs -ksp_monitor, which chooses the preconditioner type and Krylov
subspace method type. The KSP residual norm is 1.456� 10¡7 after 25 iterations.
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6 A simple example of numerical instability
For the following ordinary di�erential equation:

dy
dt

=¡ay; (29)

where a is a positive constant, with the initial condition y(0) = y0, the analytic solution is given
by

y= y0exp(¡at); (30)

which is a monotonically decreasing function of t. Let us try to solve this initial value problem
numerically. Discritizing time as tn = n�t with �t > 0, we use the following explicit di�er-
encing scheme:

y(n+1)¡ y(n)
�t

=¡ay(n); (31)

i.e.,

y(n+1)=(1¡�ta) y(n); (32)

where y(n)= y(tn) and y(n+1)= y(tn+1). If we choose a large time-step �t with �t > 2/a, then
j1 ¡ �taj > 1 and the above scheme gives a numerical solution with amplitude increasing with
time, instead of decaying. This is totally di�erent from the analytic solution, which indicates the
numerical solution is wrong in this case. This kind of wrong numerical solution is called a
numerical instability. An example is shown in Fig. 7.
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Figure 7. Comparison between the analytic solution (30) (black) and the numerical solution (blue) cal-
culated by the scheme (32) with �t= 2.1. Other parameters: y0=1, a=1.

Let us consider the following implicit scheme

y(n+1)¡ y(n)
�t

=¡ay(n+1); (33)

(where the right-hand side is evaluated at the future time time), i.e.,

y(n+1)=
y(n)

1+ a�t
: (34)

Note that no matter how large the time step-length �t is, the above scheme always give a solu-
tion which is decreasing with time, i.e., no numerical instability appears. An example is shown
in Fig. 8.
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Figure 8. Comparison between the analytic solution (30) (black) and the numerical solution (blue) cal-
culated by the scheme (34) with �t= 2.1. Other parameters: y0=1, a=1.

If a one-step explicit scheme is unstable, then the corresponding implicit scheme is stable.
This is because that an implicit scheme corresponds to a time-reversed version of the corre-
sponding explicit scheme.

7 Finite di�erence
Taylor expansion of f(x) at x=xi is written as

f(xi+h)= f(xi) +hf
(1)(xi)+

h2

2
f (2)(xi)+O(h

3) (35)

8 The predictor-corrector method
This method is very similar to and often confused with the Runge-Kutta method. Consider the
following di�erential equation

dy

dt
= f(y) (36)

A natural discretized form that is time-centered would be

yn+1= yn+
�t
2
[f(yn+1)+ f(yn)]: (37)

Unfortunately the presence of yn+1 on the right-hand side makes this scheme implicit, and thus
a direct solution is possible only for some special cases (e.g. f(y) is a linear function of y). Gen-
erally, we need to use iterations to solve the above equation. A convenient initial guess is
yn+1� yn. If we iterate for only twice, i.e.,

yn+1
(1) = yn+�tf(yn) (38)

yn+1
(2)

= yn+
�t
2

�
f
¡
yn+1
(1) �

+ f(yn)
�
: (39)

Then this is the predictor-corrector method (also called Heun's method). This method consists
of a guess for yn+1 based on the Euler method (the Prediction) followed by a correction using
trapezoidal rule.

If we iterate until convergence, then this is a general implicit scheme.
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9 Spectral method��to be revised
Spectral methods refers to methods of using linear combination of global basis functions to
approximate a unknown function. Here �global� means that the basis functions extending over
the whole spatial domain of interest, i.e., has a support as large as the whole domain of interest
(contrast to the finite element method, which use local basis functions). Here we consider
Fourier spectral method, which uses trigonometric functions as basis functions. Consider the fol-
lowing two-point boundary value problem:

L (x)�
�
¡ @2

@x2
+V (x)

�
 (x) =S(x); (40)

with the boundary condition  (x = L) =  (x = 0), where V (x) and S(x) are known functions.
Expand  (x) in terms of the Fourier basis functions:

 (x)�
X
n=0

N¡1

 ̂nexp
�
n
2�i x
L

�
; (41)

where  ̂n are unknown coefficients. Substitute this expression into the left-hand side of Eq.
(40), we obtain X

n=0

N¡1 �
2�n

L

�
2

 ̂nexp
�
n
2�i x

L

�
+
X
n=0

N¡1

V (x) ̂nexp
�
n
2�i x

L

�
: (42)

De�ne the residual R as the di�erence between the above expression and the source term S(x),
i.e.,

R=
X
n=0

N¡1 �
2�n
L

�
2

 ̂nexp
�
n
2�i x
L

�
+
X
n=0

N¡1

V (x) ̂nexp
�
n
2�i x
L

�
¡S(x): (43)

We want the residual to be as small as possible in the whole domain of interested. We need to
de�ne how to measure the smallness of the residual. A general method is to choose some �test
functions� and take the inner product of the test functions with the residual over the whole
domain. Then the inner product is used to measure the smallness of the residual. Di�erent spec-
tral methods are classi�ed by the di�erent �test functions� chosen for the inner product.

9.1 Pseudo-spectral method
In the Pseudo-spectral method, the test functions are chosen to be �(x ¡ xm), where � is the
Dirac-delta function and xm with m= 0; 1; 2; :::; N ¡ 1 are special spatial points chosen for a set
of basis functions. These points are called collocation points and di�ers for di�erent basis func-
tions used. For Fourier basis functions the collocation points are points with uniform interval
given by xm = mL/N with m = 0; 1; 2; :::; N ¡ 1. Performing the inner product

R
0

L
(:::)�(x ¡

xm)dx on the residual and demand the result to be zero, we obtainX
n=0

N¡1 �
2�n
L

�
2

 ̂nexp
�
n
2�i xm
L

�
+
X
n=0

N¡1

 ̂nV (xm)exp
�
n
2�i xm
L

�
¡S(xm) =0; (44)

which can be organized as

X
n=0

N¡1

 ̂nexp
�
n
2�i xm
L

���
2�n

L

�
2

+V (xm)

�
=S(xm): (45)

where m= 0; 1; :::N ¡ 1. Equation (45) is a linear equation system for the expansion coe�cients
 ̂n. Since taking the inner product with a Dirac-delta function �(x¡ xm) correspond to choosing
a particular spatial point xm, the above equation is actually demanding that the approximate
function satis�es the original di�erential equation exactly on the set of collocation points.

10 Section 9



9.2 Galerkin method
Choose the set of test functions as exp(¡2�imx/L) with m= 0; 1; :::; N ¡ 1. Perform the inner
product of the residual with the test functions exp(¡2�imx/L), i.e., 1

L

R
0

L
R exp(¡2�imx/L)dx,

and demand the result to be zero, yielding�
2�m
L

�
2

 ̂m+
X
n=0

N¡1

Vmn ̂n¡
1
L

Z
0

L

S(x) exp
�
¡2�imx

L

�
dx=0; (46)

where use has been made of
1
L

Z
0

L

exp
�
2�i x
L

(n¡m)
�
dx= �nm;

with �nm is the Kronicle-delta function, and

Vmn=
1
L

Z
0

L

V (x)exp
�
2�i x
L

(n¡m)
�
dx: (47)

Direct evaluating the integration of the source term as appearing in Eq. (46) involves N opera-
tion for each value of m and thus total N2 operations are needed. The computational e�ciency
can be improved by �rst expanding S(x) in terms of the basis function (as what is done for  ):

S(x)�
X
n=0

N¡1

Ŝnexp
�
n
2�i x

L

�
:

Then the integration of the source term reduces to Ŝm. Then equation (46) is written�
2�m
L

�
2

 ̂m+
X
n=0

N¡1

Vmn ̂n= Ŝm: (48)

Since computing Ŝm with m = 0; 1; :::; N ¡ 1 using FFT involves only N log N operations, this
method is more e�cient than directly evaluating the integration. Similar situation apply to the
computation of Vmn. The matrix Vmn depends on m and n through the combination (n ¡ m).
Since both m and n are in the range [0:N ¡ 1], the range of (n¡m) is also in [0:N ¡ 1]. There-
fore the matrix Vmn has N independent matrix elements. Computing each one of these N ele-
ments by directly evaluating the integration (47) involves N operations. Therefore, to obtain all
the N independent elements, the number of operations is N2. The same method used to com-
pute the source term can be applied to compute Vmn, which reduces the operation number to
N logN . Expand V (x) as

V (x)�
X
k=0

N¡1

V̂kexp
�
k
2�i x
L

�
then Vmn is written as

Vmn=
1
L

Z
0

LX
k=0

N¡1

V̂kexp
�
k
2�i x
L

�
exp
�
2�i x
L

(n¡m)
�
dx= V̂m¡n: (49)

Therefore Eq. (48) is �nally written�
2�m
L

�
2

 ̂m+
X
n=0

N¡1

V̂m¡n ̂n= Ŝm; (50)

which is a linear equation system for  ̂m with m=0; 1; :::; N ¡ 1.

9.2.1 Computation of
P

n=0
N¡1 V̂m¡n ̂n in initial value problems

Equation (50) can be considered as a stead-state equation of the following time-dependent equa-
tion

@ ̂m
@t

=

�
2�m
L

�
2

 ̂m+
X
n=0

N¡1

V̂m¡n ̂n¡ Ŝm; (51)
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Note that the term
P

n=0
N¡1

V̂m¡n ̂n on the right-hand side of the above equation involves matrix
multi�cation, which involves N2 operations. When solving Eq. (51) as an initial value problem,
where  ̂m is known at the current time step, there is an efficient way of evaluatingP

n=0
N¡1 V̂m¡n ̂n which avoids the computationally expensive matrix multi�cation. Note that the

term
P

n=0
N¡1

V̂m¡n ̂n is actually the Fourier transform of V (x) (x). Thus an e�cient method of
computing this term is to first transform  ̂n back to real space and doing the multification
between V (x) and  (x) in real space. Then transform the result back to Fourier space. Since
the transform can be performed by FFT, which involves only N logN operations, this method is
more e�cient than directly computing the matrix multi�cation

P
n V̂m¡n ̂n.

10 Interpolating

ddd

11 von Neuman stability analysis

Ampere's equation is written

r� �B= �0�Ji+ �0�Je (52)

Neglecting the ion current, then the above equation is written

r� �B= �0�Je (53)

Using �Je=¡en0�ue, the above equation is written

r� �B=¡�0ene0�ue (54)

)(r� �B)�B0=¡�0ene0�ue�B0 (55)

Using �ue�B0=¡�E, the above equation is written

)(r� �B)�B0= �0ene0�E (56)

De�ne �e= �0ene0, then the above equation is written as

�E=
1
�e
(r� �B)�B0 (57)

)�E(n+1)= 1
�e
(r� �B(n+1))�B0 (58)

Faraday's law is written as

�B(n+1)¡ �B(n)

�t
=¡[�r� �E(n+1)+(1¡�)r� �E(n)] (59)

Assume B0 is uniform and performing Fourier transformation over the space, equations () and ()
are written

�Ê(n+1)=
1
�e

¡
ik� �B̂(n+1)

�
�B0 (60)

�B̂(n+1)¡ �B̂(n)

�t
=¡

�
�ik� �Ê(n+1)+(1¡ �)ik� �Ê(n)

�
(61)

Consider the case that B0 is along the z direction and k= kẑ, equation () is written as

�Ê(n+1)=
1

�e

¡
ikB0�B̂

(n+1)+ ik�B̂z
(n+1)

B0
�

(62)
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Using this in Eq. (), yielding

�B̂(n+1)¡ �B̂(n)

�t
=¡

�
¡�kB0

�e
k� �B̂(n+1)+(1¡ �)ik� �Ê(n)

�
(63)

�B̂(n+1)¡ �B̂(n)

�t
= ¡

�
¡� kB0

�e
k�B̂x

(n+1)
ŷ + �

kB0
�e

k�B̂y
(n+1)

x̂ + (1 ¡ �)i k�Êx
(n)
ŷ ¡ (1 ¡

�)ik�Êy
(n)
x̂

�
(64)

Assume �Ê(n) and �B̂(n) take the following form

�Ê(n)= �Ê(0)ei(¡n!�t) (65)

�B̂(n)= �B̂(0)ei(¡n!�t) (66)
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