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Abstract

This note discusses the Discrete Fourier Transform (DFT) and its
variations (e.g., the discrete sine transform).

1 Introduction

This note discusses the Fourier expansion and Discrete Fourier Transform
(DFT), giving step by step derivation of DFT and its variations (e.g., the dis-
crete sine transform). After carefully going through these elementary deriva-
tions, I feel more comfortable when using DFT in my numerical codes.

2 Fourier series

2.1 Use trigonometric basis functions

If h(x) is a function of period 2L, then it can be proved that h(x) can be
expressed as the following series
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X
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which is called Fourier series. It is not trivial to prove the above statement
(what is needed in the proof is to prove that the set of functions cos(n�x/L)
and sin(n�x /L) with n = 0; 1; :::1 is a �complete set�[1]). I will ignore this
proof and simply start with Eq. (1).

At this point it is not clear what the coefficients an and bn are. These can
be obtained by taking product of Eq. (1) with cos(j�x /L) and sin(j�x /L),
respectively, and then integrating form ¡L to L, which gives
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In order to enable an to be uniformly expressed by Eq. (3), Fourier series are
often redefined as
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[Fourier series (5) can also be written as
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where n ranges from ¡1 to 1, and there is no special treatment for the edge
case of n = 0. In obtaining expression (6) from (5) , use has been made of
ancos(n�x/L)= a¡ncos(¡n�x/L) and bnsin(n�x/L)= b¡nsin(¡n�x/L).]

Note that sine and cosine are similar to each other: one can be obtained
from the other by shifting, i.e., they differs only in the �phase�. Using trigono-
metric identities, expression (5) can be expressed in terms of only cosine:
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�
; (7)

where the amplitude An is given by

An= an
2 + bn2

p
; (8)

and the phase �n is given by

�n= atan2(bn; an); (9)

where atan2(y; x) is the 2-argument arctangent, which gives an angle in the
correct quadrant. Expresion (7) can be stated as: a periodic signal is com-
posed of cosine functions of different frequencies and phases (we interpret x as
time).

If h(x) is a complex-valued function (the independent variable x is still
real number), then the above Fourier expansion can be applied to its real part
and imaginary part, respectively. Combining the results, we can see that Eqs.
(3)-(5) is still valid. In this case, an and bn are complex numbers.

2.2 Use basis functions ein�x/L

Fourier series are often expressed in terms of the complex-valued basis func-
tions ein�x/L. Next, we derive this version of the Fourier series, which is the
most popular version we see in textbooks and papers (we will see why this
version is popular).

Using Euler's formula
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L
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(10)
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(11)
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in Eq. (5), we obtain
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Define

cn=
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2
; (13)

then, by using a¡n= an b¡n=¡bn, we know that
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2
: (14)

Then, noting b0=0, Eq. (12) is written
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Using the expressions of an and bn given by Eq. (3) and (4), cn is expressed as
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Equation (15) along with Eq. (16) is the version of Fourier series using com-
plex basis functions. In this version, the index n is an integer ranging from
¡1 to +1, which is unlike Eq. (1), where n is from 0 to +1. An advantage
of Eqs. (15) and (16) is that no special treatment is needed for the edge case
of n=0.

Let's recover the trigonometric version from the complex version. Using Eq. (16) in Eqs.
(15), we obtain
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Noting that the +n terms cancel the ¡n terms in both line (17) and line (18), the above
expression is reduced to
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Define new expansion coefficients
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then expression (19) is written as
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which recovers expression (6). Note that n 2 (¡1; +1) in this version, which differs from
Eq. (5). Also this expression has no edge case that needs special treatment.

As a benchmark, we can start from exression (6) to derive the complex Fourier expan-
sion: Using the Euler formula in expression (6), we obtain
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Noting that an= a¡n and bn=¡b¡n, the above expresion is written as

h(x)
X
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�
ein�x/L:

Using Eq. (13), the coefficients an and bn appearing in Eq. (5) can be recov-
ered from cn by

an= cn+ c¡n; (23)

bn= i (cn¡ c¡n): (24)

If h(x) is real, then the coefficients an and bn are real. Then Eqs. (13) and
(14) imply that cn and c¡n are complex conjugates. In this case, expressions
(23) and (24) are simplified as

an=2Re(cn); (25)

bn=¡2Im(cn): (26)

[In the above, we use the basis functions ein�x/L to expand h(x). If we
choose the basis functions to be e¡in�x/L, then it is ready to verify that the
Fourier series are written

h(x)=
X

n=¡1

1

cne
¡in�x/L; (27)

with cn given by
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In this case, the coefficients an and bn can be recovered from cn by

an= cn+ c¡n (29)

bn=¡i(cn¡ c¡n) (30)

In using the Fourier series, we should be aware of which basis functions are
used.]

2.3 Numerical evaluation of Fourier expansion coefficients

For a periodic function h(t) with a period of T , its Fourier expansion is given
by

h(t)=
X

n=¡1

1

cnexp
�
in

2�
T
t

�
; (31)

with the expansion coefficient cn given by
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1
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Z
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�
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T
t

�
dt: (32)

How to numerically compute cn? A simple way is to use the rectangle formula
to approximate the integration in Eq. (32), i.e.,

cn�
�
T

X
j=0

N¡1

hjexp
�
¡in2�j�

T

�
; (33)

where hj = h(tj) and tj = j� with j = 0; 1; 2; :::; N ¡ 1 and � = T /N , as is
shown in Fig. 1.

N∆

∆

0 1 2 N − 1 N

Figure 1. Sampling points in one period of the signal, where T =N� is the period
of the signal.

Note Eq. (33) is an approximation, which will become exact if �! 0. In
practice, we can sample h(t) only with a nonzero �. Therefore Eq. (33) is
usually an approximation. Do we have some rules to choose a suitable � so
that Eq. (33) can become a good approximation or even an exact relation?
This important question is answered by the sampling theorem (will be dis-
cussed in Append. B), which sates that a suitable � to make Eq. (33) exact is
given by � 6 1/ (2fc), where fc = Nc/T is the largest frequency contained in
h(t) (i.e, cn is zero for jnj>Nc).

Fourier series 5



fs � 1/� is called sampling frequency. Then the above condition can be
rephrased as: the sampling frequency should be larger than 2fc.

3 Discrete Fourier transformation (DFT)

3.1 Definition

Denote the summation in Eq. (33) by Hn:

Hn�
X
j=0

N¡1

hjexp
�
¡i2�nj

N

�
: (34)

Then Hn with n = 0; 1; :::N ¡ 1 is the Discrete Fourier transformation
(DFT) of hj with j = 0; 1; :::; N ¡ 1. (The efficient algorithm (FFT) of com-
puting the DFT is discussed in Appendix A.)

The Fourier expansion coefficients cn in Eq. (33) is related to Hn by

cn=
1
N
Hn: (35)

The corresponding frequency is

fn=
n
T
= n
�N

= fs
n
N
: (36)

Here f1 = 1/T is called the fundamental frequency (spacing in the frequency
domain, i.e., frequency resolution).

Why does DFT choose n to be in the positive range [0: N ¡ 1]? This is to
make the tranform pair symmetric: both j and n are in the same range. This
symmetry makes the transform pair easy to remember. However, this does not
mean we only need the positive frequency components. In fact, we usually
need n in the range [¡N /2; N /2]. This will be discussed in the next section.

3.2 Periodic property

We are usually interested in Fourier expansion coefficients in the range n 2h
¡N

2
: N

2

i
(assume that N is even) because we expect the coefficients decay

with jnj increasing (so we impose a cutoff for a range that is symmetric about
n = 0). However, the original DFT is for the range n 2 [0: N ¡ 1]. How do we
reconcile them? The answer is that we make use of the periodic property of
DFT. It is obvious that Hn defined in Eq. (34) has the following periodic
property:

Hn+N =Hn: (37)
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Using this, we can infer what we need: the value of each Hn with n 2
h
¡N

2
:

¡1
i
is equal to Hn with n 2

h
N

2
; N ¡ 1

i
, element by element. Then we can as-

sociate Hj for j 2 [0:N ¡ 1] with frequency fj defined by:

fj=

8>>>><>>>>:
jf1; for 06 j6 N

2
(j ¡N)f1; for

N
2
+16 j6N ¡ 1

: (38)

3.3 Frequency resolution and bandwidth

The frequency interval between neighbor DFT points is 1 /T , where T is the
time-window in which the signal is sampled. This frequency interval is called
frequency resolution (resolution in the frequency domain), which is determined
only by the length of the time-window and is independent of the sampling fre-
quency. If the time-window is fixed, increasing the sampling frequency only
increase the frequency range of the DFT ([¡fs/2: fs/2]), which is called band-
width, and the frequency interval between neighbor DFT points are still 1/T ,
i.e., the frequency resolution is not changed.

4 Inverse transform

4.1 Reconstruct the original function using DFT

The Fourier series of h(t)

h(t)=
X

n=¡1

1

cnexp
�
¡i n2�t

T

�
; (39)

can be approximated as

h(t)�
X
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T

�
: (40)

Using the relation cn=Hn/N , the above equation is written as
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N
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24X
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�35: (41)
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Using the periodic property of DFT, i.e., Hn =HN+n, the above expression is
written as

h(t) = 1
N

24X
n=0

N/2

Hnexp
�
¡i n2�t

T

�
+
X

n=N/2

N¡1

Hnexp
�
¡i (n¡N)2�t

T

�35: (42)

Equation (42) provides a formula of constructing an approximate function
using the DFT of the discrete samplings of the original function.

4.2 Evaluate the reconstructed function at discrete points

Evaluate h(t) given by Eq. (42) at the discrete point t= j�, yielding

h(j�) = 1
N

24X
n=0

N/2
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�
¡i n2�j
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�
+
X

n=N/2
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�
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N

"X
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�
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N

�
+HN/2exp(¡i�j)

#
: (43)

Drop the blue term (which is negligible if h satisfies the condition requried by
the sampling theorem), then h(j�) is written as

h(j�)� 1
N

X
n=0

N¡1

Hnexp
�
¡i n2�j

N

�
: (44)

The right-hand side of Eq. (44) turns out to be the inverse DFT discussed in
Sec. 4.3.

4.3 Inverse DFT

The DFT in Eq. (34), i.e.,

Hn�
X
j=0

N¡1

hjexp
�
i
2�
N
nj

�
; (45)

with j = 0; 1; 2; :::; N ¡ 1 and n= 0; 1; 2; :::; N ¡ 1 can also be considered as a
set of linear algebraic equations for hj and can be solved in terms of hj, which
gives

hj=
1
N

X
n=0

N¡1

Hnexp
�
¡i2�

N
nj

�
: (46)
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(The details on how to solve Eq. (34) to obtain the solution (46) is provided
in Sec. 4.4.) Equation (46) recovers hj from Hn (i.e., the DFT of hj), and thus
is called the inverse DFT.

The normalization factor multiplying the DFT and inverse DFT (here 1
and 1 /N) and the signs of the exponents are merely conventions. The only
requirement is that the DFT and inverse DFT have opposite-sign exponents
and that the product of their normalization factors be 1 /N . In most FFT
computer libraries, the 1/N factor is omitted. So one must manually include
this factor when one wants to reproduce the original data by a forward and
then a backward transform.

4.4 Proof of the inverse DFT

In order to solve the linear algebraic equations (34) for hj, multiply both sides
of each equation by exp

¡
¡i2�

N
nJ
�
, where J is an integer between [0; N ¡ 1],

and then add all the equations together, which yields

X
n=0

N¡1

exp
�
¡i2�

N
nJ

�
Hn=

X
n=0

N¡1 X
j=0

N¡1

hjexp
�
i
2�
N
n(j ¡ J)

�
: (47)

Interchanging the sequence of the two summation on the right-hand side,
equation (47) is written

X
n=0

N¡1

exp
�
¡i2�

N
nJ

�
Hn=

X
j=0

N¡1

hj
X
n=0

N¡1

exp
�
i
2�
N
n(j ¡ J)

�
: (48)

Using the fact that (verified by Wolfram Mathematica)

X
n=0

N¡1

exp
�
i
2�
N
n(j ¡J)

�
=N�jJ; (49)

where �jJ is the Kroneker Delta, equation (48) is written

X
n=0

N¡1

exp
�
¡i2�

N
nJ

�
Hn=

X
j=0

N¡1

hjN�jJ ; (50)

i.e., X
n=0

N¡1

exp
�
¡i2�

N
nJ

�
Hn=NhJ ; (51)
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which can be solved to give

hJ =
1
N

X
n=0

N¡1

exp
�
¡i2�

N
nJ

�
Hn: (52)

Equation (52) is the inverse DFT.

5 About using the FFT library

FFTW/scipy uses negative exponents as the forward transform and and the
positive exponents as inverse transform. Specifically, the forward DFT in
FFTW is defined by

Hn�
X
j=0

N¡1

hjexp
�
¡i2�

N
nj

�
; (53)

and the inverse DFT is defined by

hj=
X
n=0

N¡1

Hnexp
�
i
2�
N
nj

�
; (54)

where there is no 1/N factor in the inverse DFT, and thus this factor should
be included manually if we want to recover the original data from the inverse
DFT. (In some rare cases, e.g. in the book �Numerical recipe�[2], positive
exponents are used in defining the forward Fourier transformation and nega-
tive exponents are used in defining the backward one. When using a Fourier
transformation library, it is necessary to know which convention is used in
order to correctly use the output of the library.)

In Scipy:

def fft(x, n=None, axis=-1, norm=None, overwrite_x=False,
workers=None, *,

plan=None):
#norm : {"backward", "ortho", "forward"}, optional

Normalization mode. Default is "backward", meaning no
normalization on

the forward transforms and scaling by 1/n on the ifft.
"forward" instead applies the 1/n factor on the forward

tranform.
For norm="ortho", both directions are scaled by 1/

sqrt(n).

I use the Fortran interface of the FFTW library. To have access to FFTW
library, use the following codes:

use, intrinsic :: iso_c_binding
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implicit none
include 'fftw3.f03'

Here the first line uses iso_c_binding module to interface with C in
which FFTW is written. To use the FFT subroutines in FFTW, we need to
define some variables of the desired types, such as

type(C_PTR) :: plan1, plan2
complex(C_DOUBLE_COMPLEX) :: in(0:n-1), out(0:n-1)

Specify what kind of transform to be performed by calling the corre-
sponding �planner� routine:

plan1 = fftw_plan_dft_1d(n, in,out, FFTW_FORWARD,FFTW_ESTIMATE)

Here the �planner� routine for one-dimensional DFT is called. One thing
that the �planner� routine does is to factor the matrix Mkj mentioned above,
in order to get prepared for performing the actual transform. Therefore
�planner� do not need the actual data stored in �in� array. What is needed is
the length and numerical type of �in� array. It is obvious that the �planner�
routine needs to be invoked for only once for a given type of array with the
same length.

Store input data in the �in� arrays, then, we can perform a DFT by the fol-
lowing codes:

call fftw_execute_dft(plan1, in, out)

Similarly, we can perform a inverse DFT by the following codes:

plan2 = fftw_plan_dft_1d(ngrids, in,out,FFTW_BACKWARD,
FFTW_ESTIMATE)
call fftw_execute_dft(plan2, in, out)

After all the transforms are done, we need to manually de-allocate the
arrays created by the �planner� routine by calling the �fftw_destroy_plan�
routine:

call fftw_destroy_plan(plan2)

(Unless they are local arrays, Fortran does not automatically de-allocate
arrays allocated by the acllocate(), so manually de-allocate all allocated
arrays is necessary for avoid memory leak)

6 Discrete sine transform and cosine transform

We mentioned (without giving proof) that the set of functions cos(n2�(x ¡
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x0)/(2L)) and sin(n2�(x¡ x0)/(2L)) with n= 0; 1; :::1 is a �complete set� in
expanding any function in the interval (x0; x0 + 2L), where x0 is an arbitrary
point. Therefore Fourier series use both cosine and sine as basis functions to
expand a function. Let us introduce another conclusion (again without giving
proof) that the set of sine functions sin(n�(x¡ x0)/(2L)) with n= 1; 2; :::1 is
a �complete set� in expanding any function h in the interval (x0; x0 + 2L). A
similar conclusion is that the set of cosine functions cos(n�(x ¡ x0) / (2L))
with n = 0; 1; 2; :::1 is a �complete set� in expanding any function h in the
interval (x0; x0 + 2L). Note that the argument of the basis functions used in
the Fourier expansion differ from those used in the sine/cosine expansion by a
factor of two.

The first five basis functions used in Fourier expansion, sine expansion,
and cosine expansion are plotted in Fig. 2.
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Figure 2. The first five basis functions used in Fourier expansion (upper), sine
expansion (middle), and cosine expansion (lower) in the interval [x0; x0 + 2L] with
x0=0 and L=1.
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The basis function bk(x) used in the Fourier expansion have the properties
bk(x) = bk(x0 + 2L). Therefore Fourier expansion works best for function that
satisfy h(x0) = h(x0+ 2L). For a functions that do not satisfies this condition,
i.e., a function with h(x0) =/ h(x0+ 2L), the function can still be considered as
a periodic function with period 2L but having discontinuity points at the
interval boundary. It is well known that Gibbs oscillations appear near discon-
tinuity points, which can be inner points in the interval or at the interval
boundaries.

The basis functions bk(x) used in the sine expansion have the properties
bk(x0) = bk(x0 + 2L) = 0. Therefore this expansion works best for functions
that satisfy h(x0) = h(x0 + 2L) = 0. For functions that do not satisfies this
condition, there will be Gibbs oscillations near the boundaries when approxi-
mated by using the sine expansion. Examples are shown in Fig. 3.
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Figure 3. Left: constant function h(x)= 1 approximated by using the sine expansion. Right: linear function
h(x) = x ¡ 1 approximated by using the sine expansion. Gibbs oscillation appears near the boundaries,
where h(x) does not satisfy the condition h(x0) = h(x0+L) = 0 (x0= 0 and L= 2 for this case). The expan-
sion coefficients Hk are obtained via the discrete sine transform (55) with number of sampling point N = 50.

The reconstruction formula is given by h(x)= 2

N

P
k=1
N¡1Hksin

�
k�x

L

�
.

Similarly, the basis functions bk(x) used in the cosine expansion have the
properties bk0 (x0) = bk

0 (x0 + 2L) = 0. Therefore this expansion works best for
functions that satisfy h0(x0) = h0(x0+ 2L) = 0. For functions that do not satis-
fies this condition, there will be Gibbs oscillations near the boundaries when
approximated by using the cosine expansion (to be verified numerically).

Next, let us discuss the sine and cosine transformation. Figure 4 illustrates
the grids used in the following discussion.

Discrete sine transform and cosine transform 13



xx=x0
x= x0+L

j=0 j=N

Figure 4. Grid indexes start from 0 and ends at N . h0 = hN = 0, i.e., h(x0) =
h(x0+L)=0.

6.1 Traditional defintion of discrete Sine Transform (DST)

There are several slightly different types of Discrete Sine Transforms (DST).
One form I saw in W. Press's numerical recipe book is given by

Hk=
X
j=0

N¡1

hjsin
�
k�j
N

�
; (55)

where h0 = hN = 0 are assumed. This form can be obtained by replacing
DFT's exponential function exp(2�ikj /N) by sin(�kj /N). The inverse sine
transformation is given by (I did not derive this, but had numerically verified
that this transform recovers the original data if applied after the sine trans-
form (55) (code at /home/yj/project_new/test_space/sine_expan-
sion/t2.f90))

hj=
2
N

X
k=0

N¡1

Hksin
�
k�j

N

�
; (56)

which is identical with the forward sine transformation except for the normal-
ization factor 2 / N . (The terms of index 0 in both Eq. () and () can be
dropped since they are zero. They are kept to make the representation look
more similar to the DFT, where the index begin from zero.) Replacing j/N in
Eq. (56) by (x¡x0)/L , we obtain the reconstructing function

h(x)= 2
N

X
k=0

N¡1

Hksin
�
k�(x¡x0)

L

�
: (57)

We need a fast method for computing the above DST. All fast methods
finally need to make use of the fast method used in the computation of DFT,
i.e., FFT. To make use of FFT, we need to define the DST in a way that the
DST can be easily connected to the DFT so that FFT can be easily applied.
A standard way of making this easy is to define the DST via the DFT of an
odd extension of the original data. Next, let us discuss this.

6.2 Define DST via DFT

Let us introduce the Discrete Sine Transform (DST) by odd extending a given
real number sequence and then using the DFT of the extended data to define
DST. There are several slightly different ways of odd extending a given
sequence and thus different types of DST. Given a n=3 real number sequence
(a; b; c), one frequently adopted odd extension is (0; a; b; c; 0; ¡a; ¡b; ¡c; 0).
This odd extension is illustrated in Fig. 5.
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n=3

n=3

0 n-1

0 1 N-1 N=2(n+1)n n+1

L=(n+1)∆

Figure 5. A frequently used way of defining the odd extension of a sequence of real
numbers . The black points are original data (with index 0; 1; :::; n ¡ 1). The blue
points are newly introduced, together with the original points, generating an odd
periodic sequence of numbers with index 0; 1; :; :::; N , where N = 2(n + 1). The
points used in the DFT are 0; 1; 2; :::; N ¡ 1. The period of these data is 2L with
L=(n+1)�, where � is the spacing between points.

As illustrated in Fig. 5, after the old extension, the total number of points
is N + 1 with N = 2(n + 1). Then DFT use the N points with index j = 0;
1; :::; N ¡ 1 as input. Since the input are real and odd symmetric sequence,
the output of this DFT is an odd sequence of purely imaginary numbers.
Next, let us prove this. The DFT in this case is given by

Hk=
X
j=0

N¡1

hj
0exp

�
¡i2�kj

N

�
; (58)

where hj0 is the odd extension of the original data hj. For j = 1; 2; :::; n, the
relation between hj0 and hj is given by

hj
0 =hj¡1; (59)

For j=n+2; :::; N ¡ 1, the relation is given by

hj
0 =¡h2n+1¡j: (60)

Noting that h00 =0 and hn+10 =0, then expression (58) is written as

Hk=0+
X
j=1

n

hj
0exp

�
¡2�i
N

kj

�
+0+

X
j=n+2

N¡1

hj
0exp

�
¡2�i
N

kj

�
: (61)

Using N =2(n+1), the above expression is written as

Hk=
X
j=1

n

hj
0exp

�
¡ �i
(n+1)

kj

�
+
X

j=n+2

2n+1

hj
0exp

�
¡ �i
(n+1)

kj

�
(62)
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Using the relations (59) and (60) to replace hj0 by hj, the above expression is
written

Hk=
X
j=1

n

hj¡1exp
�
¡ �i

(n+1)
kj

�
¡
X

j=n+2

2n+1

h2n+1¡jexp
�
¡ �i

(n+1)
kj

�
: (63)

Change the definition of the dummy index j in the above summation to make
it in the conventional range [0:n¡ 1], the above expression is written as

Hk =
X
j=0

n¡1

hjexp
�
¡ �i

(n+1)
k(j + 1)

�
¡
X
j=0

n¡1

hn¡1¡jexp
�
¡ �i

(n+1)
k(j + n +

2)
�
:

Defining j 0= n ¡ 1¡ j to replace the dummy index in the second summation,
the above expression is written as

Hk =
X
j=0

n¡1

hjexp
�
¡ �i
(n+1)

k(j + 1)
�
¡

X
j 0=n¡1

0

hj 0exp
�
¡ �i
(n+1)

k(2n + 1 ¡

j 0)
�
:

=
X
j=0

n¡1

hjexp
�
¡ �i
(n+1)

k(j+1)
�
¡
X
j=0

n¡1

hjexp
�
¡ �i
(n+1)

k(2n+1¡ j)
�
:

=
X
j=0

n¡1

hjexp
�
¡ �i

(n+1)
k(j+1)

�
¡
X
j=0

n¡1

hjexp
�
¡ �i

(n+1)
k(¡j ¡ 1)

�
:

= ¡2i
X
j=0

n¡1

hjsin
�

�
(n+1)

k(j+1)
�
; (64)

which is a purely imaginary number. Expression (64) also indicates Hk has
the following symmetry

HN¡k=¡Hk; (65)

i.e. odd symmetry. Therefore only half of the data for Hk with k = 0; 1; :::;
N ¡ 1 need to be stored, namely Hk with k = 0; 1; :::; N /2. Expression (64)
indicates that H0 and HN/2 are definitely zero and thus do not need to be
stored. Then the remaining data to be stored are Hk with k= 1; 2; :::N /2¡ 1,
i.e. k = 1; 2; :::; n. Following the convention of making the index of Hk in the
range [0:n¡ 1], we define Hk

0 =Hk+1. Then

Hk
0 =¡2i

X
j=0

n¡1

hjsin
�

�
(n+1)

(k+1) (j+1)
�

(66)
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with k = 0; 1; 2; :::n ¡ 1, which is the index that we prefer. Finally, the so-
called type-I Discrete Sine Transform (DST-I) is defined based on Eq. (66) via

Yk=
Hk
0

¡i =2
X
j=0

n¡1

hjsin
�

�

(n+1)
(k+1) (j+1)

�
; (67)

with k = 0; 1; 2; :::; n ¡ 1. This is the RODFT00 transform defined in the
FFTW library.

6.3 Reconstruct original function using DST

From the above derivation, we know that the DST, Yk, is related to the DFT,
Hk, by Yk = Hk+1 / (¡i), and thus the meaning of Yk is in principle clear.
Next, let us use the DST to reconstruct the original function from which the
data are sampled. Since DST is only a special case of DFT, reconstructing the
function using DST follows the same procedure used in DFT. In DFT, the
function is reconstructed via Eq. (42) (changing to the positive exponent con-
vention), i.e.,

h(x)= 1
N

24X
k=0

N/2

Hkexp
�
i
k2�x
2L

�
+
X

k=N/2

N¡1

Hkexp
�
i
(k¡N)2�x

2L

�35: (68)

where 2L is the length of the interval in which the samplings hj with j = 0;
1; :::; N ¡ 1 are made. For our present case, i.e., an odd extension of the orig-
inal n data, we have N = 2(n+ 1) and H0= 0 and HN/2= 0. Then Eq. (68) is
written as

h(x) = 1
N

"
0 +

X
k=1

n

Hkexp
�
i

k2�x
2L

�
+ 0 +

X
k=n+2

2n+1

Hkexp
�
i
(k¡N)2�x

2L

�#
: (69)

Using the odd symmetry of Hk, i.e., Hk = ¡HN¡k, the above expansion is
written as

h(x)= 1
N

"X
k=1

n

Hkexp
�
i
k2�x
2L

�
¡
X

k=n+2

2n+1

HN¡kexp
�
i
(k¡N)2�x

2L

�#
: (70)

Define k 0= 2n+ 2¡ k, and note that N = 2(n+ 1), then the above expression
is written as

h(x)= 1
2(n+1)

"X
k=1

n

Hkexp
�
i
k2�x
2L

�
¡
X
k 0=n

1

Hk 0exp
�
i
(¡k 0)2�x

2L

�#
: (71)
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i.e.,

h(x)= 1
2(n+1)

X
k=1

n

Hk

�
exp
�
i
k2�x
2L

�
¡ exp

�
¡i k2�x

2L

��
; (72)

which is simplified as

h(x)= 1
2(n+1)

X
k=1

n

2iHksin
�
k2�x
2L

�
: (73)

As a convention, we prefer that the summation index begins from 0 and ends
at n¡ 1. Then expression (73) is written as

h(x)= 1
2(n+1)

X
k=0

n¡1

2iHk+1sin
�
(k+1)2�x

2L

�
Using the relation between DST and DFT, i.e., Hk+1=¡iYk, the above equa-
tion is written as

h(x)= 1
n+1

X
k=0

n¡1

Yksin
�
(k+1)2�x

2L

�
: (74)

This is the formula for constructing the continuous function using the DST
data. This formula is an expansion over the basis functions sin[(k + 1)�x/L]
with the DST Yk acting as the expansion coefficients. Therefore the direct
meaning of the DST, Yk, is that they are the expansion coefficients when using
sin(k�x/L) as the basis functions to approximate a function in the domain [0;
L]. From Fig. 5, we know that the interval length L is given by L= (n+ 1)�,
where � is the uniform spacing between the original n sampling points.

6.3.1 Inverse DST
Evaluate the function in Eq. (74) at xj = (j + 1)� with j = 0; 1; :::; n ¡ 1,

then we obtain

h(xj) = 1
n+1

X
k=0

n¡1

Yksin
�
(k+1)2�(j+1)�

2L

�

= 1
n+1

X
k=0

n¡1

Yksin
�
(k+1)�(j+1)

(n+1)

�
: (75)

It can be proved that h(xj) in the above equation exactly recover hj used in
defining the DST Yk. Therefore Eq. (75) is the Inverse Discrete Sine Trans-
form.

6.4 Discrete Cosine transform

to be written
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7 Misc content

7.1 Nonlinear process

The trigonometric identity

2cos2(!t)= 1+ cos(2!t); (76)

indicates that nonlinear interaction between two waves of the same frequency
generates zero frequency component and its second harmonic. The process of
generating of second-harmonic is also called frequency doubling.

7.2 Aliasing errors

Signals that are not band-limited usually contains all frequencies and thus do
not satisfy the condition required by the sampling theorem (i.e., H(f) = 0 for
jf j > 1 / (2�)). In this case, for any given N data, we can still calculate its
DFT by using Eq. (34). However the results obtained are meaningful only
when Hn approaches zero as the frequency approaches ¡1 / (2�) from above
and approaches 1 / (2�) from below, i.e., only when the results obtained are
consistent with the assumption used to obtain the results (the assumption is
that H(f) = 0 for jf j> 1/(2�)). When the results obtained do not satisfy the
above condition, then it indicates that the �aliasing errors� have contributed to
the results. We can reduce the aliasing errors by increasing the sampling fre-
quency. The aliasing errors can be reduced but can not be completely
removed for a non-band-limited signal.

In signal processing and related disciplines, aliasing is an effect that
causes different signals to become indistinguishable (or aliases of one another)
when sampled. It also often refers to the distortion or artifact that results
when a signal reconstructed from samples is different from the original contin-
uous signal.

An alias is a false lower frequency component that appears in sampled
data acquired at too low a sampling rate.

Aliasing errors are hard to detect and almost impossible to remove using
software. The solution is to use a high enough sampling rate, or if this is not
possible, to use an anti-aliasing filter in front of the analog-to-digital converter
(ADC) to eliminate the high frequency components before they get into the
data acquisition system.

When a digital image is viewed, a reconstruction is performed by a display
or printer device, and by the eyes and the brain. If the image data is
processed in some way during sampling or reconstruction, the reconstructed
image will differ from the original image, and an alias is seen.

Aliasing can be caused either by the sampling stage or the reconstruction
stage; these may be distinguished by calling sampling aliasing (prealiasing)
and reconstruction aliasing (postaliasing).
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In video or cinematography, temporal aliasing results from the limited
frame rate, and causes the wagon-wheel effect, whereby a spoked wheel
appears to rotate too slowly or even backwards. Aliasing has changed its
apparent frequency of rotation. A reversal of direction can be described as a
negative frequency. Temporal aliasing frequencies in video and cinematog-
raphy are determined by the frame rate of the camera, but the relative inten-
sity of the aliased frequencies is determined by the shutter timing (exposure
time) or the use of a temporal aliasing reduction filter during filming.

7.3 Relation between Fourier series coefficients and DFTs

In the above, we go through the process �Fourier series!Fourier transforma-
tion !DFT�, which corresponds to going from the discrete case (Fourier
series) to the continuous case (Fourier transformation), and then back to the
discrete case (DFT). Since both Fourier series and DFT are discrete in fre-
quency, it is instructive to examine the relation between the Fourier coefficient
cn and the DFT Hn. The Fourier coefficient of h(t) is given by Eq. (93), i.e.,

cn=
1
T

Z
¡T /2

T /2

h(t)ein2�t/Tdt; (77)

which can be equivalently written

c(fn)=
1
T

Z
¡T /2

T /2

h(t)ei2�tfndt; (78)

where fn = n / T . On the other hand, if h(t) is sampled with sampling rate
fs = 1/�, then the number of sampling points per period is N = T /�. Then
the frequency at which the Fourier transform H(f) is evaluated in getting the
DFT [Eq. (36)] is written

fn=
n
�N

= n
T
; (79)

which is identical to the frequency to which the Fourier coefficient cn corre-
sponds. Using fn=n/(�N) in Eq. (78), we obtain

c(fn) = 1
T

Z
¡T /2

T /2

h(t)exp
�
i2�tn
�N

�
dt:

� 1
T
�
X
j=0

N¡1

hjexp
�
2�i
N

nj

�
(80)

= 1
T
�Hn

= 1
N
Hn (81)

i.e., dividing the DFT Hn by N gives the corresponding Fourier expansion
coefficient cn. We can further use Eqs. (29) and (30) to recover the Fourier
coefficients in terms of trigonometric functions cosine and sine,
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Note that the approximation in Eq. (80) becomes an exact relation if the
largest frequency contained in h(t) is less than 1/(2�).

A Efficient method of computing DFT: Fast Fourier
Transformation (FFT) algorithm (not finished)

The Fast Fourier Transform algorithm (FFT) makes the DFT fast enough
to solve many real-life problems, which makes FFT be among the top algo-
rithms that have changed the world. The FFT algorithm remained mysterious
to me for many years until I read Cooley and Tukey's original paper (An algo-
rithm for the machine calculation of complex Fourier series), which turns out
to be a very concise paper and easy to follow.

The DFT is defined by Eq. (34), i.e.,

Hj�
X
k=0

N¡1

W kjhk; (82)

where W = exp(2�i/N). Equations (82) indicates that the DFT is the multi-
plication of a transformation matrix Mkj � W kj with a column vector hk,
where the transformation matrix Mkj is symmetric and called DFT matrix. In
the matrix form, the DFT is written as0BBBBBBBBBBBBBB@

H1

H2

H3

H4
���

HN¡1

1CCCCCCCCCCCCCCA=

0BBBBBBBBBBBBBBBBBB@

1 1 1 1 ::: 1

1 W 1 W 2 W 3 ::: WN¡1

1 W 2 W 4 W 6 ::: W 2(N¡1)

1 W 3 W 6 W 9 ::: W 3(N¡1)

��� ��� ��� ��� ��� ���
1 WN¡1 W 2(N¡1) W 3(N¡1) ::: W (N¡1)(N¡1)

1CCCCCCCCCCCCCCCCCCA

0BBBBBBBBBBBBBB@

h1
h2
h3
h4
���

hN¡1

1CCCCCCCCCCCCCCA (83)

If directly using the definition in Eq. (83) to compute DFT, then a matrix
multiplication need to be performed, which requires O(N2) operations. Here
the powers of W are assumed to be pre-computed, and we define �an opera-
tion� as a multiplication followed by an addition.

The Fast Fourier Transformation (FFT) algorithm manage to reduce the
complexity of computing the DFT from O(N2) to O(N log2N) by factoring
the DFT matrix Mkj into a product of sparse matrices.

Suppose N is a composite, i.e., N = r1 � r2. Then the indices in Eq. (82)
can be expressed as

j= j1r1+ j0; j0=0; 1; :::; r1¡ 1; j1=0; 1; :::; r2¡ 1 (84)

k= k1r2+ k0; k0=0; 1; :::; r2¡ 1; k1=0; 1; :::; r1¡ 1 (85)

Then, one can write

H(j0; j1)=
X
k0

X
k1

h(k0; k1)W (jk1r2+jk0); (86)
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Noting that

W jk1r2=W j1r1k1r2+j0k1r2=W j0k1r2 (87)

Eq. () is written as

H(j0; j1)=
X
k0

 X
k1

h(k0; k1)W (j0k1r2)

!
W (jk0); (88)

where the inner sum over k1 is independent of j1 and can be defined as a new
array

h1(j0; k0)=
X
k1

h(k0; k1)W (j0k1r2): (89)

Then

H(j0; j1)=
X
k0

h1(j0; k0)W (j1r1+j0)k0; (90)

There are N elements in the array h1, each requiring r1 operations, giving a
total of Nr1 operation to obtain h1. Similarly, it takes Nr2 operations to cal-
culate H from h1. Therefore, this two-step algorithm requires a total of
N(r1+ r2) operations.

B Fourier series!Fourier transformation

B.1 From discrete spectrum to continuous spectrum

The Fourier series discussed above indicates that a periodic function is com-
posed of discrete spectrum and is written as

h(t)=
X

n=¡1

1

cnexp
�
i
n2�
T

t

�
; (91)

where T is the period of h(t). The nth term of the above Fourier series corre-
sponds to a harmonic of frequency

fn=
n
T
; (92)

and the expansion coefficient cn is given by

cn=
1
T

Z
¡T /2

T /2

h(t)exp
�
¡i n2�

T
t

�
dt: (93)

In terms of fn, the coefficient in Eq. (93) is written

cn= c(fn)=
1
T

Z
¡T /2

T /2

h(t)exp(¡i2�fnt)dt (94)
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In terms of fn, the Fourier series in Eq. (91) is written

h(t) =
X

n=¡1

1

c(fn)ei2�tfn

= T
X

n=¡1

1

c(fn)ei2�tfn
1
T

(95)

Note that c(fn)ei2�tfn is the value of function c(f)ei2�tf at f = fn. Further
note that the interval between fn and fn+1 is 1 /T . Thus the above summa-
tion is the rectangular formula for numerically calculating the integrationR
¡1
1

c(f)ei2�tfdf . Therefore, equation (95) can be approximately written as

h(t)�T
Z
¡1

1
c(f)ei2�tfdf ; (96)

which will become exact when the interval 1/T ! 0, i.e., T !1. Therefore,
for the case T!1, the Fourier series exactly becomes

h(t)=T
Z
¡1

1
c(f)ei2�tfdf ; (97)

where c(f) is given by Eq. (94), i.e.,

c(f)= 1
T

Z
¡T /2

T /2

h(t)e¡i2�tfdt: (98)

Note that the function h(t) given in Eq. (97) is proportional to Tc(f) while
the function c(f) given in Eq. (98) is proportional to 1/T . Since T !1, it is
desired to eliminate the T and 1 /T factors in Eqs. (97) and (98), which can
be easily achieved by defining a new function

H(f)=Tc(f): (99)

Then equations (97) and (98) are written as

h(t)=
Z
¡1

1
H(f)ei2�tfdf ; (100)

H(f)=
Z
¡T /2

T /2

h(t)e¡i2�tfdt=
Z
¡1

1
h(t)e¡i2�tfdt; (101)

Equations (100) and (101) are the Fourier transformation pairs discussed in
the next section.

B.2 Fourier transformation

As discussed above, the Fourier transformation of a function h(t) is given by

H(f)=
Z
¡1

1
h(t)ei2�ftdt: (102)
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Once the Fourier transformation H(f) is known, the original function h(t) can
be reconstructed via

h(t)=
Z
¡1

1
H(f)e¡i2�ftdf: (103)

[Note that the signs in the exponential of Eq. (100) and (101) are oppo-
site. Which one should be minus or positive is actually a matter of convention
because a trivial variable substitution f 0 = ¡f can change the sign between
minus and positive. Proof. In terms of f 0, Eq. (103) is written

h(t) =
Z
1

¡1
H(¡f 0)ei2�tf 0d(¡f 0);

=
Z
¡1

1
H(¡f 0)ei2�tf 0df 0; (104)

Define

H(f 0) � H(¡f 0)

=
Z
¡1

1
h(t)e¡i2�tf

0
dt: (105)

Then Eq. (104) is written

h(t)=
Z
¡1

1
H(f 0)ei2�tf

0
df 0 (106)

The signs in the exponential of Eqs. (105) and (106) are opposite to Eqs.
(102) and (103), respectively.]

[Some physicists prefer to use the angular frequency ! � 2�f rather than
the frequency f to represent the Fourier transformation. Using !, equations.
(102) and (103) are written, respectively, as

H(!)=
Z
¡1

1
h(t)ei!tdt; (107)

h(t)= 1
2�

Z
¡1

1
H(!)e¡i!td!; (108)

where we see that the asymmetry between the Fourier transformation and its
inverse is more severe in this representation: besides the opposite-sign in the
exponents, there is also a 1/2� factor difference between the Fourier transfor-
mation and its inverse. Whether the 1 / 2� factor appears at the forward
transformation or inverse one is actually a matter of convention. The only
requirement is that the product of the two factors in the forward and inverse
transformation is equal to 1 / 2�. To obtain a more symmetric pair, one can
adopt a factor 1 / 2�

p
at both the forward and inverse transformation. The

representation in Eqs. (102) and (103) is adopted in this note. But we should
know how to change to the ! representation when needed.]
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[Z
¡1

1 dh(t)
dt

e¡i2�tfd t = h(t)e¡i2�tf j¡1+1 ¡
Z
¡1

1
h(t)de

¡i2�tf

dt
d t =

¡
Z
¡1

1
h(t)de

¡i2�tf

dt
dt= i2�f

Z
¡1

1
h(t)e¡i2�tfdt= i2�fH(f) (109)

]

B.3 Numerical computation of Fourier transformation

Next, consider how to numerically compute the Fourier transformation of a
function h(t). A simple way is to use the rectangle formula to approximate
the integration in Eq. (102), i.e.,

H(f)��
X

j=¡1

1

hjexp(i2�fj�); (110)

where hj = h(tj) and tj = j� with j = :::;¡2;¡1; 0; 1; 2; :::. Note Eq. (110) is
an approximation, which will become exact if � ! 0. In practice, we can
sample h(t) only with a nonzero �. Therefore Eq. (110) is usually an approxi-
mation. Do we have some rules to choose a suitable � so that Eq. (110) can
become a good approximation or even an exact relation? This important ques-
tion is answered by the sampling theorem, which sates that a suitable � to
make Eq. (110) exact is given by � 6 1 / (2fc), where fc is the largest fre-
quency contained in h(t) (i.e., H(f)= 0 for jf j> fc).

B.4 Sampling theorem

In computational and experimental work, we know only a list of values h(tj)
sampled at discrete values of tj. Let us suppose that h(t) is sampled with uni-
form interval between consecutive points:

hj=h(tj); tj= j�; j= :::;¡2;¡1; 0; 1; 2; ::: (111)

The sampling rate is defined by fs = 1/�. The sampling theorem states that:
If the Fourier transformation of function h(t), H(f), has the following prop-
erty

H(f)= 0 for jf j> fc (112)

then sampling h(t) with the sampling rate fs > 2fc (i.e., � 6 1 / (2fc)) will
completely determine h(t), which is given explicitly by the formula

h(t)=�
X

j=¡1

1

hj
sin[2�fc(t¡ j�)]

�(t¡ j�) : (113)
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We will not concern us here with the proof of the sampling theorem and
simply start working with Eq. (113) to derive the concrete expression for the
Fourier transformation of h(t). Substituting the expression (113) for h(t) into
the Fourier transformation (102), we obtain the explicit form of the Fourier
transformation of h(t):

H(f) �
Z
¡1

1
h(t)exp(i2�ft)dt;

= �
X

j=¡1

1

hj

Z
¡1

1 sin[2�fc(t¡ j�)]
�(t¡ j�) exp(i2�ft)dt;

= �
X

j=¡1

1

hjexp(i2�fj�)
Z
¡1

1 sin[2�fc(t¡ j�)]
�(t¡ j�) exp[i2�f (t¡ j�)]dt;

= �
X

j=¡1

1

hjexp(i2�fj�)
Z
¡1

1 sin[2�fc� ]
��

exp[i2�f� ]d� : (114)

With the help of Wolfram Mathematica, the integration in Eq. (114) is evalu-
ated analytically, givingZ

¡1

1 sin[2�fc� ]
��

exp(i2�f�)d� =
�
0 For jf j> fc
1 For jf j< fc

: (115)

Using this, Eq. (114) is written

H(f)=

8>><>>:
0 for jf j> fc

�
X

j=¡1

1

hjexp(i2�fj�) for jf j6 fc ; (116)

which shows that H(f) = 0 for jf j > fc, which is consistent with the assump-
tion of sampling theorem, i.e., H(f) has the property given in Eq. (112). The
second line of Eq. (116) is identical to Eq. (110) except that Eq. (116) in this
case is exact while Eq. (110) is only approximate. In other words, if � 6 1 /
(2fc), then the Fourier transformation is exactly given by Eq. (116), where fc
is the largest frequency contained in h(t) (i.e., H(f)= 0 for jf j> fc).

C 2D Fourier series

Compared with Eq. (1) that uses the trigonometric functions, Fourier series
(15) and (16), which is expressed in terms of the complex exponential function
ein�x/L, is more compact. The convenience introduced by the complex expo-
nential function is more obvious when we deal with multiple-dimensional
cases. For example, a two-dimensional function G(x; y) can be expanded as
Fourier series about x,

G(x; y)=
X

m=¡1

1

cm(y)eim�x/Lx; (117)
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where 2Lx is the period of G in x direction. The expansion coefficients cm(y)
can be further expanded as Fourier series about y,

cm(y)=
X

n=¡1

1

(cmnein�y/Ly); (118)

where 2Ly is the period of G in y direction, and the coefficients cmn is given
by

cmn = 1
2Ly

Z
¡Ly

Ly
�

1
2Lx

Z
¡Lx

Lx

G(x; y)e¡im�x/Lxdx
�
e¡in�y/Lydy:

= 1
4LxLy

Z
¡Ly

Ly
Z
¡Lx

Lx

G(x; y)e¡im�x/Lx¡in�y/Lydxdy: (119)

Using Eq. (118) in Eq. (117), we obtain

G(x; y)=
X

m=¡1

1 X
n=¡1

1

cmne
in�y/Ly+im�x/Lx; (120)

Equations (120) and (119) give the two-dimensional Fourier series of G(x; y).

C.1 For 2D real-valued functions

The formula for expanding a real-valued two-dimensional function G(x; y) in

terms of basis functions cos
�
m�x

Lx
+ n�y

Ly

�
and sin

�
m�x

Lx
+ n�y

Ly

�
can be readily

recovered from Eqs. (120) and (119). For notation ease, define

�= m�x
Lx

+ n�y
Ly

: (121)

Then Eq. (120) is written as

G(x; y) =
X

m=¡1

1 X
n=¡1

1

cmn[cos�+ i sin�]

=
X

m=¡1

1 X
n=¡1

1 �
1

4LxLy

Z
¡Ly

Ly
Z
¡Lx

Lx

G(x; y)cos�dxdy
�
[cos�+ i sin�]

+
X

m=¡1

1 X
n=¡1

1 �
1

4LxLy

Z
¡Ly

Ly
Z
¡Lx

Lx

G(x; y) sin�dxdy
�
[¡i cos� +

sin�];

Sine G(x; y) is assumed to be real-valued, the imaginary parts of the above
expression will cancel each other. Therefore, the above expansion is simplified
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to

G(x; y) =
X

m=¡1

1 X
n=¡1

1

[
�

1
4LxLy

Z
¡Ly

Ly
Z
¡Lx

Lx

G(x; y)cos�dxdy
�
cos�

+
�

1
4LxLy

Z
¡Ly

Ly
Z
¡Lx

Lx

G(x; y)sin�dxdy
�
sin�]: (122)

This is a compact Fouier expansion for 2D real-valued function. Furthermore,
noting that (m; n) term is equal to (¡m; ¡n) term, the above expansion can
be further reduced to

G(x; y) =
X

n=¡1

1 X
m=0

1

Gnm
c cos�+Gnm

s sin�; (123)

with

G00
c = 1

4LxLy

Z
¡Ly

Ly
Z
¡Lx

Lx

G(x; y)dxdy: (124)

and the other coefficients given by

Gmn
c = 1

2LxLy

Z
¡Ly

Ly
Z
¡Lx

Lx

G(x; y)cos�dxdy: (125)

Gmn
s = 1

2LxLy

Z
¡Ly

Ly
Z
¡Lx

Lx

G(x; y)sin�dxdy: (126)

Here the range of m is reduced to [0: +1]. In this case, we have an edge case,
G00
c , that needs special treatment. We see that allowing the index runing from

¡1 to ¡1 has the advantage of that there are no edge cases that needs spe-
cial treatment.

C.2 2D real-valued Fourier series derived directly from real-valued
trigonometric functions expansion� to be deleted, because
there is an easier way to do this, as is given by the above sec-
tion

We see that the extension of Fourier series from one-dimension case to two-
dimension case is straightforward when expressed in terms of the complex
exponential function ein�x/L. However, if we use sin(m�x/Lx), cos(m�x/Lx),
sin(n�y /Ly), and cos(n�y /Ly) as basis functions, the derivation of the two-
dimensional Fourier series of G(x; y) is a little complicated (product-to-sum
trigonometric identities are involved to simplify the results). Let's see the
derivation. A two-dimensional function G(x; y) can be first expanded as
Fourier series about x,

G(x; y)=
X
m=1

1

am(y)cos
�
m�
Lx

x

�
+
X
m=1

1

bm(y)sin
�
m�
Lx

x

�
; (127)
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(the zero-frequency component is dropped, will take it back later) and then
the two coefficients am(y) and bm(y) can be further expanded as Fourier series
about y,

am(y)=
X
n=1

1

amn
(a) cos

�
n�
Ly
y

�
+
X
n=1

1

bmn
(a) sin

�
n�
Ly
y

�
; (128)

bm(y)=
X
n=1

1

amn
(b) cos

�
n�
Ly
y

�
+
X
n=1

1

bmn
(b) sin

�
n�
Ly
y

�
; (129)

(the zero-frequency component is dropped, will take it back later) Substituting
Eq. (128) and (129) into Eq. (127), we obtain

G(x; y) =
X
m=1

1 "X
n=1

1

amn
(a) cos

�
n�
Ly
y

�
+
X
n=1

1

bmn
(a) sin

�
n�
Ly
y

�#
cos
�
m�
Lx

x

�

+
X
m=1

1 "X
n=1

1

amn
(b) cos

�
n�

Ly
y

�
+

X
n=1

1

bmn
(b) sin

�
n�
Ly
y

�#
sin
�
m�
Lx

x

�
: (130)

Using the product-to-sum trigonometric identities, equation (130) is written

G(x; y) = 1
2

X
m=1

1 X
n=1

1

amn
(a)

�
cos
�
m�
Lx

x+ n�
Ly
y

�
+ cos

�
m�
Lx

x¡ n�
Ly
y

��
+ 1

2

X
m=1

1 X
n=1

1

bmn
(a)

�
sin
�
m�
Lx

x+ n�
Ly
y

�
+ sin

�
m�
Lx

x¡ n�
Ly
y

��
+ 1

2

X
m=1

1 X
n=1

1

amn
(b)

�
sin
�
m�
Lx

x+ n�
Ly
y

�
¡ sin

�
m�
Lx

x¡ n�
Ly
y

��
+ 1

2

X
m=1

1 X
n=1

1

bmn
(b)

�
cos
�
m�
Lx

x¡ n�
Ly
y

�
¡ cos

�
m�
Lx

x+ n�
Ly
y

��
which can be organized as

G(x; y) =
X
m=1

1 X
n=1

1
1
2
�
amn
(a) ¡ bmn

(b) �cos�m�
Lx

x+ n�
Ly
y

�
+

X
m=1

1 X
n=1

1
1
2
�
bmn
(a) + amn

(b) �sin�m�
Lx

x+ n�
Ly
y

�
+

X
m=1

1 X
n=1

1
1
2
�
amn
(a) + bmn

(b) �cos�m�
Lx

x¡ n�
Ly
y

�
+

X
m=1

1 X
n=1

1
1
2
�
bmn
(a) ¡ amn

(b) �sin�m�
Lx

x¡ n�
Ly
y

�
(131)
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The coefficients appearing above are written as

am(y)=
1
Lx

Z
¡Lx

¡Lx
G(x; y)cos

�
m�

Lx
x

�
dx (132)

bm(y)=
1
Lx

Z
¡Lx

¡Lx
G(x; y)sin

�
m�
Lx

x

�
dx (133)

amn
(a) = 1

Lx

1
Ly

Z
¡Ly

¡LyZ
¡Lx

¡Lx
G(x; y)cos

�
m�
Lx

x

�
cos
�
n�
Ly
y

�
dxdy (134)

amn
(b) = 1

Lx

1
Ly

Z
¡Ly

¡LyZ
¡Lx

¡Lx
G(x; y)cos

�
m�
Lx

x

�
sin
�
n�
Ly
y

�
dxdy (135)

bmn
(a) = 1

Lx

1
Ly

Z
¡Ly

¡LyZ
¡Lx

¡Lx
G(x; y)sin

�
m�
Lx

x

�
cos
�
n�
Ly
y

�
dxdy (136)

bmn
(b) = 1

Lx

1
Ly

Z
¡Ly

¡LyZ
¡Lx

¡Lx
G(x; y)sin

�
m�
Lx

x

�
sin
�
n�
Ly
y

�
dxdy (137)

Noting that bm;¡n
(b) =¡bm;n

(b) , and am;¡n
(b) =¡am;n

(b) and sin(0)= 0, then Eq. (131)
can be written as

G(x; y) =
X
m=1

1 X
n=¡1

1
1
2
�
amn
(a) ¡ bmn

(b) �cos�m�
Lx

x+ n�

Ly
y

�

+
X
m=1

1 X
n=¡1

1
1
2
�
bmn
(a) + amn

(b) �sin�m�
Lx

x+ n�
Ly
y

�
: (138)

The coefficients can be further written as

cmn � 1
2
�
amn
(a) ¡ bmn

(b) �
= 1

2
1
Lx

1
Ly

Z
¡Ly

¡LyZ
¡Lx

¡Lx
G(x; y)

�
cos
�
m�
Lx

x

�
cos
�
n�
Ly

y

�
¡

sin
�
m�

Lx
x

�
sin
�
n�

Ly
y

��
dxdy

= 1
2
1
Lx

1
Ly

Z
¡Ly

¡LyZ
¡Lx

¡Lx
G(x; y)cos

�
m�

Lx
x+ n�

Ly
y

�
dxdy: (139)
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smn � 1
2
�
bmn
(a) + amn

(b) �
= 1

2
1
Lx

1
Ly

Z
¡Ly

¡LyZ
¡Lx

¡Lx
G(x; y)

�
sin
�
m�
Lx

x

�
cos
�
n�
Ly

y

�
+

cos
�
m�
Lx

x

�
sin
�
n�
Ly
y

��
dxdy

= 1
2
1
Lx

1
Ly

Z
¡Ly

¡LyZ
¡Lx

¡Lx
G(x; y)sin

�
m�
Lx

x+ n�
Ly
y

�
dxdy: (140)

Then comes the drudgery to handle the special cases of m = 0 and/or n =
0. The final results are identical to Eqs. (123)-(126). This kind of derivation is
also discussed in my notes on mega code.

D Details on FFT codes provided by the Numerical
recipes book[2]

The following is about a specific FFT subroutine provided by the Numerical
recipes book[2]. This is not a general case.

The input and output of the DFT are usually complex numbers. In the
implementation of FFT algorithm provided by Numerical recipes book[2], to
avoid using complex numbers, the algorithm adopts the real number represen-
tation of the complex numbers. In this scheme, two elements of a real number
array are used to store one complex number. To store a complex array �cdata�
of length N , we will need a real number array �rdata� of length 2N . The first
elements of array �rdata� will contain the real part of �cdata(1)�, the second
elements of �rdata� will contain the imaginary part of �cdata(1)�, and so on.

To test the correctness of the above statement, I generated a real number
array with length N = 2� 28 by using a random generating routine and calcu-
late the DFT of the array with two methods. The real array generated by the
random generator are considered to be a real number representation of a com-
plex array with length N / 2. Using the real array as the input of the FFT
routine (the code in ~/project_new/fft). To check the correctness of my
understanding of the input and output of the FFT, I manually convert the
real number of length N to a complex array with length N / 2, and use
directly the summation in Eq. () to calculate the DFT. The output I got is
obviously a complex array with length N / 2. Then I manually convert the
complex array to a real number array of length N and plot the output in Fig.
6 with dashed line. The results in Fig. 6 indicates the results given by the
FFT and the naive method used by me agree with each other well. This
proves that my understanding of the input and output of FFT (especially the
storage arrangement) is correct.
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Figure 6. The output of a FFT routine (solid line) agrees well with those (dashed
line) calculated by directly evaluate the summation in Eq. () (the latter is coded by
me). The agreement indicates my understanding of the output of FFT (especially
the storage arrangement) is correct. Here the time domain data is generated by a
random generating routine.

To clearly show the output of FFT, we recover the real and imaginary part
of DFT from the output of FFT and plots the data as a function of their cor-
responding frequency. The results are given in Fig. 7.
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Figure 7. The real (left) and imaginary (right) part of the discrete Fourier transformation as a function of the
frequency. The point n=¡128 corresponds to frequency ¡fs/2 while the point n= 128 corresponds to frequency
+fs/2, where fs=1/� with � is the sample interval in time domain. The time domain data is the same as used
in Fig. 6. Why is there a spike at zero frequency?
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D.1 Computing Fourier integrals using FFT (not finished, to be
deleted)

Consider the calculation of the following integral:

I(!)=
Z
a

b

ei!th(t)dt: (141)

Divide the interval [a; b] into M uniform sub-intervals and define

�= b¡ a
M

; tj= a+�j ; hj=h(tj); j=0; 1; 2; :::;M (142)

Then the integration in Eq. (141) can be approximated as

I(!)��
X
j=0

M¡1

hjexp(i!tj): (143)

Define !m=2�m/(M�) with integer m and ¡M /2<m<M /2. Consider the
calculation of I(!m). Using Eq. (143), we obtain

I(!m) = �
X
j=0

M¡1

hjexp[i!m(a+�j)]

= �ei!ma
X
j=0

M¡1

hjexp(i!m�j)

= �ei!ma
X
j=0

M¡1

hjexp
�
i
2�m
M

j

�
= �ei!maHm (144)
= �ei!ma[DFT(h0; h1; h2; :::; hM¡1)]m: (145)

Equation (145) indicates the value of the integration I(!m) can be obtained
by calculating the discrete Fourier transformation of hj. However, as discussed
in Ref. [2], equation (145) is not recommended for practical use because the
oscillatory nature of the integral will make Eq. (145) become systematically
inaccurate as ! increases. Next, consider a new method, in which h(t) is
expanded as

h(t)�
X
j=0

M

hj 
�
t¡ tj
�

�
+

X
j=endpoints

hj'j
�
t¡ tj
�

�
(146)

Apply the integral operator
R
a

b
dt exp(i!t) to both sides of Eq. (146), we obtainZ

a

b

h(t)ei!td t �
X
j=0

M

hj

Z
a

b

 
�
t¡ tj
�

�
ei!td t +X

j=endpoints

hj

Z
a

b

'j

�
t¡ tj
�

�
ei!tdt: (147)
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Make the change of variables s = (t ¡ tj)/� in the first integral and s = (t ¡
a)/� in the second integral, the above equation is written asZ
a

b

h(t)ei!td t � �
X
j=0

M

hj

Z
a

b

 (s)ei!(�s+tj)d s + �
X

j=endpoints

hj

Z
a

b

'j(s ¡

j)ei!(�s+a)ds (148)

Define �=!� and make use of tj= a+ j�, the above equation is written asZ
a

b

h(t)ei!tdt � �ei!a
X
j=0

M

hje
i�j

Z
a

b

 (s)ei�sds + �ei!a
X

j=endpoints

hj

Z
a

b

'j(s ¡

j)ei�sds (149)

Define

W (�)=
Z
a

b

 (s)ei�sds (150)

�j(�)=
Z
a

b

'j(s¡ j)ei�sds (151)

Then Eq. (149) is written asZ
a

b

h(t)ei!tdt��ei!a
24W (�)

X
j=0

M

hje
i�j+

X
j=endpoints

hj�j(�)

35: (152)
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Figure 8. Older version of Fig. (), created by Metapost, the new version is created by the vector
graphic editor in TeXmacs.
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