
Fourier analysis
by Youjun Hu

Institute of Plasma Physics, Chinese Academy of Sciences
Email: yjhu@ipp.cas.cn

Abstract

These notes review the basic theory of Fourier analysis. The emphasis is on the content
that are necessary for one to correctly interpret and use the output of FFT computer
libraries (e.g. FFTW).

1 Introduction

These notes were written when I was developing numerical codes that need to use FFT libraries.
Like all physics majors, I learned the Fourier series and Fourier transform in calculus courses
when I was a undergraduate student. To apply this important mathematical method in practice,
one additional necessary step is to know the Discrete Fourier Transform (DFT) and its fast
numerical implementation, i.e., Fast Fourier Transform algorithm (FFT). There are many online
material discussing these topics and I read some of them. But �nally I found that I need to
derive all the relevant formulas step by step by myself to convince myself that I fully understand
the DFT and its many variations, such as discrete sine transform, and I am correctly using the
output of FFT libraries.

Although the Fast Fourier Transform algorithm (FFT) is among the top ten algorithms that
have changed the world, we do not need to know the details about this algorithm itself, which is
essentially an e�cient way of computing the summation involved in the DFT. What we need to
know is how the DFT is de�ned (so that we know how it can be used) and how it is related to
the output of the various subroutines in various FFT computer libraries (e.g. FFTW). This is
the emphasis of these notes, which give step by step derivation of the de�nition of DFT and its
variation, the discrete sine transform.

2 Fourier series

2.1 Fourier series in terms of trigonometric functions cosine and sine

If h(x) is a function of period 2L, then it can be proved that h(x) can be expressed as the fol-
lowing series

h(x)=
X
n=0

1

ancos
�
n�
L
x
�
+

X
n=1

1

bnsin
�
n�
L
x
�
; (1)

which is called the Fourier series. It is not trivial to prove the above statement (what is needed
in the proof is to prove that the set of functions cos(n�x/L) and sin(n�x/L) with n= 0; 1; :::1
is a �complete set�). We will not concern us here with this proof and simply start working with
the Fourier series in Eq. (1). At this point it is not clear yet what the coe�cients an and bn are.
Taking product of Eq. (1) with cos(j�x/L) and sin(j�x/L), respectively, and then integrating
form ¡L to L, we obtain

a0=
1
2L

Z
¡L

L

h(x)dx; (2)

1

and

aj=
1

L

Z
¡L

L

h(x)cos
�
j�

L
x

�
dx; (3)

bj=
1
L

Z
¡L

L

h(x)sin
�
j�
L
x

�
dx; (4)

for j > 1. In order to make the coe�cients an be uniformly expressed by Eq. (3), we modify the
Fourier series to the following form

h(x)=
a0
2
+

X
n=1

1

ancos
�
n�
L
x
�
+

X
n=1

1

bnsin
�
n�
L
x
�
: (5)

Then it is obvious that the coe�cients a0 can be evaluated by using Eq. (3). Note that h(x) can
be a complex-valued function (the independent variable x is still a real number). In this case,
the coe�cients an and bn are complex numbers.

2.2 Fourier series in terms of complex-valued basis functions ein�x/L

The Fourier series can also be expressed in terms of the complex-valued basis functions ein�x/L.
Next, we derive this form of the Fourier series. Using Euler's formula (this is a bridge between
representations using real numbers and complex numbers)

cos
�
n�
L
x
�
=
ein�x/L+ e¡in�x/L

2
(6)

and

sin
�
n�
L
x
�
=
ein�x/L¡ e¡in�x/L

2i
(7)

in Eq. (5), we obtain

h(x)=
a0
2
+

X
n=1

1

an
ein�x/L+ e¡in�x/L

2
+

X
n=1

1

bn
ein�x/L¡ e¡in�x/L

2i
; (8)

which can be further written

h(x)=
a0
2
+

X
n=1

1 ��
an¡ ibn

2

�
ein�x/L+

�
an+ ibn

2

�
e¡in�x/L

�
: (9)

De�ne

cn=
an¡ ibn

2
; c¡n=

an+ ibn
2

; (10)

where n=0; 1; 2; :::; , and note b0=0, then Eq. (9) is written

h(x)=
X

n=¡1

1

cne
in�x/L: (11)

Furthermore, using the expression of an and bn, we �nd that cn and c¡n in Eq. (10) can be uni-
formly expressed as

cn=
1
2L

Z
¡L

L

h(x)e¡in�x/Ldx: (12)

Equations (11) along with Eq. (12) gives a compact form of the Fourier series[1]. In this expan-
sion, n is an integer from negative in�nity to positive in�nity, which is di�erent from Eq. (1),
where n is from zero to postive in�nity.

2 Section 2

On the other hand, using Eq. (10), the coe�cients an and bn appearing in Eq. (1) can be
recovered from cn by

an= cn+ c¡n; (13)

bn= i (cn¡ c¡n): (14)

Note that if h(x) is real, then the coe�cients an and bn are real while the coe�cient cn are com-
plex-valued. In this case, equation (10) implies that cn and c¡n are complex conjugates.

[In the above, we use the basis functions ein�x/L to expand h(x). If we choose the basis func-
tions to be e¡in�x/L, then it is ready to verify that the Fourier series are written

h(x) =
X

n=¡1

1

cne
¡in�x/L; (15)

with cn given by

cn=
1

2L

Z
¡L

L

h(x)ein�x/Ldx: (16)

In this case, the coe�cients an and bn can be recovered from cn by

an= cn+ c¡n (17)

bn=¡i(cn¡ c¡n) (18)

In using the Fourier series, we should be aware of which basis functions are used.]

3 From discrete spectrum to continuous spectrum: Fourier
series!Fourier transformation

The Fourier series discussed above indicates that a periodic function is composed of discrete
spectrum and is written as

h(t)=
X

n=¡1

1

cne
in2�t/T ; (19)

where T is the period of h(t). The nth term of the above Fourier series corresponds to a har-
monic with frequency

fn=
n
T
; (20)

and the expansion coe�cient cn is given by

cn=
1
T

Z
¡T /2

T/2

h(t)e¡in2�t/Tdt: (21)

In terms of fn, the coe�cient in Eq. (21) is written

cn= c(fn)=
1
T

Z
¡T /2

T /2

h(t)e¡i2�tfndt (22)

In terms of fn, the Fourier series in Eq. (19) is written

h(t) =
X

n=¡1

1

c(fn)e
i2�tfn

= T
X

n=¡1

1

c(fn)e
i2�tfn1

T
(23)

From discrete spectrum to continuous spectrum: Fourier series!Fourier transformation 3

Note that c(fn)ei2�tfn is the value of function c(f)ei2�tf at f = fn. Further note that the
interval between fn and fn+1 is 1/T . Thus the above summation is the rectangular formula for
numerically calculating the integration

R
¡1
1

c(f)ei2�tfdf . Therefore, equation (23) can be
approximately written as

h(t)�T
Z
¡1

1
c(f)ei2�tfdf ; (24)

which will become exact when the interval 1/T! 0, i.e., T!1. Therefore, for the case T!1,
the Fourier series exactly becomes

h(t)=T

Z
¡1

1
c(f)ei2�tfdf ; (25)

where c(f) is given by Eq. (22), i.e.,

c(f)=
1
T

Z
¡1

1
h(t)e¡i2�tfdt: (26)

Note that the function h(t) given in Eqs. (25) is proportional to Tc(f) while the function c(f)
given in Eq. (26) is proportional to 1/T . Since T !1, it is desired to eliminate the T and 1/T
factors in Eqs. (25) and (26), which can be easily achieved by de�ning a new function

H(f)=Tc(f): (27)

Then the Fourier series is written

h(t) =

Z
¡1

1
H(f)ei2�tfdf ; (28)

H(f)=

Z
¡1

1
h(t)e¡i2�tfdt: (29)

Equations (28) and (29) are the Fourier transformation pairs discussed in the next section.
[Note that the signs in the exponential of Eq. (28) and (29) are opposite. Which one should be
minus or positive is actually a matter of convention because a trivial variable substitution f 0 =
¡f can change the sign between minus and positive. Proof. In terms of f 0, Eq. (28) is written

h(t) =

Z
1

¡1
H(¡f 0)e¡i2�tf 0d(¡f 0);

=

Z
¡1

1
H(¡f 0)e¡i2�tf 0df 0; (30)

De�ne

H(f 0) � H(¡f 0)

=

Z
¡1

1
h(t)ei2�tf

0
dt: (31)

Then Eq. (30) is written

h(t) =

Z
¡1

1
H(f 0)e¡i2�tf

0
df 0 (32)

The signs in the exponential of Eqs. (31) and (32) are opposite to Eqs. (29) and (28), respec-
tively.]

4 Section 3

The book �Numerical recipe�[2] I use (31) as the forward Fourier transformation and Eq.
(32) as the backward one. However, the open-source software FFTW uses Eqs. (29) as the for-
ward transformation and Eq. (28) as the backward one. When using a Fourier transformation
library, it is necessary to know which convention is used in order to correctly use the output of
the library.

[Z
¡1

1 dh(t)
dt

e¡i2�tfd t = h(t)e¡i2�tf j¡1+1 ¡
Z
¡1

1
h(t)

de¡i2�tf

dt
d t = ¡

Z
¡1

1
h(t)

de¡i2�tf

dt
d t =

i2�f

Z
¡1

1
h(t)e¡i2�tfdt= i2�fH(f) (33)

]

4 Fourier transformation

As discussed above, the Fourier transformation of a function h(t) is given by

H(f)=

Z
¡1

1
h(t)ei2�ftdt: (34)

Once the Fourier transformation H(f) is known, the original function h(t) can be reconstructed
via

h(t) =

Z
¡1

1
H(f)e¡i2�ftdf: (35)

[Physicists usually prefer to use the angular frequency ! � 2�f instead of the frequency f to
represent the Fourier transformation. Using !, equations. (34) and (35) are written, respec-
tively, as

H(!)=

Z
¡1

1
h(t)ei!tdt; (36)

h(t)=
1
2�

Z
¡1

1
H(!)e¡i!td!; (37)

where we see that the asymmetry between the Fourier transformation and its inverse is more
severe in this representation: besides the opposite-sign in the exponents, there is also a 1 / 2�
factor di�erence between the Fourier transformation and its inverse. Whether the 1 / 2� factor
appears at the forward transformation or inverse one is actually a matter of convention. The
only requirement is that the product of the two factors in the forward and inverse transforma-
tion is equal to 1/2�. To obtain a more symmetric pair, one can adopt a factor 1/ 2�

p
at both

the forward and inverse transformation. The representation in Eqs. (34) and (35) is adopted in
this note. But we should know how to change to the ! representation when needed.]

Next, consider how to numerically compute the Fourier transformation of a function h(t). A
simple way is to use the rectangle formula to approximate the integration in Eq. (34), i.e.,

H(f)��
X

j=¡1

1

hjexp(i2�fj�); (38)

Fourier transformation 5

where hj = h(tj) and tj = j� with j = :::;¡2;¡1; 0; 1; 2; :::. Note Eq. (38) is an approximation,
which will become exact if � ! 0. In practice, we can sample h(t) only with a nonzero �.
Therefore Eq. (38) is usually an approximation. Do we have some rules to choose a suitable �
so that Eq. (38) can become a good approximation or even an exact relation? This important
question is answered by the famous sampling theorem, which sates that a suitable � to make
Eq. (38) exact is given by �6 1/(2fc), where fc is the largest frequency contained in h(t) (i.e.,
H(f) =0 for jf j> fc).

4.1 Sampling theorem
In computational and experimental work, we know only a list of values h(tj) sampled at discrete
values of tj. Let us suppose that h(t) is sampled with uniform interval between consecutive
points:

hj=h(tj); tj= j�; j= :::;¡2;¡1; 0; 1; 2; ::: (39)

The sampling rate is de�ned by fs = 1 /�. The sampling theorem states that: If the Fourier
transformation of function h(t), H(f), has the following property

H(f)= 0 for jf j> fc (40)

then sampling h(t) with the sampling rate fs> 2fc (i.e., �6 1/(2fc)) will completely determine
h(t), which is given explicitly by the formula

h(t) =�
X

j=¡1

1

hj
sin[2�fc(t¡ j�)]

�(t¡ j�) : (41)

We will not concern us here with the proof of the sampling theorem and simply start working
with Eq. (41) to derive the concrete expression for the Fourier transformation of h(t). Substi-
tuting the expression (41) for h(t) into the Fourier transformation (34), we obtain the explicit
form of the Fourier transformation of h(t):

H(f) �
Z
¡1

1
h(t)exp(i2�ft)dt;

= �
X

j=¡1

1

hj

Z
¡1

1 sin[2�fc(t¡ j�)]
�(t¡ j�) exp(i2�ft)dt;

= �
X

j=¡1

1

hjexp(i2�fj�)
Z
¡1

1 sin[2�fc(t¡ j�)]
�(t¡ j�) exp[i2�f (t¡ j�)]dt;

= �
X

j=¡1

1

hjexp(i2�fj�)
Z
¡1

1 sin[2�fc�]
��

exp[i2�f�]d� : (42)

With the help of Wolfram Mathematica, the integration in Eq. (42) is evaluated analytically,
giving Z

¡1

1 sin[2�fc�]
��

exp(i2�f�)d� =
�
0 For jf j> fc
1 For jf j< fc

: (43)

Using this, Eq. (42) is written

H(f)=

8><>:
0 for jf j> fc

�
X

j=¡1

1

hjexp(i2�fj�) for jf j6 fc ; (44)

which shows that H(f) = 0 for jf j> fc, which is consistent with the assumption of sampling the-
orem, i.e., H(f) has the property given in Eq. (40). The second line of Eq. (44) is identical to
Eq. (38) except that Eq. (44) in this case is exact while Eq. (38) is only approximate. In other
words, if � 6 1/(2fc), then the Fourier transformation is exactly given by Eq. (44), where fc is
the largest frequency contained in h(t) (i.e., H(f) =0 for jf j> fc).

6 Section 4

4.2 Discrete Fourier transformation

Suppose that a function h(t) is sampled with a sampling frequency fs = 1/�, and we know (by
some other means) that the largest frequency contained in h(t) is less than fs/2, then the sam-
pling theorem indicates that the Fourier transformation H(f) for jf j6 fs/2 can be written as

H(f)=�
X

j=¡1

1

hjexp(i2�fj�): (45)

Assume that the function h(t) is periodic with period T and is sampled in one period with hj
with j=0; 1; :::; N , in which h0=hN, as shown in Fig. 1.

N∆

∆

0 1 2 N − 1 N

Figure 1. Sampling points in one period of the signal, where T =N� is the period of the signal.

Then the in�nite summation in Eq. (45) reduces to the following partial sum:

H(f)=C�
X
j=0

N¡1

hjexp(i2�fj�); (46)

where C is the number of periods during the in�nite time. Since h(t) is periodic with period T ,
Fourier series theorem implies that H(f) is nonzero only at discrete frequencies given by f = n/
T = fsn /N . Further recall that the condition required by the sampling theory is that H(f) is
nonzero only within [¡fs/2; fs/2]. Therefore all nonzero values of H(f), which need to be eval-
uated and stored, are at

fn= fs
n
N
; (47)

with n = ¡N /2; :::; 0; :::; N /2 (we consider only the case that N is an even number). Evaluate
H(f) given by Eq. (46) at f = fn, then H(fn) is written as

H(fn) =C�
X
j=0

N¡1

hjexp
�
2�i
N

nj

�
: (48)

The partial summation in Eq. (48),

Hn�
X
j=0

N¡1

exp
�
2�i
N

nj

�
hj ; (49)

is called the Discrete Fourier transformation (DFT). (The e�cient algorithm of computing
the DFT is discussed in Sec. 5.6). Using Eqs. (48) and (49), we know Hn is related to the value
of Fouier transform H(f) at f = fn by

H(fn)=C�Hn: (50)

4.3 Periodic property of Discrete Fourier transformation

The DFT of time-domain array hj with j=0; 1; :::; N ¡ 1 is given by Eq. (49), i.e.,

Hn=
X
j=0

N¡1

Wnjhj (51)

Fourier transformation 7

with n=¡N /2; :::; N /2, where W = exp(2�i/N). Note that the subscript of Hn is in the range
n=¡N /2; :::; N /2 while the subscript of hj is in the range j =0; 1; :::; N ¡ 1. Further note that
Hn contains N + 1 elements while hj contains only N elements. It is ready to �nd that the
array de�ned in Eq. (51) has the following periodic property

Hn+N =Hn: (52)

Using this general property, we obtain H¡N/2 = HN/2, i.e., the two ending elements of Hn,
namely H¡N/2 and HN/2, are equal to each other. Thus only one value is needed to be stored.
This can be used to reduce the number of elements of Hn that need to be stored by one. Then
Hn contains only N elements rather than N + 1. Furthermore, we prefer to make the index of
Hn and hj array have the same range, i.e., [0; N ¡ 1]. This can be done by storing the negative
frequency part (i.e., n = ¡N / 2; :::; ¡1) of Hn in the location where the subscripts are respec-
tively n =N /2; :::; N ¡ 1, as is shown in Fig 2. A naive method of implementing this in a code
is to �rst calculate the values of Hn in the range n = ¡N / 2; :::; N /2, then shift the array to
achieve the desired storage arrangement, as is shown in Fig 2. It turns out that we have a better
way to achieve the same goal: using again the periodic property Eq. (52), we know that the
value of the Hn array elements with negative subscripts, n=¡N /2; :::;¡1, happens to be equal
to the value of the Hn elements with subscripts n=N /2; :::; N ¡ 1, respectively. Using this, we
can simply use Eq. (51) to calculate values of Hn in the range n = 0; 1; N ¡ 1 and the array
obtained is exactly in the desired storage arrangement.

−

N

2
−

N

2
+1 −1 0 1 N

2

N

2
+1 N − 1

old array

new array

2

Figure 2. The negative frequency parts of the discrete Fourier transformation are stored at the locations
with the array index n =

N

2
;
N

2
+ 1; :::; N ¡ 1. Since H¡N/2 = HN/2, the location j = N /2 of the new

array can be considered to be storing both of them.

In practice, we do not use Eq. (51) directly to calculate Hn. Instead, the famous Fast
Fourier Transformation (FFT) algorithm is used to calculate Hn with n = 0; 1; :::; N ¡ 1.
Remember the storage arrangement discussed above is important for one to correctly interpret
and use the output of FFT. For example, what frequency does the element Hj with j > N / 2
correspond to? The answer is obvious if we know the storage arrangement of FFT output: the
corresponding frequency of No. jth element is given by

fj=

8>><>>:
j
N
fs; for 06 j6 N

2
(j ¡N)
N

fs; for
N
2
< j6N ¡ 1

(53)

Therefore the frequency of Hj with j >N /2 is (j ¡N)fs/N . De�ne f1=1/T , which is the fun-
damental frequency of the signal, then Eq. (53) can also be written as

fj=

8>><>>:
jf1; for 06 j6 N

2

(j ¡N)f1; for
N
2
< j6N ¡ 1

(54)

Q: What is the negative frequency counterpart of the element Hj for j =/ 0 ? A: Examining
the storage arrangement shown in Fig. 2, we know it is the element HN¡j.

8 Section 4

4.4 Aliasing errors
Signals that are not band-limited usually contains all frequencies and thus do not satisfy the
condition required by the sampling theorem (i.e., H(f) = 0 for jf j > 1/ (2�)). In this case, for
any given N data, we can still calculate its DFT by using Eq. (49). However the results
obtained are meaningful only when Hn approaches zero as the frequency approaches ¡1 / (2�)
from above and approaches 1/ (2�) from below, i.e., only when the results obtained are consis-
tent with the assumption used to obtain the results (the assumption is that H(f) = 0 for jf j >
1 / (2�)). When the results obtained do not satisfy the above condition, then it indicates that
the �aliasing errors� have contributed to the results. We can reduce the aliasing errors by
increasing the sampling frequency. The aliasing errors can be reduced but can not be completely
removed for a non-band-limited signal. More details on the aliasing errors are needed here, to be
continued.

5 Frequency resolution and bandwidth
The frequency interval between neighbour DFT points is 1 /T , where T is the time-window in
which the signal is sampled. This frequency interval is called frequency resolution, which is
determined only by the length of the time-window and is independent of the sampling fre-
quency. If the time-window is �xed, increasing the sampling frequency only increase the band-
width (the frequency range of DFT) and the frequency interval between neighbour DFT points
are still 1 / T , i.e., the frequency resolution is not changed. In summary, Bandwidth is the
highest frequency that is captured in the Fourier transform, equal to half the sampling rate.
Frequency Resolution is the spacing between samples in the frequency domain.

5.1 Relation between Fourier series coe�cients and DFTs
In the above, we go through the process �Fourier series!Fourier transformation !DFT�. This
corresponds to going from the discrete case (Fourier series) to the continuous case (Fourier
transformation), and then back to the discrete case (DFT). Since both Fourier series and DFT
are discrete in frequency, it is instructive to examine the relation between the Fourier coe�cient
cn and the DFT Hn.

The Fourier coe�cient of h(t) is given by Eq. (21), i.e.,

cn=
1
T

Z
¡T /2

T/2

h(t)ein2�t/Tdt; (55)

which can be equivalently written

c(fn)=
1
T

Z
¡T /2

T /2

h(t)ei2�tfndt; (56)

where fn = n/T . On the other hand, if h(t) is sampled with sampling rate fs = 1/�, then the
number of sampling points per period is N = T /�. Then the frequency at which the Fouier
transform H(f) is evaluated in getting the DFT [Eq. (47)] is written

fn=
n
�N

=
n
T
; (57)

which is identical to the frequency to which the Fourier coe�cient cn corresponds. Using fn =
n/(�N) in Eq. (56), we obtain

c(fn) =
1
T

Z
¡T /2

T /2

h(t)exp
�
i2�tn
�N

�
dt:

� 1
T
�

X
j=0

N¡1

hjexp
�
2�i
N

nj

�
(58)

=
1
T
�Hn

=
1
N
Hn (59)

Frequency resolution and bandwidth 9

i.e., dividing the DFT Hn by N gives the corresponding Fourer expansion coe�cient cn. We can
further use Eqs. (17) and (18) to recover the Fourier coe�cients in terms of trigonometric func-
tions cosine and sine,

Note that the approximation in Eq. (58) becomes an exact relation if the largest frequency
contained in h(t) is less than 1/(2�).

5.2 Reconstruct the original function using DFT
The Fourier series of h(t)

h(t)=
X

n=¡1

1

cne
¡in2�t/T (60)

can be approximated as

h(t)�
X

n=¡N/2

N/2

cne
¡in2�t/T (61)

Using the relatio cn=Hn/N , the above equation is written as

h(t)=
1
N

X
n=¡N/2

N/2

Hne
¡in2�t/T : (62)

Using the periodic property of DFT, i.e., Hn=HN+n, the above expression is written as

h(t) =
1
N

24X
n=0

N/2

Hne
¡in2�t/T +

X
n=N/2

N¡1

Hne
¡i (n¡N)2�t/T

35: (63)

Equation (63) provide the formula of constructing an approximate function using the DFT of
the discrete samplings of the original function.

5.3 Evaluate the reconstructed function at discrete points
Evaluate h(t) given by Eq. (63) at the discrete point t= j�, yielding

hj � h(j�)=
1
N

24X
n=0

N/2

Hne
¡in2�j/N+

X
n=N/2

N¡1

Hne
¡i (n¡N)2�j/N

35:
=

1
N

24X
n=0

N/2

Hne
¡in2�j/N+

X
n=N/2

N¡1

Hne
¡in2�j/N

35:
=

1
N

" X
n=0

N¡1

Hne
¡in2�j/N +HN/2e

¡i�j

#
:

� 1
N

X
n=0

N¡1

Hne
¡in2�j/N: (64)

Equation (64) is actually the inverse DFT discussed in Sec. 5.4.

5.4 Inverse Discrete Fourier transformation
The DFT in Eq. (49),

Hn�
X
j=0

N¡1

hjexp
�
2�i
N

nj

�
;

with j = 0; 1; 2; :::; N ¡ 1 and n= 0; 1; 2; :::; N ¡ 1 can also be considered as a set of linear alge-
braic equations for hj and can be solved in terms of hj, which gives

hj=
1
N

X
n=0

N¡1

Hnexp
�
¡2�i
N

nj

�
: (65)

(The details on how to solve Eq. (49) to obtain the solution (65) is provided in Appendix 5.5.)
Equation (65) recovers hj from Hn (i.e., the DFT of hj), and thus is called the inverse DFT.

10 Section 5

The normalization factor multiplying the DFT and inverse DFT (here 1 and 1/N) and the
signs of the exponents are merely conventions, and di�er in some treatments. The only require-
ments of these conventions are that the DFT and inverse DFT have opposite-sign exponents and
that the product of their normalization factors be 1/N .

5.5 Proof of the inverse DFT
In order to solve the linear algebraic equations (49) for hj, multiply both sides of each equation
by exp

�
¡2�i

N
nJ

�
and then add all the equations together, which yields

X
n=0

N¡1

exp
�
¡2�i
N

nJ

�
Hn=

X
n=0

N¡1 X
j=0

N¡1

hjexp
�
2�i

N
n(j ¡ J)

�
: (66)

Interchanging the sequence of the two summation on the right-hand side, equation (66) is
written X

n=0

N¡1

exp
�
¡2�i
N

nJ

�
Hn=

X
j=0

N¡1

hj
X
n=0

N¡1

exp
�
2�i
N

n(j ¡ J)

�
: (67)

Using the fact that (veri�ed by Wolfram Mathematica)X
n=0

N¡1

exp
�
i2�
N
n(j ¡ J)

�
=N�jJ; (68)

where �jJ is the Kroneker Delta, equation (67) is writtenX
n=0

N¡1

exp
�
¡2�i
N

nJ

�
Hn=

X
j=0

N¡1

hjN�jJ ; (69)

i.e., X
n=0

N¡1

exp
�
¡2�i
N

nJ

�
Hn=NhJ ; (70)

which can be solved to give

hJ=
1
N

X
n=0

N¡1

exp
�
¡2�i
N

nJ

�
Hn: (71)

Equation (71) is the inverse DFT.

5.6 Efficient method of computing DFT: Fast Fourier Tansformation
(FFT) algorithm (not �nished)
The DFT is de�ned by Eq. (49), i.e.,

Hk�
X
j=0

N¡1

W kjhj ; (72)

where W = exp(2�i/N). Equations (72) indicates that the DFT is the multiplication of a trans-
fromation matrix Mkj � W kj with a column vector hj, where the tranformation matrix Mkj is
symmetric and called DFT matrix. In the matrix form, the DFT is written as0BBBBBB@

H1

H2

H3

H4
���

HN¡1

1CCCCCCA=
0BBBBBBB@

1 1 1 1 ::: 1

1 W 1 W 2 W 3 ::: WN¡1

1 W 2 W 4 W 6 ::: W 2(N¡1)

1 W 3 W 6 W 9 ::: W 3(N¡1)

��� ��� ��� ��� ��� ���
1 WN¡1 W 2(N¡1) W 3(N¡1) ::: W (N¡1)(N¡1)

1CCCCCCCA

0BBBBBB@
h1
h2
h3
h4
���

hN¡1

1CCCCCCA (73)

If directly using the de�nition in Eq. (73) to compute DFT, then a matrix multiplication need
to be performed, which requires O(N2) operations. The Fast Fourier Tansformation (FFT) algo-
rithm manage to reduce the complexity of computing the DFT from O(N2) to O(N log2N) by
factoring the DFT matrix Mkj into a product of sparse matrices.

Frequency resolution and bandwidth 11

Hk =
X
j=0

N¡1

exp
�
2�i
N

kj

�
hj ;

=
X
j=0

N/2¡1

exp
�
2�i

N
k (2j)

�
h2j+

X
j=0

N/2¡1

exp
�
2�i

N
k(2j+1)

�
h2j+1;

=
X
j=0

N/2¡1

exp
�
2�i
N /2

k (j)

�
h2j+W

k
X
j=0

N/2¡1

exp
�
2�i
N /2

k(j)

�
h2j+1;

= Hk
e+W kHk

o; (74)

where

5.7 About using the FFTW library
I use the Fortran interface of the FFTW library. To have access to FFTW library, use the fol-
lowing codes:

use, intrinsic :: iso_c_binding
implicit none
include 'fftw3.f03'

Here the �rst line uses the iso_c_binding module to interface with C in which FFTW is
written. To use the FFT subroutines in FFTW, we need to de�ne some variables of the desired
types, such as

type(C_PTR) :: plan1, plan2
complex(C_DOUBLE_COMPLEX) :: in(0:n-1), out(0:n-1)

Specify what kind of transform to be performed by calling the corresponding �planner� rou-
tine:

plan1 = fftw_plan_dft_1d(n, in,out, FFTW_FORWARD,FFTW_ESTIMATE)

Here the �planner� routine for one-dimensional DFT is called. One thing that the �planner�
routine does is to factor the matrix Mkj mentioned above, in order to get prepared for per-
forming the actual transform. Therefore �planner� do not need the actual data stored in �in�
array. What is neede is the length and numerical type of �in� array. It is obvious that the
�planner� routine needes to be invoked for only once for a given type of array with the same
length.

Store input data in the �in� arrays, then, we can perform a DFT by the following codes:

call fftw_execute_dft(plan1, in, out)

Similarly, we can perform a inverse DFT by the following codes:

plan2 = fftw_plan_dft_1d(ngrids, in,out,FFTW_BACKWARD,FFTW_ESTIMATE)
call fftw_execute_dft(plan2, in, out)

After all the transforms are done, we need to manuual de-allocate the arrays created by the
�planner� routine by calling the ��tw_destroy_plan� routine:

call fftw_destroy_plan(plan2)

Fortran does not automatically de-allocate arrays allocated by the �acllocate()� subroutine,
so manuually de-allocate all allocated arryas is necessary for preventing memory leak from
appearing.

12 Section 5

Note that the forward DFT in FFTW is de�ned by

Hn�
X
j=0

N¡1

hjexp
�
¡2�i
N

nj

�
; (75)

and the inverse DFT is de�ned by

hj=
X
n=0

N¡1

Hnexp
�
2�i
N

nj

�
; (76)

where there is no 1 /N factor in the inverse DFT, and thus this factor should be included by
hand if we want to recover the original data from the inverse DFT.

6 Sine transform and Cosine transform
We mentioned (without giving proof) that the set of functions cos(k�x/L) and sin(k�x/L) with
k=0; 1; :::1 is a �complete set� in expanding any function in the interval (x0; x0+2L), where x0
is an arbitrary point. Therefore Fourier series use both cosine and sine as basis functions to
expand a function. Let us introduce another conclusion (again without giving proof) that the set
of sine functions sin(k�x/(2L)) with k = 1; 2; :::1 is a �complete set� in expanding any function
h in the interval (x0; x0 + 2L). A similar conclusion is that the set of cosine functions cos(k�x/
(2L)) with k = 0; 1; 2; :::1 is a �complete set� in expanding any function h in the interval (x0;
x0 + 2L). Note that the argument of the basis functions used in the Fourier expansion and the
sine (or cosine) expansion di�ers by a factor of two, namely k�x/L and k�x/(2L).

The �rst �ve basis functions used in Fourier expansion, sine expansion, and cosine expansion
are plotted in Fig. 3.

0.0 0.5 1.0 1.5 2.0

− 1.0

− 0.5

0.0

0.5

1.0 1

2
3

4

5

0.0 0.5 1.0 1.5 2.0

− 1.0

− 0.5

0.0

0.5

1.0
1

2

3

4
5

0.0 0.5 1.0 1.5 2.0

− 1.0

− 0.5

0.0

0.5

1.0 1
2

3

4

5

Figure 3. The �rst �ve basis functions used in Fourier expansion (upper), sine expansion (middle), and
cosine expansion (lower) in the interval [x0; x0+2L] with x0=0 and L=1.

Sine transform and Cosine transform 13

The basis function bk(x) used in the Fourier expansion have the properties bk(x0) = bk(x0 +
2L). Therefore Fourier expansion works best for function that satisfy h(x0) = h(x0 + 2L). For
functions that do not satis�es this condition, there will be Gibbs oscillations near the interval
boundary when approximated by using the Fourier expansion. A function with h(x0) =/ h(x0 +
2L) can still be considered as a periodic function with period 2L but having discontinuity points
at the interval boundary. Gibbs oscillation appear near discontinuity points, which can be inner
points in the interval or at the interval boundaries.

The basis functions bk(x) used in the sine expansion have the properties bk(x0) = bk(x0 +
2L) = 0. Therefore since expansion works best for functions that satisfy h(x0) = h(x0 + 2L) = 0.
For functions that do not satisfies this condition, there will be Gibbs oscillations near the
interval boundary when approximated by using the sine expansion. Examples are shown in Fig.
4.

The basis functions bk(x) used in the cosine expansion have the properties bk0 (x0) = bk
0 (x0 +

2L) = 0. Therefore cosine expansion works best for functions that satisfy h0(x0) = h0(x0 + 2L) =
0. For functions that do not satis�es this condition, there will be Gibbs oscillations near the
interval boundary when approximated by using the cosine expansion (to be veri�ed numerically
by me).

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2
x

h(x) = 1
reconstructed

−1.5

−1

−0.5

0

0.5

1

1.5

0 0.5 1 1.5 2
x

h(x) = x− 1
reconstructed

Figure 4. Left: constant function h(x) = 1 approximated by using the sine expansion. Right: linear function
h(x) = x ¡ 1 approximated by using the sine expansion. Gibbs oscillation appears near the boundaries,
where h(x) does not satisfy the condition h(x0)=h(x0+2L) = 0 (x0=0 and L=1 for this case). The expan-
sion coe�cients Hk are obtained via the discrete sine transform (77) with number of sampling point N = 50.

The reconstruction formula is given by h(x)= 2

N

P
k=1
N¡1Hksin

�
k�x

2L

�
.

Next, let us discuss the sine and cosine transformation.

6.1 De�nition of the Discrete Sine Transform (DST)
There are several slightly di�erent types of Discrete Sine Transforms (DST). One form I saw in
W. Press's numerical recipe book is given by

Hk=
X
j=0

N¡1

hjsin
�
k�j

N

�
; (77)

where h0 = hN = 0 are assumed. This form can be formally obtained by replacing DFT's expo-
nential function exp(2�ikj /N) by sin(�kj /N). The inverse sine transformation is given by (I
did not derive this, but had numerically veri�ed that this transform recovers the original data if
applied after the sine transform (77) (code at /home/yj/project_new/test_space/sine_expan-
sion/t2.f90))

hj=
2
N

X
k=0

N¡1

Hksin
�
k�j
N

�
; (78)

14 Section 6

which is identical with the forward sine transformation except for the normalization factor 2/N .
(The the elements with index of zero can also be excluded from the summation (77) and (78)
since these elements are zero). Replacing j /N in Eq. (78) by (x¡ x0)/L , we obtain the recon-
structing function

h(x)=
2

N

X
k=0

N¡1

Hksin
�
k�(x¡x0)

L

�
: (79)

Figure (5) illustrates the grids used in the above expansion.

xx=x0
x= x0+L

j=0 j=N

Figure 5. Grid indexes start from 0 and ends at N . h0=hN =0, i.e., h(x0)=h(x0+L)= 0.

We need a fast method of computing the above DST. All fast methods for this �nally need
to make use of the fast method used in the computation of DFT. To conveniently use the fast
method of DFT, we need to de�ne the DST in a way that the DST can be easily connected to
the DFT so that the DFT fast method can be easily applied to compute the DST. A standard
way of making this easy is to de�ne the DST via the DFT of an odd extension of the original
data. Next, let us discuss this.

6.2 De�ne DST via DFT
Let us introduce the Discrete Sine Transform (DST) by odd extending a given real number
sequence and then using the DFT of the extended data to de�ne the DST. There are several
slightly di�erent way of odd extending a given sequence and thus di�erent types of DST. Given
a n=3 real number sequence (a; b; c), one frequently adopted odd extension is (0; a; b; c; 0;¡a;¡
b;¡c; 0). This odd extension is illustrated in Fig. 6.

n=3

n=3

0 n-1

0 1 N-1 N=2(n+1)n n+1

L=(n+1)∆

Figure 6. A frequently used way of de�ning the odd extension of a real number sequence. The black
points are original data (with index 0; 1; :::; n ¡ 1). The blue points are newly introduced, together with
the original points, generating an odd periodic sequence of numbers with index 0; 1; :; :::; N , where N =

2(n+ 1). The points used in the DFT are 0; 1; 2; :::; N ¡ 1. The period of these data is 2L with L= (n+

1)�, where � is the spacing between nearby points.

As illustrated in Fig. 6, after the old extension, the total number of points is N + 1 with
N = 2(n + 1). Then DFT use the N points with index j = 0; 1; :::; N ¡ 1 as input. Since the
input are real and odd symmetric sequence, the output of this DFT is an odd sequence of purely
imaginary numbers. Next, let us prove this. The DFT in this case is given by

Hk=
X
j=0

N¡1

hj
0exp

�
¡2�i
N

kj

�
; (80)

Sine transform and Cosine transform 15

where hj0 is the odd extension of the original data hj. For j = 1; 2; :::; n, the relation between hj0

and hj is given by
hj
0 =hj¡1; (81)

For j=n+2; :::; N ¡ 1, the relation between hj0 and hj is given by

hj
0 =¡h2n+1¡j: (82)

Noting that h00 =0 and hn+10 =0, then expression (80) is written as

Hk=0+
X
j=1

n

hj
0exp

�
¡2�i
N

kj

�
+0+

X
j=n+2

N¡1

hj
0exp

�
¡2�i
N

kj

�
: (83)

Using N =2(n+1), the above expression is written as

Hk=
X
j=1

n

hj
0exp

�
¡ �i

(n+1)
kj

�
+

X
j=n+2

2n+1

hj
0exp

�
¡ �i

(n+1)
kj

�
(84)

Using the relations (81) and (82) to replace hj0 by hj, the above expression is written

Hk=
X
j=1

n

hj¡1exp
�
¡ �i
(n+1)

kj

�
¡

X
j=n+2

2n+1

h2n+1¡jexp
�
¡ �i
(n+1)

kj

�
: (85)

Change the de�nition of the dummy index j in the above summation to make it in the conven-
tional range [0:n¡ 1], the above expression is written as

Hk=
X
j=0

n¡1

hjexp
�
¡ �i
(n+1)

k(j+1)

�
¡

X
j=0

n¡1

hn¡1¡jexp
�
¡ �i
(n+1)

k(j+n+2)

�
:

De�ning j 0= n¡ 1¡ j to replace the dummy index in the second summation, the above expres-
sion is written as

Hk =
X
j=0

n¡1

hjexp
�
¡ �i
(n+1)

k(j+1)

�
¡

X
j 0=n¡1

0

hj 0exp
�
¡ �i
(n+1)

k(2n+1¡ j 0)
�
:

=
X
j=0

n¡1

hjexp
�
¡ �i

(n+1)
k(j+1)

�
¡

X
j=0

n¡1

hjexp
�
¡ �i

(n+1)
k(2n+1¡ j)

�
:

=
X
j=0

n¡1

hjexp
�
¡ �i
(n+1)

k(j+1)

�
¡

X
j=0

n¡1

hjexp
�
¡ �i
(n+1)

k(¡j ¡ 1)
�
:

= ¡2i
X
j=0

n¡1

hjsin
�

�
(n+1)

k(j+1)

�
; (86)

which is a purely imaginary number. Expression (86) also indicates Hk has the following sym-
metry

HN¡k=¡Hk; (87)

i.e. odd symmetry. Therefore only half of the data for Hk with k = 0; 1; :::; N ¡ 1 need to be
stored, namely Hk with k = 0; 1; :::; N /2. Expression (86) indicates that H0 and HN/2 are de�-
nitely zero and thus do not need to be stored. Then the remaining data to be stored are Hk

with k=1; 2; :::N /2¡ 1, i.e. with k=1; 2; :::; n. Following the convention of making the index of
Hk in the range [0:n¡ 1], we de�ne Hk

0 =Hk+1. Then

Hk
0 =¡2i

X
j=0

n¡1

hjsin
�

�
(n+1)

(k+1) (j+1)

�
(88)

with k = 0; 1; 2; :::n ¡ 1, which is the index that we prefer. Finally, the so-called type-I Discrete
Sine Transform (DST-I) is de�ned based on Eq. (88) via

Yk=
Hk
0

¡i =2
X
j=0

n¡1

hjsin
�

�
(n+1)

(k+1) (j+1)

�
; (89)

16 Section 6

with k=0; 1; 2; :::; n¡ 1. This is the RODFT00 transform de�ned in the FFTW library.

6.3 The meaning of DST and inverse DST
From the above derivation, we know that the DST, Yk, is related to the DFT, Hk, by Yk =
Hk+1/(¡i), and thus the meaning of Yk is in principle clear.

Next, let us examine the meaning of the DST in more details so that we can easily use it in
practice. Let us try to use the DST to reconstruct a function that approximates the original
data. Since DST is only a special case of DFT, reconstructing the function using DST follows
the same procedure used in DFT. In DFT, the function that approximates the original data is
reconstructed via Eq. (63) (changing to the positive exponent convention), i.e.,

h(x)=
1
N

24X
k=0

N/2

Hke
ik2�x/(2L)+

X
k=N/2

N¡1

Hke
i (k¡N)2�x/(2L)

35: (90)

where 2L is the length of the interval in which the samplings hj with j = 0; 1; :::; N ¡ 1 are
made. For our present case, i.e., an odd extension of the original n data, we have N = 2(n + 1)
and H0=0 and HN/2=0. Then Eq. (90) is written as

h(x)=
1
N

"
0+

X
k=1

n

Hke
ik2�x/(2L)+0+

X
k=n+2

2n+1

Hke
i (k¡N)2�x/(2L)

#
: (91)

Using the odd symmetry of Hk, i.e., Hk=¡HN¡k, the above expansion is written as

h(x)=
1

N

"X
k=1

n

Hke
ik2�x/(2L)¡

X
k=n+2

2n+1

HN¡ke
i (k¡N)2�x/(2L)

#
: (92)

De�ne k 0=2n+2¡ k, and note that N =2(n+1), then the above expression is written as

h(x)=
1

2(n+1)

"X
k=1

n

Hke
ik2�x/(2L)¡

X
k 0=n

1

Hk 0e
i (¡k 0)2�x/(2L)

#
: (93)

i.e.,

h(x) =
1

2(n+1)

X
k=1

n

Hk(e
ik2�x/(2L)¡ e¡ik2�x/(2L)); (94)

which is simpli�ed as

h(x) =
1

2(n+1)

X
k=1

n

2iHksin
�
k2�x

2L

�
: (95)

As a convention, we prefer that the summation index begins from 0 and ends at n ¡ 1. Then
expression (95) is written as

h(x)=
1

2(n+1)

X
k=0

n¡1

2iHk+1sin
�
(k+1)2�x

2L

�
Using the relation between DST and DFT, i.e., Hk+1=¡iYk, the above equation is written as

h(x)=
1

n+1

X
k=0

n¡1

Yksin
�
(k+1)2�x

2L

�
: (96)

This is the formula for constructing a function approximating the original function using the
DST data. This formula is an expansion over the basis functions sin[(k + 1)�(x) /L] with the
DST Yk acting as the expansion coe�cients. Therefore the direct meaning of the DST, Yk, is
that they are the expansion coe�cients when using the sine functions sin[(k + 1)�(x)/L] as the
basis functions to approximate a function in the interval of length L. From Fig. 6, we know that
the interval length L is given by L= (n+ 1)�, where � is the uniform spacing of the original n
sampling points.

Sine transform and Cosine transform 17

Evaluate the function in Eq. (96) at xj=(j+1)� with j=0; 1; :::; n¡ 1, then we obtain

h(xj) =
1

n+1

X
k=0

n¡1

Yksin
�
(k+1)2�(j+1)�

2L

�
=

1
n+1

X
k=0

n¡1

Yksin
�
(k+1)�(j+1)

(n+1)

�
: (97)

It can be proved that h(xj) in the above equation exactly recover hj used in de�ning the DST
Yk. Therefore Eq. (97) is the Inverse Discrete Sine Transform.

6.4 Discrete Cosine transform
to be written

7 Misc content

7.1 Multi-dimensional Fourier series
Compared with Eq. (1) that uses the trigonometric functions, Fourier series (11) and (12),
which is expressed in terms of the complex exponential function ein�x/L, is more compact. The
convenience introduced by the complex exponential function can be appreciated more when we
deal with multiple-dimensional Fourier series. For example, a two-dimensional function G(x; y)
can be expanded as Fourier series about x,

G(x; y)=
X

m=¡1

1

cm(y)e
im�x/Lx; (98)

where 2Lx is the period of G in x direction. The expansion coe�cients cm(y) can be further
expanded as Fourier series about y,

cm(y)=
X

n=¡1

1

(cmne
in�y/Ly); (99)

where 2Ly is the period of G in y direction. Using Eq. (99) in Eq. (98), we obtain

G(x; y)=
X

m=¡1

1 X
n=¡1

1

cmne
in�y/Ly+im�x/Lx; (100)

where the coe�cients cmn can be written

cmn =
1
2Ly

Z
¡Ly

Ly
�

1
2Lx

Z
¡Lx

Lx

G(x; y)e¡im�x/Lxdx

�
e¡in�y/Lydy:

=
1

4LxLy

Z
¡Ly

Ly
Z
¡Lx

Lx

G(x; y)e¡im�x/Lx¡in�y/Lydxdy: (101)

Equations (100) and (101) give the two-dimensional Fourier series of G(x; y). We see that the
extension of Fourier series from one-dimension case to two-dimension case is straightforward
when expressed in terms of the complex exponential function ein�x/L. However, if we use
sin(m�x/Lx), cos(m�x/Lx), sin(n�y /Ly), and cos(n�y /Ly) as basis functions, the two-dimen-
sional Fourier series of G(x; y) is a little complicated (refer to Sec. 7.2). (check??==>The �nal
result is given by

G(x; y) =
X

n=¡1

1 X
m=0

1 �
Gnm
c cos

�
m�x
Lx

+
n�y
Ly

�
+Gnm

s sin
�
m�x
Lx

+
n�y
Ly

��
; (102)

where the coe�cient G00
c is given by

G00
c =

1
4LxLy

Z
¡Ly

Ly
Z
¡Lx

Lx

G(x; y)dxdy: (103)

18 Section 7

and other coe�cients are given by

Gnm
c =

1
2LxLy

Z
¡Ly

Ly
Z
¡Lx

Lx

G(x; y) cos
�
m�x
Lx

+
n�y
Ly

�
dxdy: (104)

Gnm
s =

1
2LxLy

Z
¡Ly

Ly
Z
¡Lx

Lx

G(x; y)sin
�
m�x
Lx

+
n�y
Ly

�
dxdy: (105)

)

7.2 Multidimensional Fourier series using trigonometric functions
cosine and sine
This section is to demonstrate that multiple-dimensional Fourier series will become complicated
if we use the cosine and sine as basis functions. A two-dimensional function G(x; y) can be �rst
expanded as Fourier series about x,

G(x; y)=
X
m=0

1

am(y)cos
�
m�
Lx

x

�
+

X
m=0

1

bm(y)sin
�
m�
Lx

x

�
; (106)

and then the two coe�cients am(y) and bm(y) can be further expanded as Fourier series about
y,

am(y) =
X
n=0

1

amn
(a) cos

�
n�
Ly
y

�
+

X
n=0

1

bmn
(a) sin

�
n�
Ly
y

�
; (107)

bm(y)=
X
n=0

1

amn
(b) cos

�
n�

Ly
y

�
+

X
n=0

1

bmn
(b) sin

�
n�

Ly
y

�
; (108)

Substituting Eq. (107) and (108) into Eq. (106), we obtain

G(x; y) =
X
m=0

1 "X
n=0

1

amn
(a) cos

�
n�

Ly
y

�
+

X
n=0

1

bmn
(a) sin

�
n�

Ly
y

�#
cos

�
m�

Lx
x

�
+

X
m=0

1 "X
n=0

1

amn
(b) cos

�
n�
Ly
y

�
+

X
n=0

1

bmn
(b) sin

�
n�
Ly
y

�#
sin

�
m�
Lx

x

�
: (109)

Using the product-to-sum trigonometric identities, equation (109) is written

G(x; y) =
1
2

X
m=0

1 X
n=0

1

amn
(a)

�
cos

�
m�
Lx

x +
n�
Ly

y

�
+ cos

�
m�
Lx

x ¡ n�
Ly

y

��
+

1
2

X
m=0

1 X
n=0

1

bmn
(a)

�
sin

�
m�
Lx

x+
n�
Ly
y

�
+ sin

�
m�
Lx

x¡ n�
Ly
y

��
+

1
2

X
m=0

1 X
n=0

1

amn
(b)

�
sin

�
m�
Lx

x +
n�
Ly

y

�
¡ sin

�
m�
Lx

x ¡ n�
Ly

y

��
+

1
2

X
m=0

1 X
n=0

1

bmn
(b)

�
cos

�
m�
Lx

x¡ n�
Ly
y

�
¡ cos

�
m�
Lx

x+
n�
Ly
y

��
; (110)

which can be organized as

G(x; y) =
X
m=0

1 X
n=0

1
1
2

�
amn
(a) ¡ bmn

(b) �cos�m�
Lx

x +
n�
Ly
y

�
+

X
m=0

1 X
n=0

1
1
2

�
bmn
(a) + amn

(b) �
sin

�
m�
Lx

x +

n�

Ly
y

�
+

X
m=0

1 X
n=0

1
1

2

�
amn
(a) + bmn

(b) �
cos

�
m�

Lx
x ¡ n�

Ly
y

�
+

X
m=0

1 X
n=0

1
1

2

�
bmn
(a) ¡ amn

(b) �
sin

�
m�

Lx
x ¡

n�
Ly
y

�
(111)

Misc content 19

The coe�cients appearing in Eq. () are written

am(y)=
1
Lx

Z
¡Lx

¡Lx
G(x; y)cos

�
m�
Lx

x

�
dx (112)

bm(y)=
1
Lx

Z
¡Lx

¡Lx
G(x; y)sin

�
m�
Lx

x

�
dx (113)

amn
(a) =

1
Lx

1
Ly

Z
¡Ly

¡LyZ
¡Lx

¡Lx
G(x; y)cos

�
m�
Lx

x

�
cos

�
n�
Ly
y

�
dxdy (114)

amn
(b) =

1
Lx

1
Ly

Z
¡Ly

¡LyZ
¡Lx

¡Lx
G(x; y)cos

�
m�
Lx

x

�
sin

�
n�
Ly
y

�
dxdy (115)

bmn
(a) =

1
Lx

1
Ly

Z
¡Ly

¡LyZ
¡Lx

¡Lx
G(x; y)sin

�
m�
Lx

x

�
cos

�
n�
Ly
y

�
dxdy (116)

bmn
(b) =

1
Lx

1
Ly

Z
¡Ly

¡LyZ
¡Lx

¡Lx
G(x; y)sin

�
m�
Lx

x

�
sin

�
n�
Ly
y

�
dxdy (117)

Then

G(�; �) =
X
m=0

1 X
n=¡1

1
1
2

�
amn
(a) ¡ bmn

(b) �
cos

�
m�
Lx

x+
n�
Ly
y

�
+

X
m=0

1 X
n=¡1

1
1
2

�
bmn
(a)

+ amn
(b) �

sin
�
m�
Lx

x+

n�
Ly
y

�

7.3 Details on FFT codes provided by the Numerical recipes book[2]

The following is about a speci�c FFT subroutine provided by the Numerical recipes book[2].
This is not a general case.

The input and output of the DFT are usually complex numbers. In the implementation of
FFT algorithm provided by Numerical recipes book[2], to avoid using complex numbers, the
algorithm adopts the real number representation of the complex numbers. In this scheme, two
elements of a real number array are used to store one complex number. To store a complex
array �cdata� of length N , we will need a real number array �rdata� of length 2N . The �rst ele-
ments of array �rdata� will contain the real part of �cdata(1)�, the second elements of �rdata� will
contain the imaginary part of �cdata(1)�, and so on.

To test the correctness of the above statement, I generated a real number array with length
N = 2 � 28 by using a random generating routine and calculate the DFT of the array with two
methods. The real array generated by the random generator are considered to be a real number
representation of a complex array with length N / 2. Using the real array as the input of the
FFT routine (the code in ~/project_new/�t). To check the correctness of my understanding of
the input and output of the FFT, I manually convert the real number of length N to a complex
array with length N /2, and use directly the summation in Eq. (51) to calculate the DFT. The
output I got is obviously a complex array with length N /2. Then I manually convert the com-
plex array to a real number array of length N and plot the output in Fig. 7 with dashed line.
The results in Fig. 7 indicates the results given by the FFT and the naive method used by me
agree with each other well. This proves that my understanding of the input and output of FFT
(especially the storage arrangement) is correct.

20 Section 7

-20

 0

 20

 40

 60

 80

 100

 120

 140

 0 100 200 300 400 500 600

H
n

n

FFT output
naive method

Figure 7. The output of a FFT routine (solid line) agrees well with those (dashed line) calculated by
directly evaluate the summation in Eq. (51) (the latter is coded by me). The agreement indicates my
understanding of the output of FFT (especially the storage arrangement) is correct. Here the time
domain data is generated by a random generating routine.

To clearly show the output of FFT, we recover the real and imaginary part of DFT from the
output of FFT and plots the data as a function of their corresponding frequency. The results
are given in Fig. 8.

-20

 0

 20

 40

 60

 80

 100

 120

 140

-150 -100 -50 0 50 100 150

R
ea

l(H
n)

n

-20

 0

 20

 40

 60

 80

 100

 120

 140

-150 -100 -50 0 50 100 150

Im
ag

(H
n)

n

Figure 8. The real (left) and imaginary (right) part of the discrete Fourier transformation as a function of the
frequency. The point n=¡128 corresponds to frequency ¡fs/2 while the point n= 128 corresponds to frequency
+fs / 2, where fs = 1/� with � is the sample interval in time domain. The time domain data is the same as
used in Fig. 7. Why is there a spike at zero frequency?

7.4 Computing Fourier integrals using FFT (not finished, to be
deleted)

Consider the calculation of the following integral:

I(!)=

Z
a

b

ei!th(t)dt: (118)

Divide the interval [a; b] into M uniform sub-intervals and de�ne

�=
b¡ a
M

; tj= a+�j ; hj=h(tj); j=0; 1; 2; :::;M (119)

Misc content 21

Then the integration in Eq. (118) can be approximated as

I(!)��
X
j=0

M¡1

hjexp(i!tj): (120)

De�ne !m = 2�m/ (M�) with integer m and ¡M /2 < m < M /2. Consider the calculation of
I(!m). Using Eq. (120), we obtain

I(!m) = �
X
j=0

M¡1

hjexp[i!m(a+�j)]

= �ei!ma
X
j=0

M¡1

hjexp(i!m�j)

= �ei!ma
X
j=0

M¡1

hjexp
�
i
2�m
M

j

�
= �ei!maHm (121)
= �ei!ma[DFT(h0; h1; h2; :::; hM¡1)]m: (122)

Equation (122) indicates the value of the integration I(!m) can be obtained by calculating the
discrete Fourier transformation of hj. However, as discussed in Ref. [2], equation (122) is not
recommended for practical use because the oscillatory nature of the integral will make Eq. (122)
become systematically inaccurate as ! increases. Next, consider a new method, in which h(t) is
expanded as

h(t)�
X
j=0

M

hj
�
t¡ tj
�

�
+

X
j=endpoints

hj'j

�
t¡ tj
�

�
(123)

Apply the integral operator
R
a

b
dt exp(i!t) to both sides of Eq. (123), we obtainZ

a

b

h(t)ei!tdt�
X
j=0

M

hj

Z
a

b

�
t¡ tj
�

�
ei!tdt+

X
j=endpoints

hj

Z
a

b

'j
�
t¡ tj
�

�
ei!tdt: (124)

Make the change of variables s= (t¡ tj)/� in the �rst integral and s= (t¡ a)/� in the second
integral, the above equation is written asZ

a

b

h(t)ei!tdt��
X
j=0

M

hj

Z
a

b

 (s)ei!(�s+tj)ds+�
X

j=endpoints

hj

Z
a

b

'j(s¡ j)ei!(�s+a)ds (125)

De�ne �=!� and make use of tj= a+ j�, the above equation is written asZ
a

b

h(t)ei!tdt��ei!a
X
j=0

M

hje
i�j

Z
a

b

 (s)ei�sds+�ei!a
X

j=endpoints

hj

Z
a

b

'j(s¡ j)ei�sds (126)

De�ne

W (�)=

Z
a

b

 (s)ei�sds (127)

�j(�)=

Z
a

b

'j(s¡ j)ei�sds (128)

Then Eq. (126) is written asZ
a

b

h(t)ei!tdt��ei!a
24W (�)

X
j=0

M

hje
i�j+

X
j=endpoints

hj�j(�)

35: (129)

22 Section 7

−

N

2
−

N

2
+ 1 -1 0 1 N

2
− 1

N

2

N

2
+ 1 N − 1

Figure 9. Older version of Fig. 2, created by Metapost, the new version is created by the vector graphic
editor in TeXmacs.

Bibliography

[1] A Guided Tour of Mathematical Physics. Samizdat Press, 1994.
[2] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in Fortran 77.

Cambridge University Press, Cambridge, UK, 1992.

Bibliography 23

	1 Introduction
	2 Fourier series
	2.1 Fourier series in terms of trigonometric functions cosine and sine
	2.2 Fourier series in terms of complex-valued basis functions e^(i nπx/L)

	3 From discrete spectrum to continuous spectrum: Fourier series→Fourier transformation
	4 Fourier transformation
	4.1 Sampling theorem
	4.2 Discrete Fourier transformation
	4.3 Periodic property of Discrete Fourier transformation
	4.4 Aliasing errors

	5 Frequency resolution and bandwidth
	5.1 Relation between Fourier series coefficients and DFTs
	5.2 Reconstruct the original function using DFT
	5.3 Evaluate the reconstructed function at discrete points
	5.4 Inverse Discrete Fourier transformation
	5.5 Proof of the inverse DFT
	5.6 Efficient method of computing DFT: Fast Fourier Tansformation (FFT) algorithm (not finished)
	5.7 About using the FFTW library

	6 Sine transform and Cosine transform
	6.1 Definition of the Discrete Sine Transform (DST)
	6.2 Define DST via DFT
	6.3 The meaning of DST and inverse DST
	6.4 Discrete Cosine transform

	7 Misc content
	7.1 Multi-dimensional Fourier series
	7.2 Multidimensional Fourier series using trigonometric functions cosine and sine
	7.3 Details on FFT codes provided by the Numerical recipes book[]
	7.4 Computing Fourier integrals using FFT (not finished, to be deleted)

	Bibliography

