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Abstract
This note discusses numerical computation of guiding center orbits in tokamaks using
cylindrical coordinates and several magnetic coordinates. Some subtle things involved in
using a particular kind of magnetic coordinates called field-line-following coordinates are
discussed (I am using this kind of coordinates in developing a new module in GEM code).
We assume a general tokamak magnetic field specified numerically (provided by the EFIT
G-file). This note is evolving, beginning with my first try of computing guiding-center
motion in Solovev analytical equilibrium using cylindrical coordinates, and then extending
to general numerical magnetic field, and later using magnetic coordinates.

1 Equations of guiding-center motion
The equations of guiding center motion are given by[1]
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where X is the guiding-center position, vk is the parallel (to the magnetic field) velocity defined
by vk = B � v/B; Here m, Ze, and v are the mass, charge and velocity of the particle, respec-
tively, � is the magnetic moment defined by � = mv?

2 / (2B) with v? being the perpendicular
speed; 
=BZe/m is the cyclotron angular frequency, B? and Bk
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respectively, where b=B/B. If we use the approximation Bk
?�B, then the drift velocity in Eq.

(1) can be written as
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where the usual drifts can be recognized. Before getting to know the above form of the equa-
tions of the guiding-center motion, I used the following form of the equations (refer to my notes
�collisionless_drift_kinetic_equation.tm�):
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which does not conserve the toroidal angular momentum P� exactly in an axisymmetrical equi-
librium magnetic field (this has been tested numerically) while the new form given in Eqs. (1)-
(4) can conserve P� exactly. My latest numerical code uses Eqs. (1)-(4) as the the equations of
guiding center motion. The toroidal angular momentum P� is defined by

P�=m
g(	)
B

vk+Ze	; (8)

where 	=A�R with A� being the toroidal component of the magnetic vector potential.
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1.1 Define new units
The above formulas are in SI units, which are good since SI units are widely used and thus these
formulas are accessible to most people, making communications easier. However, many physi-
cists prefer to define new units for a specific problem and write the equations in terms of these
new units. This process is often called normalization. This has the advantage of possibly
reducing the number of free parameters in a problem. Another advantage is that, by chosen
proper characteristic quantities as units, the magnitude of quantities in terms of the new units
are easier to be appreciated. A third advantage is that the magnitude of normalized quantities
may be in the vicinity of 1 (if suitable units are chosen), and thus numerical overflow in a
numerical computation may be avoided, making the computation more accurate. The disadvan-
tages of the normalization are (1) the additional work associated with performing the transfor-
mation between two units systems, (2) possible confusions about which units are used in a
numerical code and the potential of introducing bugs due to this confusion when writing or
revising numerical codes.

The units I adopted are as follows. Choose a characteristic magnetic field strength Bn and a
characteristic length Ln. Using Bn and Ln, we define a characteristic time tn � 2� /
n, where

n = BnjZej /m, a characteristic velocity vn = Ln / tn, and a characteristic magnetic moment
�n = mvn

2 /Bn. Using these characteristic quantities as units, I define the following normalized
quantities:
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In terms of the above normalized quantities, Eqs. (1)-(4) are written, respectively, as
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In the normalized form, there is only one parameter for distinguishing particle species, namely
the sign of particle's charge Z / jZ j. The other parameters for particle species enters via the nor-
malization factor 
n=BnjZej/m.

The toroidal angular momentum P� is normalized by ZeBnLn2 .
In TEK code, I choose Bn=1T and Ln=1m, i.e., they are identical to the corresponding SI

units. This choice makes my unit system become bad because it is hard to relate vn defined
above to any typical velocity in a tokamak plasma. A better choice would be choose Bn to the
magnetic field magnitude at the magnetic axis and choose Ln to be vt / 
n, i.e., the Larmor
radius of a typical particles, where vt is the thermal velocity of a species. Then define tn= 1/
n
and define vn by vn = Ln / tn = vt, which is a typical particle velocity. In future, I may change
TEK code to using this unit system, but presently I stick to using the above unit system.

2 Equation of guiding-center motion in field-line-following
coordinates

Consider the field-line-following coordinates ( ; �; �), where � is the generalized toroidal angle
defined by � = � ¡ � with � =

R
0

�
q̂d� and q̂ =B � r�/(B � r�), which is the local safety factor.

The time evolution of ( ; �; �) of a guiding-center is then written as

d 
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and similarly
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Using the expression of dX / dt given by Eq. (10), Eqs. (14)-(16) can be written as (presently
dropping the E�B drift, which will be discussed later):
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where use has been made of B � r = 0 and B � r� = 0. The parallel acceleration equation is
written as (presently dropping the electric field acceleration term)
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For a general tokamak magnetic configuration specified numerically, all the above 2D equilib-
rium quantities are computed by interpolating pre-computed numerical tables. We define the
following numerical tables:
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Next, let us discuss the E�B drift:
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Using �E= �Ekb+ �Exrx+ �Eyry, where x=  and y=�, the above drifts are written as
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The two terms in expression (36) can be written as
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2.0.1 Periodic conditions of particle trajectory in field-line-following coordinates

Note that �(r) and �(r) are multi-valued functions whereas r�(r) and r�(r) happen to be
single-valued functions. However r�(r) and r�(r) are still multi-valued functions. [It is ready
to see this by examining the special case that � is a straight-field line poloidal angle, in which
�=

R
�ref

�
q̂d� is simplified to q�. Then r� is written as

r�= �rq+ qr�; (37)

where the first term �rq is a multi-valued function since � is multi-valued.]
For multi-valued functions, if a single branch is chosen, then there will be discontinuity at

the the branch cut. In numerically constructing the coordinates ( ; �; �), the principal value of
� is chosen in the range [¡�: �) and the branch cut for � is chosen on the high-field-side mid-

plane. The toroidal shift � =
R
�ref

�
q̂ d � can be considered as a derived angle based on � and thus

its principal value and branch cut are determined by those of �.
The ( ; �; �) coordinates of a particle change continuously when we evolve them by inte-

grating Eqs. (14)-(16), during which � can move beyond [¡�; �). When a particle's � moves
beyond the range [¡�: �), one or multiple �2� shifts are imposed on � until � are within [¡�:
�). Note that a corresponding shift in � is needed to keep the particle at the same spatial loca-
tion when doing the � shift. This is because, although ( ; �; �) and ( ; � ¡ 2m�; �) correspond
to the same spatial location, points ( ; �; �) and ( ; � ¡ 2m�; �) do not, where m is an integer.
Specifically, the usual toroidal angle � of point ( ; �; �) is �1= �+

R
�ref

�
q̂d� while � of point ( ;

�¡ 2m�; �) is �2=�+
R
�ref

�¡2m�
q̂d�. The difference between �1 and �2 is �2¡ �1=¡2m�q. This

indicates that, to keep the point at the same spatial location when shifting � by ¡2m�, �
should be shifted by +2m�q, i.e., the new coordinates of the point should be ( ; � ¡ 2m�; � +
2m�q). This process is illustrated in Fig. 1. A typical evolution of (�; �) involving shifting is
shown in Fig. 2.

poloidal angle θ

generalized

toroidal
angle α

−2π

+2πq

π

2π

A
B

C

−π

0

Figure 1. To keep the point at the same spatial location when shifting � by ¡2�, � should be shifted by
+2�q. Here A and C correspond to the same spatial location, but B is at a different location.
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Figure 2. Temporal evolution of ( ; �; �) of a passing electron. The range of � is chosen to be [¡�: �]
and the range of � and � is [0: 2�]. When � exceed the range, a 2� shift is imposed, which generate the
jump of � in (b) and also the corresponding jump of � in (c). Note that when a jump in (�; �) occurs, no
jump in �, which is what we expect, otherwise there must be something wrong. Also note that there are
also jumps of � shown in (c), which is due to � exceeding the range [0: 2�] and a 2� shift being imposed.
This jump has nothing to do with the jump in � or � and usually occur at different time (one jump of �
is near the jump of �, which is only a coincidence). Here � is computed using � = � + �, where � is
obtained by interpolating the 2D numerical table of �( ; �). DIID-D cyclone base case

When � exceeds the range [0: 2�], one or multiple �2� shifts are imposed on � until � are
within [0: 2�]. Since, for fixed  and �, the generalized toroidal angle � is equivalent to the
usual toroidal angle �. No complication like the case of � arises when doing the � shift.

One way of avoiding the subtle (�; �) shift problem is to evolve particles' �, instead of �. In
this case, we have

d�

d t
=vd �r � = vk

B+ vk

2�
r�b

B
�
1+ vk

2�B
b �r�b

� �r �+ �

2�
�
1+ vk

2�B
b �r�b

� 1
B2
B�rB �r �; (38)

After getting �, we use � = � ¡ �( ; �) to get particles' �, where � is obtained by interpolating
the numerical table in ( ; �) plane. I have tested the two ways of computing evolution of �,
which indicates their results agree with each other. In the final codes, I use the (�; �) shift
method, because this methods involve less interpolation and thus more efficient.

2.0.2 Benchmarking cases

To verify code implementation, two methods are used to compute the guiding-center orbits. The
first method uses the cylindrical coordinates and then interpolate the orbits into magnetic coor-
dinates using pre-computed mapping table between the cylindrical and magnetic coordinates.
The second method directly uses the magnetic coordinates in pushing the orbits. The following
figures compare the results obtained by these two methods, which indicates they agree with each
other. This provides confidence on the correctness of the numerical implementation.

6 Section 2



0 50 100 150 200 250 300 350 400
0.5172

0.5174

0.5176

0.5178

0.5180

0.5182

0.5184 ψ

ψ

(a)

0 50 100 150 200 250 300 350 400
− 4

− 3

− 2

− 1

0

1

2

3

4

θ
θ

(b)

0 50 100 150 200 250 300 350 400

tΩi

0

1

2

3

4

5

6

7

α
α

(c)

Figure 3. Comparison between the temporal evolution of ( ; �; �) of a passing electron computed by
two methods: the blue lines are the results computed directly in ( ; �; �) field-line-following coordinates,
the red lines are results computed in cylindrical coordinates and then interpolated to the field-line-fol-
lowing coordinates. There is systematical discrepancy between  computed by the two methods. The
results are actually very close to each other and the difference becomes obvious because the variation of
 is very small for a passing electron.

The results of � from the two methods also agree with each other. The discrepancy near t
i= 400 is
due to that � is close to 2�, and one result becomes zero, which is equivalent to 2�.

equilibrium is the DIID-D cyclone base case
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Figure 4. Left: orbit on poloidal plane. Right: � is defined by � = � ¡
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q̂d �; where � is the usual

cylindrical toroidal angle.
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3 Equations of motion in cylindrical coordinates

In this section, all quantities are in the normalized form given in Sec. 1.1. For notational sim-
plicity, the over-bars of the notation are omitted. In cylindrical coordinates (R; �; Z), the loca-
tion vector is written as X=RêR(�)+ZêZ. Using this, we obtain

dX
dt

= dR
dt
êR+R

dêR(�)
dt

+ dZ
dt
êZ

= dR
dt
êR+R

d�
dt
ê�+

dZ
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êZ: (39)

Substituting this into Eq. (1) gives
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from which we obtain the following component equations:
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#
� ê�; (43)
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In the cylindrical coordinates, the terms B�rB, r�b, and b � r�b are written, respectively,
as

B�rB=

����������������
êR ê� êZ
BR B� BZ
@B

@R

1

R
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Using bR=
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B
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BZ
B
, and b�=
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The equation for vk is given by Eq. (11), i.e.,
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The first term on the left-hand-side is written
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�
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and Bk
? is given by Eq. (13).

4 Code Benchmarking

4.1 Initial conditions
The initial conditions of the particle are given by specifying the initial location (R; �; Z), initial
parallel velocity vk, and the magnetic moment � (which acts as a parameter since � is exactly
conserved). In some cases, we prefer to specify the initial velocity in terms of the initial kinetic
energy " and the initial pitch angle � (the include angle between velocity and the local magnetic
field). The relation between ("; �) and (vk; �) is given by

�= mv?
2

2B
= mv2

2B
sin2�= "

B
sin2�; (53)

Code Benchmarking 9



and

vk= v sin�=
2"
m

r
cos�: (54)

The relation between ("; �) and the normalized quantities (�; vk) is given by

�= �
�n

= "
B
sin2�

1
mvn

2 /Bn
= "

mvn
2B

sin2�; (55)

and

vk=
2"
mvn

2

r
cos�: (56)

4.2 Constants of motion

There are three constants of motion for the guiding center motion, namely, the canonical
toroidal angular momentum P�, the magnetic moment �, and the total kinetic energy ". Exam-
ining how well the kinetic energy " and the toroidal angular momentum P� are conserved pro-
vides a way to evaluate the accuracy of the numerical code. The kinetic energy " and toroidal
angular momentum P� are defined by

"= 1
2
mv2= 1

2
mvk

2+B� (57)

P�=m
g(	)
B

vk+Ze	; (58)

Define "n=mvn2 and P�n=ZeBnLn2 , then the normalized forms of " and P� are written as

"� "

mvn
2 =

1
2
vk
2+ �B (59)

P� � P�
P�n

= 1
2�

g
vk

B
+	 (60)

Figure 6 plots the time evolution of the kinetic energy " and toroidal angular momentum P� for
an energetic ion in EAST magnetic configuration. The results shows that " and P� are con-
served to acceptable accuracy for 100 poloidal periods of the orbit.
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Figure 6. Time evolution of the kinetic energy " (a) and toroidal angular momentum P� (b) for a
Deuteron of 20keV launched at the low-field-side midplane (Rini= 2.15m; Zini = 0m) with pitch angle �=
75�. The results shows that " and P� are conserved to acceptable accuracy ("k decreased by 1.8 � 10¡5

and P�� by 3.2 � 10¡4 during the time of 100 poloidal periods). The corresponding poloidal orbit is
plotted in (c). Fourth-order Runge-Kutta time advancing scheme is used in integrating the orbit with a
time step of 1 / 183 poloidal period. The magnetic equilibrium is from EAST discharge #62585@2.8s
(gfile provided by ZhengZheng).
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5 Orbit classification

A particle whose vk takes the same sign during one poloidal period is called a passing particle.
Otherwise, it is called a trapped particle.

For a particle with a given initial condition, can we determine whether the particle is passing
or not, without numerically computing its orbit (and without assuming zero orbit width)? The
answer is yes. We can do this by making use of the conservation of P�, �, and the kinetic energy
".

P�=m
g
B
vk+Ze	; (61)

�= m
2B

v?
2 ; (62)

"= 1
2
m (v?2 + vk

2); (63)

The critical condition for a particle being passing/trapped is that its parallel velocity vk is zero
on the high-field side of the midplane. (For a given magnetic surface, the midplane can be
defined as the poloidal locations where @B /@� = 0. For simple magnetic magnetic surfaces, usu-
ally there are two poloidal locations satisfying @B /@� = 0 and we denote these two locations by
�=¡� (high-field-side) and �=0 (low-field-side), respectively.)

Define a dimensionless variable � by

�= �Baxis

"
; (64)

which is a constant of motion, and is often used as a phase space coordinate in place of �. What
does the above critical condition look like in (P�;�) space? Using vk=0, Eq. (61) is reduced to

P�=Ze	; (65)

which determines 	 if P� is given. Using vk=0, expression (64) is written as

�= Baxis

B
: (66)

Since the critical condition requires �=¡�. Therefore Eq. (66) is written as

�= Baxis

B(�=¡�) ; (67)

The curve in the (P�; �) plane corresponding to the critical condition can be traced out in the
following steps: 1. for a given P�, use Eq. (65) to determine 	 and hence a magnetic surface; 2.
the value of B(� = ¡�) on the magnetic surface can be determined; 3. then the value of � can
be determined by Eq. (67).

The curve traced out by the above method for an EAST magnetic configuration is plotted in
Fig. 7, where the black curve corresponds to Eq. (67). The region above the black line is the
trapped region, and that below it is the passing region.

Another curve similar to Eq. (67) is

�= Baxis

B(�=0)
; (68)

This is plotted as blue curve in Fig. 7. This curve is approximately the phase space boundary
beyond which no physical particles exist. (There is actually a small region where physical parti-
cles can exit beyond the blue curve, which corresponds to the stagnation orbits. This region is
usually very small, see Fig. 10).
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Figure 7. The region between the lower part (black line) and the upper part (blue line) of the curve is
the trapped region. The region below the lower part of the curve is the passing region.

Note that, in determine the passing trapped boundary in the (P�; �) plane, we do not need
to specify the kinetic energy ". The reason for this is as follows. Using Eqs. (62) and (63) to
eliminate vk in Eq. (61), we obtain an equation in the (P�;�) plane:

2("¡B�)¡ 1
m
(P�¡Ze	)2

�
B
g

�
2

=0; (69)

i.e.,

�=¡BBaxis

g2
1

2m"
(P�¡Ze	)2+

Baxis

B
; (70)

where the dependence on " disappears because the critical condition requires that P�¡Ze	=0.

Next, let us consider the phase space points with a given kinetic energy and a given spatial
location, and examine how these points are distributed in the (P�; �) plane. Note that Eq. (70)
involve two free parameters 	 and B. Let us first fixed the value of 	. Then there remains a
free parameter B to be chosen. Two representative values of B are B(�=¡�) and B(�=0), cor-
responding to, respectively, the maximum and minimum of B on the the given magnetic surface.
If the given magnetic surface corresponds to the magnetic axis, then B(�=¡�) and B(�=0) are
identical. Figure 8 plots the three curves that correspond to the LCFS with � = ¡�, the LCFS
with �=0, and the magnetic axis, respectively.
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Magnetic axis

Figure 8. The magnetic axis (black dash), high-field-side (blue) and low-field side (red) of LCFS
mapped to the (P�;�) plane. For E= 50keV, EAST#52340
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Next, let us consider all the physically possible points in the phase space (P�; �) for a given
kinetic energy and a given spatial region. Note that Eq. (70) involves two free parameters 	
and B, both of which are functions of spatial locations. For each value of P�, scan the spatial
region to find all the values of � by using Eq. (70). Denote the range of � for a specific value of
P� by [�min: �max]. If �max< 0, then this indicates this value of P� is not physically possible. If
�max > 0, then this value of P� is physically possible and the physically possible range of � for
this value of P� is [0: �max]. Figure 9 plots the curve �=�max(P�) for �max> 0.
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Pϕ/(ZeBnL2n)

0.0
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0.4

0.6

0.8

1.0

1.2

Λ

phase space boundary

Figure 9. Boundary of phase space (P�;�). For E= 50keV, EAST#52340

Putting results in Fig. 7, 8, and 9 into one figure, we obtain Fig. 10.
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Figure 10. Results in Fig. 7, 8, and 9 plotted in one figure. For E= 50keV, EAST#52340.

5.1 Numerically testing orbit types

In the above, we plot boundary curves in the phase space (P�; �) and get some rough ideas
about possible orbits in different regions of (P�; �) plane. Next, let us numerically examine the
orbits and confirm which regions are corresponding to passing/trapped/confined/lost regions.
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Figure 11. For E = 50keV, EAST#52340. Orbits are numerically computed to check whether they are
confined (not touch the LCFS) or lost (touch the LCFS). Some particles in the loss region are numeri-
cally determined to be confined. Whether this is due to numerical errors is unclear.
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Figure 12. For E = 50keV, EAST#52340. Orbits are numerically computed to check whether they are
passing or trapped. Some particles in the trapped region are numerically determined to be passing.
Whether this is due to numerical errors is unclear.
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=¡BBaxis

g2
1
2"
(2�)2(P�¡	)2

m
g
B
vk=P�¡Ze	; (72)

vk=
vk
vn
= BZeBnLn

2

mg
Ln
Tn

(P�¡	): (73)

vk=
B
n Tn

g
(P�¡	) (74)

vk=
B
jZ j
Z
2�

g
(P�¡	) (75)

5.2 Trapped passing boundary in the zero-orbit-width limit

An approximate condition determining whether a particle is trapped or circulating can be
obtained by using the conservation of magnetic moment and kinetic energy, and assuming the
guiding center orbit is along the magnetic field line (zero-width orbit approximation, which is a
proper approximation for low-energy particles whose orbit width is small, as is shown in Fig.
13).

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.3 1.5 1.7 1.9 2.1 2.3
−3

−2

−1

0

1

2

3

Mag. surf.

Bφ ∝ 1/R

Z
(m

)

B
φ
(T

)

R(m)

Figure 13. The magnetic field becomes stronger when a particle move inboard (toward smaller R). Due
to the conservation of kinetic energy and magnetic moment, the magnitude of the parallel velocity
decrease when a particle moves inboard. Also shown is the poloidal projection of guiding-center orbit for
a particle of energy 2keV launched in the low-field-side midplane (R= 2.25m; Z = 0m) with a pitch angle
�= 115�.

In this approximation, the orbit remains on a magnetic surface. The critical condition for a
particle to be trapped/circulating is given by

mv?
2

2B
= mv2

2Bmax
; (76)
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where v? is the perpendicular (to the magnetic field) velocity of the particle at the location
where the strength of the magnetic field is B, Bmax is the maximum value of the magnetic field
on the same magnetic surface where the particle moves. Define � = arccos(vk / v), which is the
pitch angle of velocity with respect to the local magnetic field, then Eq. (76) is written as

cos2�=1¡ B

Bmax
: (77)

Define

�c= arccos

 
1¡ B

Bmax

r !
; (78)

then particles with �c< � < � ¡ �c can not reach the point of the maximum magnetic field of the
same magnetic surface and thus they are trapped particles. Otherwise, they are circulating par-
ticles. In velocity space (vk; v?), the trapped and circulating region are shown in Fig. 14.

−→
B

passing

passing

trapped

trapped

v‖

v⊥

θ
=
θ c

Figure 14. Passing and trapped regions in the phase-space (vk; v?). The trapped region is �c< � < � ¡
�c.

Note that the trapped-circulating boundary given in Fig. 14 is determined based on the
assumption that the guiding center motion does not deviate from a magnetic surface. However,
the actual guiding center orbit does not remain on the same magnetic surface, so the above
result can be wrong when applied to some particles. An example is given in Fig. 15, where the
numerical results show that the particle is actually trapped but the approximate condition indi-
cate that the particle is circulating.
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Figure 15. Numerical orbit of a particle on the poloidal plane, which show that the particle is trapped.
However, the particle would be considered to be circulating if we used the approximate condition given in
Fig. 14. It is easy to understand why the approximate condition breaks down for this case: the orbit
deviates from the original flux surface (i.e., the zero-width orbit) to the stronger field region.

At a given radial location, in terms of (w; �) coordinates, where w is the kinetic energy, the
trapped passing boundary is shown in Fig. 16.
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µ

Figure 16. The passing and trapped regions of phase space (w; �). The boundary between passing and
trapped region is given by w = �Bmax, where Bmax is the maximum value of magnetic field on the same
magnetic surface where the particle moves (zero orbit width is assumed).

5.3 Trapped particle fraction
The trapped particle fraction ft is defined as the ratio of the number of trapped particles to the
total number of particles. Particle distribution function (in terms of guiding-center variables)
can be written as f = f(r; v; �; �), where r is the guiding-center position vector in configuration
space and (v; �; �) is the spherical coordinates in velocity space with � being the pitch angle and
� the gyro-angle. Assuming zero Larmor radius limit, then the trapped particle fraction ft is
written as

ft(r) =

R
0

1R
�c

�¡�cR
0

2�
f(r; v; �; �)v2sin�dvd�d�R

0

1R
0

�R
0

2�f(r; v; �; �)v2sin�dvd�d�
; (79)

where �c is the critical pitch angle defined in Sec. 5. Assume that f(r; v; �; �) is uniform in �
and �, then the integration over the � and � in Eq. (79) can be performed, giving

ft(r) =
2�� 2cos�c

R
0

1
f(r; v)v2dv

4�
R
0

1f(r; v)v2dv

= cos�c: (80)

Using the definition of the critical value of the pitch angle (Eq. (78)), the above expression is
written as

ft(r)= 1¡ B
Bmax

r
: (81)

The flux surface averaging of ft, hfti, is written as

hfti =

*
1¡ B

Bmax

r +

=

H
1¡ B

Bmax

q
1

Bp
dlpH 1

Bp
dlp

How to relate hfti to the following neoclassical effective trapped fraction?

ft;neo=1¡
3
4

�
B2

Bmax
2

�Z
0

1 �d�

1¡�B/Bmax

p � : (82)

5.3.1 For circular flux surface with large aspect ratio

In the large aspect ratio approximation and for particles that are initially on the low-field-side of
the midplane, Eq. (81) is written

ft= 1¡ R0¡ r
R0+ r

r
= 2r

R0+ r

r
� 2"
p

; (83)
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where "= r/R0. This is the result given in Wessson's book[2]. Note that this result is valid only
for particles that are initially at the low-field-side of the midplane. For particles that are ini-
tially located at the poloidal location �p, the trapped particles fraction is written

ft= 1¡ R0¡ r
R0+ r cos�p

r
= r(1+ cos�p)

R0+ r cos�p

s
; (84)

For �p = �, i.e., at the high-field-side of the midplane, ft = 0, i.e., there is no trapped particles
there.

Using Eq. (84), the flux surface averaging of ft, hfti, is written as

hfti =

H
ft

1

Bp
dlpH 1

Bp
dlp

=

H r(1+ cos�p)
R0+ r cos�p

r
1

Bp
dlpH 1

Bp
dlp

=

H r(1+ cos�p)
R0+ r cos�p

r
1

Bp
rd�H 1

Bp
rd�

5.4 Bounce frequency of deeply trapped particles

Let us analytically estimate the bounce frequency of deeply trapped particles. The time evolu-
tion of the parallel velocity of a guiding center is given by Eq. (2), i.e.,

dvk
dt

=¡ �
m

B?

Bk
? �rB; (85)

which can be approximately written as

dvk
dt

=¡ �
m
b �rB;

which can be further written as
d 2l
dt2

=¡ v?
2

2B
dB
dl

(86)

where dl is the arc length along the magnetic field. In a large aspect ratio tokamak with circular
flux surfaces, the magnetic field can be written approximately as

B= B0
1+ (r/R0)cos�

; (87)

The equation of magnetic field is written

B�
B
= dlp
dl

= rd�
dl

; (88)

which can be written

dl= B
B�
rd� (89)

Using Eqs. (89) and (87), the parallel derivative of the magnetic field is written as

dB
dl

= B�
rB

dB
d�

= B�
rB

B0
[1+ (r/R0)cos�]2

r
R0

sin�; (90)
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Plug this into equation (86), then we obtain

d 2l
dt2

=¡ v?
2

2B
B�
rB

B0
[1+ (r/R0)cos�]2

r
R0

sin�=¡v?
2

2
B�
B0

1
R0

sin� (91)

Consider deeply trapped particles (particles are trapped in a very small region near the low-
field-side midplane), i.e., � � 0, then we have sin� � �. Using this, the above equation is written
as

d 2l
dt2

�¡v?
2

2
B�
B0

1
R0
� (92)

Assume the orbit is along the magnetic field line (i.e. zero-width orbit approximation), then the
equation of magnetic field (89) is also satisfied by the orbit. In the linear approximation, we
have ��B�/(Br)l. Using this in Eq. (92), we obtain

d 2l
dt2

=¡ rv?
2

2R0
B�
2

B2 r2
l (93)

Using the definition of safety factor, q= rB0/R0B�, the above equation is written

d 2l
dt2

=¡ v?
2

q2R0
2

r
2R0

l (94)

Define

!b=
v?
qR0

�
r
2R0

�
1/2

; (95)

(for deeply trapped particles, the variation of v? during one poloidal period is small, and thus
can be considered constant, and thus !b can also be considered constant), then Eq. (94) is
written

d 2l
dt2

=¡!b2l; (96)

which indicates that the motion of a deeply trapped particle is a harmonic oscillation with an
angular frequency !b. Equations (95) and (96) agree with Eqs. (3.12.3) and (3.12.4) in Wesson's
book �Tokmaks�[2]. I have test the accuracy of formula (95) by comparing it with the numerical
results, which indicates the formula can usually give a reasonable estimation of the bounce fre-
quency (for example, 28kHz is obtained numerically while the analytical formula gives 24kHz for
a not very deeply trapped orbit).

5.5 Bounce frequency of barely trapped particles
Let us analytically estimate the bounce frequency of barely trapped particles, i.e., particle satis-
fying the critical condition (76),� vk

v

�
2
=1¡ B

Bmax
� 1¡ R0¡ r

R0+ r
� 2"; (97)

i.e., vk= 2"
p

v, where vk is the parallel velocity on the low-field-side midplane.
The distance along the magnetic field line traveled in half an orbit is about 2�R0q, then the

time needed is then given by

tb�
2�R0q
vk

� 2�R0q
2"

p
v
� 2�R0q

2"
p

vth
(98)

The above approximation is rough since vk changes between zero and 2"
p

v and we still use a
constant value, 2"

p
v, in approximating it.

Then the bounce (angular) frequency is given by

!b=
2�
2tb

= 2�
4�R0q

2"
p

vth=
vth
R0q

"
2

r
; (99)
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which turns out to be take the same form as Eq. (95). very strange!

5.6 Methods of determining drift orbits

If neglecting the magnetic drift, a guiding-center orbit is along a magnetic field lines, i.e., there
is no derivation from the magnetic surface where a guiding center is initially located. Taking the
magnetic drift into account, a guiding-center orbit will deviate from the initial magnetic surface,
giving an orbit of nonzero width in the poloidal plane.

Whether a guiding-center will drift radially outward or inward from a local magnetic surface
near the midplane can be determined in the following way. First note that the zero-order
approximation of the guiding-center orbit (zero-width orbit) is either parallel or anti-parallel to
the local magnetic field, depending on the sign of vk. Further note the direction of the magnetic
drift ( ZjZ jB�rB and curvature drift) is approximately vertical, which can be either up or down,

depending on the charge sign and direction of the toroidal magnetic field. Finally, by imposing
the magnetic drift on the zero-width orbit, we can determine whether the guiding center will
drift inward or outward from the local magnetic surface. Figures 17-19 plots the drift orbits for
all the possible combinations of tokamak magnetic configurations and particle initial conditions
(assume particles of positive charge, i.e., Z/ jZ j> 0).
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Figure 17. Projection of trapped orbits on the poloidal plane for 4 magnetic configurations. A Deu-
terium ion of 20keV is launched from the low-field-side midplane (Rinitial = 2.15m; Zinitial = 0m) with
pitch angle �= 75�(vk> 0) and �= 105�(vk< 0). Note that vk> 0 implies that the zero-width orbit in the
poloidal plane is along the direction of the poloidal magnetic field, which is in turn determined by the
direction of the toroidal plasma current. The magnetic equilibrium is from EAST discharge #62585@2.8s
(gfile provided by ZhengZheng). The direction of toroidal plasma current, magnetic field, and the corre-
sponding magnetic drift are indicated on the figures.
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Figure 17 can be used to identify the direction of the bootstrap current due to the radial
density gradient of trapped particles. Examining all the cases in Fig. 17, one finds that the
bootstrap current is always along the direction of plasma current, and the bootstrap current
direction is independent of the charge sign.

Next, consider passing particles launched from the low-field-side midplane. Figure 18 plots
all the 4 possible cases.
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Figure 18. Projection of passing orbits on the poloidal plane for various magnetic configurations. A
Deuterium ion of 20keV is launched from the low-field-side midplane (Rini= 2.15m; Zini = 0m) with pitch
angle � = 50�(vk > 0) and � = 130�(vk < 0). The magnetic equilibrium is from EAST discharge
#62585@2.8s (gfile provided by ZhengZheng). The direction of plasma current, magnetic field, and the
corresponding magnetic drift are indicated on the figures.

Next, consider a particle launched from the high field side midplane, which must be a
passing particle. Figure 19 plots all the 4 possible cases.
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Figure 19. Projection of passing orbits on the poloidal plane for various magnetic configurations. A
Deuterium ion of 20keV is launched from the high-field-side midplane (Rini = 1.6452m; Zini = 0m) with
pitch angle � = 50�(vk > 0) and � = 130�(vk < 0). The magnetic equilibrium is from EAST discharge
#62585@2.8s (gfile provided by ZhengZheng). The direction of plasma current, magnetic field, and the
corresponding magnetic drift are indicated on the figures.

Examining the above results, one finds that reversing the direction of the toroidal magnetic
field does not change the projection of orbits on the poloidal plane, i.e., the location and shape
of the poloidal orbits remain the same. However the direction of the poloidal motion is changed
from clockwise (anti-clockwise) to anti-clockwise (clockwise). (This is because vk of a particle
changes sign when the toroidal field is reversed and thus the direction of the poloidal motion
changes).

Examining the above results, we can also find that, for particles launched from low-field-side
midplane, co-current particles have their orbits inside the magnetic surface at which the particle
is initially located, and counter-current particles have their orbits outside of the magnetic sur-
face. For particles launched from the high-field-side midplane, the conclusion is reversed, i.e., co-
current particles have their orbits outside the magnetic surface where they are initially located,
and counter-current particles have their orbits inside of the magnetic surface.

These conclusions have important implications for the neutral beam injection, where orbits
outside a reference magnetic surface (birth location) are more likely to be lost to the wall of the
machine. If the neutral beam injection (NBI) is along the same direction of the plasma current,
it is called the co-current injection. Otherwise it is called the counter-current injection. Using
the above conclusions, we know that, for co-current injection, ions ionized at the low-field-side
have better confinement compared with those ionized at the high-field-side. For the counter-cur-
rent injection, ions ionized at the high-field-side have better confinement compared with those
ionized at the low-field-side. Whether the overall confinement of ions due to co-current injection
is better or worse than that of the counter-current injection depends on the ratio of number of
ions deposited at the low-field-side to that deposited at the high-field side. For the shine-
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through loss to be small, most neutral must ionize at the low-field-side (most neutrals ionizing
at the the high-field side usually means a very high shine-through loss fraction (>50%)). There-
fore, with the assumption that most neutral beam particles are ionized on the low-field-side, co-
current injection is better than counter-current injection in terms of the first-orbit loss.

Figure 20 and 21 compares the poloidal orbits of energetic Deuterium particles ionized at the
low-field-side midplane due to co-current and counter-current injection. The results indicate
again that the counter-injected particles ionized at the low-field-side midplane are easy to be
lost from the plasma because their orbits are outside the flux surface where they are ionized,
and thus are more likely to touch the first wall.
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Figure 20. Poloidal orbits of Deuterium particles of 50keV ionized at the low-field-side midplane (R =

2.25m; Z = 0m) with a birth pitch angle � = 125� (red), � = 105� (blue), � = 75� (green), and � = 65�

(violet). Pitch angle � is the included angle between the magnetic field and the velocity of particles.
Since the magnetic field and the plasma current are in the same direction for this case, � > 90� means
counter-current injection and � < 90� means co-current injection. The counter-injected particles are easy
to be lost from the plasma because their orbits are outside the flux surface where they are ionized, and
thus are more likely to touch the first wall. The magnetic equilibrium is for EAST discharge
#62585@2.8s, which is a upper single-null configuration (gfile provided by ZhengZheng).
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Figure 21. Poloidal orbits of Deuterium particles of 50keV ionized at the low-field-side midplane (R =

2.25m; Z = 0m) with a birth pitch angle � = 125� (blue), � = 105� (red), � = 75� (violet), and � = 60�

(green). Since the magnetic field and the plasma current are in the opposite direction for this case, � >
90� means co-current injection and � < 90� means counter-current injection. The magnetic equilibrium is
from EAST discharge #62585@2.8s but with the direction of the toroidal magnetic field reversed.
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Figure 22. The resonant layer of 50MHz electromagnetic wave with the third harmonic of 1
1H ion

cyclotron frequency on EAST tokamak. The toroidal magnetic field of EAST is approximately given by
B� = 4.160 � 10¡4Is /R, where Is is the current in a single turn of the TF coils, which in in the range
from 8000A to 10000A for usual EAST discharges. The ion cyclotron angular frequency is given by !ci=
B'e/mi. The small Dopper frequency shift kkvk is not included in the estimation of the resonant layer.
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/2�, where 
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5.7 Toroidal procession

Figure 24 plots the guiding centers orbits for particles launched at the low-field-side of the mid-
plane with different values of the pitch angle �.

24 Section 5



-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1.6  1.8  2  2.2

Z
(m

)

R(m)

flux surface
theta=80
theta=75
theta=70
theta=65

-15

-10

-5

 0

 5

 10

 15

 0  5  10  15  20  25

φ

t*104 (s)

theta=80
theta=75
theta=70
theta=65

Figure 24. Left: projection of guiding center orbits of trapped particles on (R; Z) plane. Right: Toroidal
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and are launched from the low-field side midplane of the reference magnetic surface (R= 2.1; Z = 0). The
equilibrium is a Solovev equilibrium with R0=1.9m;B0= 2.0Tesla, �0=1.5, Ze0= 1.5, g= 3.8mT.

Figure 24 shows (1) the toroidal procession of deeply trapped particles is faster than that of
the shallowly trapped particles and (2) the direction of the toroidal recession of the particle with
�= 65� is different from the others.

Procession angular frequency of a trapped particles (from Porcelli's slide):

!D=
v2

2
cRr
= Ek
BZeRr

; (100)

where Ek is the kinetic energy of the particle. Equation () indicates that the procession fre-
quency is proportional to the energy of the particle.

!D=
v2

2
cRr
= v2

2B
nRrLn2
=
n

v2

8�2BRr
(101)

Compared with the results given by the numerical code, the above results seems to be roughly
correct when the orbit is not near the magnetic axis.

v?
2 = v?

2

vn
2
= 2B�
mvn

2
=B 2Bn�

mvn
2
=2B� (102)

5.8 Radial drift �check!!

d	
dt

=Vd �r	= 1
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= 1
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B�
�
�
m
rB+ vk

2𝛋
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rB+ vk

2𝛋
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B


(r	�r��r	+ gr��r	) �
�
�
m
rB+ vk

2𝛋
�

(103)
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Noting that both rB and 𝛋 are approximately along ¡R̂ direction, which is perpendicular to
r�, Eq. (103) is written as

d	
dt

=¡ 1
B


(gr��r	) �
�
�
m
rB+ vk

2𝛋
�

d	
dt

= 1
B


gBp �
�
�

m
rB+ vk

2𝛋
�

if
d	
dt
(	lcfs¡	axis)> 0;

then the drift from the local magnetic surface is outward, otherwise, the drift is inward.

d	
dt
(	lcfs¡	axis)=

1
B


gBp � (¡R̂)(	lcfs¡	axis)

Examining the right-hand side of Eq. (103), we find that Bp and (	lcfs ¡ 	axis) change signs
simultaneous when the toroidal plasma current I� change sign, thus the direction of Bp(	lcfs ¡
	axis) is independent of the sign of I�. Therefore the sign of the radial drift is independent of
the sign of I�.

5.9 Width of guiding center orbit

The gyroradius of a particle is given by ��=mv/BZe, which can be further written as

��=
2mEk

p

BZe
; (104)

where Ek is the kinetic energy of the particle. For an electron with the same kinetic energy of a
ion, Eq. (104) indicates that the gyroradius of the electron is smaller than that of the ion by the
factor me/mi

p
. Now comes the question: Is the width of the guiding center orbit of an electron

with the same kinetic energy of a ion smaller than that of the ion? Examine the constant of
motion P� which is given by

P�
Ze

= g(	)



vk+	; (105)

The function g(	) / 
 is usually a weak function of 	, thus can be assumed to be a constant
along a drift orbit. The orbit width can be characterized by �	, which is written

�	=¡g
�vk



=¡g
m�vk
BZe

; (106)

where �vk is the variation range of vk in one poloidal period of the orbit. For trapped particles,
this variation can be approximated as

�vk� vt=
2T
m

r
(107)

Using this, Eq. (106) is written as

�	=¡g m
p

2T
p

BZe
; (108)

which indicates that, for the same temperature, �	 is proportional to m
p

. (For circulating
ions, the variation of vk during one poloidal period can not be approximated by vt. I do not
know how to estimate the orbit width in this case).
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The variation of the poloidal flux �	p can be approximated by

�	p=2�R�rBp (109)

where �r is the variation of the minor radius, Bp is the average poloidal magnetic field on a
magnetic surface. Using this and the definition �	=�	p/2� in Eq. (108), we obtain

�r=¡g 2mT
p

RBpBZe
�¡ 2mT

p

BpZe
; (110)

which indicates that the width of guiding-center orbits is inversely proportional to the poloidal
magnetic field Bp, rather than the toroidal magnetic field Bt (first got to know this conclusion
from J. Wesson's book �Science of JET�, and later wrote the above derivation).

Comparing Eq. (110) and (104), we know �r is just the �poloidal Larmor radius� which is
obtained by replacing the B in Eq. 104) by the poloidal magnetic field Bp. It follows that the
ratio between them is given by

�r
�i

= B
Bp
; (111)

which is about q/" for large aspect-ratio tokamaks, where q is the safety factor.
The average poloidal magnetic field on a magnetic surface near the plasma edge is approxi-

mately given by

Bp=
�0Ip
2�a

: (112)

Using this, Eq. (110) is written as

�r=¡2�a 2mT
p

�0IpZe
; (113)

which indicates that �r is proportional to 1/Ip. This explains why high plasma current is bene-
ficial to the confinement of energetic particles (because high current corresponds to smaller orbit
width and thus better confinement of energetic particles which usually have larger drift orbit
width than thermal particles).

A numerical example in Fig. 25 indicate, as expected, that the guiding center orbit width of
an electron with the same kinetic energy of a ion is much smaller than that of the ion.
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Figure 25. Comparison of the guiding center orbit width of an electron and a Deuteron that have the
same value of kinetic energy (20keV). Particles are launched from the low field side of the midplane of
the reference flux surface (R = 2.1m; Z = 0.0m) with pitch angle � = 75� (left graph) and � = 55� (right
graph). The results show that the orbit width of electron is negligibly small (compared with that of the
Deuteron) and the orbit almost coincides with the magnetic surface.
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5.10 3D trajectory of guiding-center

Figure 26. Three-dimensional illustration of the guiding-center orbit of a trapped particle in a tokamak.

6 Numerical results of prompt loss of fast ions

The initial distribution function of fast ions are assumed to take the following form:

f( ; v; �)=C exp
�
¡  

 scale

�
1

v3+ vcrit3

1
2
erfc
�
v¡ vbirth

�v

�
exp
�
¡(�¡�0)

2

��2

�
; (114)

where the constant C is set to achieve desired stored energy of energetic particles. Figure 27
plots the time evolution of the loss fraction due to the prompt loss (also called first orbit loss) in
EAST#48916 at 4.6s.
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Figure 27. Time evolution of fast ions loss fraction in EAST discharge #48916 at 4.6s. Fast ions distri-
bution function is given by Eq. (114).
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Marker's phase-space volume Vj

7 Use constants of motion to determine orbit loss
This section discusses determining the prompt loss of ions by using the constants of motion.
This work was motivated by Dr. Chengkang Pan, who shares an office with me and recently
(2014) published a NF paper discussing this topic.

7.1 Critical velocity for ions to touch a boundary
There are three constants of motion for a guiding center drift, namely, the canonical toroidal
angular momentum P�, the magnetic moment �, and the total kinetic energy ", which are given,
respectively, by

P�=m
g(	)
B

v�+Ze	; (116)

�= m
B
v2(1¡ �2); (117)

"= 1
2
mv2; (118)

where g(	) = RB�, � is the cosine of the pitch angle of guiding center velocity (with respect to
the local magnetic field), 	=RA� with A� being the toroidal component of the magnetic vector
potential, Ze and m are the charge and mass of the ion, respectively.

Next, we use the constraint of the three constants of motion to determine whether an ion
with a given initial condition can reach a boundary magnetic surface labeled by 	a. The initial
conditions of an ion is denoted with (	0; B0; v0; �0), where 	0 labels the flux surface where the
particle is initially located, B0 is the magnetic field strength at the initial location of the
guiding-center, v0 and �0 are the initial velocity and pitch angle. The conditions of the particle
when it reach the boundary flux surface are denoted with (	a; Ba; va; �a). Then the conservation
of P� requires

m
g(	0)
B0

v0�0+ e	0=m
g(	a)
Ba

va�a+ e	a: (119)

Using the conservation of the kinetic energy, the above equation is written

mv0

�
g(	0)
B0

�0¡
g(	a)
Ba

�a

�
= e(	a¡	0): (120)

Using the conservation of �, we obtain

1¡ �a2
Ba

= 1¡ �02
B0

; (121)
which can be written

�a=� 1¡ Ba
B0

(1¡ �02)
r

: (122)

where we does not distinguish between circulating particles and trapped particles. If a particle is
a circulating one, then vk does not change sign and thus � does not change sign either. In this
case, equation (122) is written

�a= sign(�0) 1¡ Ba
B0

(1¡ �02)
r

: (123)
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If a particle is a trapped one, then both signs � in Eq. (122) are possible.
Using Eq. (122), equation (120) is written

mv0

"
g(	0)
B0

�0�
g(	a)
Ba

1¡ Ba
B0

(1¡ �02)
r #

= e(	a¡	0); (124)

which can be arranged in the form

v0=
e(	a¡	0)

m

 
g(	0)
B0

�0�
g(	a)
Ba

1¡ Ba
B0

(1¡ �02)
r !¡1

; (125)

Equation (125) gives the velocity v0 needed for the particle to reach the flux surface 	a. The
value of v0 given by Eq. (125) varies, depending on the value of Ba, i.e., depending on the
poloidal location on the boundary magnetic flux surface. By scanning the poloidal location on
the boundary flux surface, we can obtain the minimum value of v0, v0min, which is the minimum
velocity for a particle with the initial condition (	0; B0; �0) to reach the flux surface 	a.

To evaluate the minimum energy for the ions to be lost, we need choose a specific magnetic
configuration. Next, we consider a simple large aspect ratio magnetic configuration.

7.2 Large aspect ratio equilibrium
Define (r; �; �) coordinates by

R(r; �)=Raxis+ r cos�; (126)

Z(r; �)= r sin�; (127)

where (R; �; Z) are the cylindrical coordinates and Raxis is a constant. The Jacobian J of (r; �;
�) coordinates can be calculated using the definition, yielding J = ¡Rr (refer to my notes on
equilibrium).

In (r; �) coordinates, the toroidal elliptic operator �?	 is given by (refer to my notes on
equilibrium):

�?	= 1
r

@

@r
r
@	
@r

+ 1
r2
@2	
@�2

¡ 1
R0+ r cos�

�
@	
@r

cos�¡ @	
@�

1
r
sin�

�
: (128)

Assume that the toroidal current density J� is given and is uniform distributed, J�= I /S, where
I is the total current within a boundary magnetic surface, S is the poloidal area enclosed by the
boundary magnetic surface Since J� is given, then the expression J�=¡ 1

�0R
�?	 can be used as

a constraint for 	, i.e.,

1
r
@
@r
r
@	
@r

+ 1
r2
@2	
@�2

¡ 1
Raxis+ r cos�

�
@	
@r

cos�¡ @	
@�

1
r
sin�

�
=¡�0(Raxis+ r cos�)

I
S
; (129)

We consider the region " = r /Raxis� 1 (large aspect ratio regime), and further assume the fol-
lowing orderings

Raxis
@	
@r
�O("¡1)	; (130)

and
@	
@�
�O("0)	: (131)

Then the leading order of Eq. (129) is written as

1
r
@
@r
r
@	
@r

=¡�0Raxis
I
S
: (132)

One solution to the above equation is

	=¡�0I
4S

Raxisr
2: (133)
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In the (r; �; �) coordinates, the gradient of 	 is written

r	 = @	
@r
rr+ @	

@�
r�+ @	

@�
r�

= ¡�0I
2S

Raxisrrr (134)

Then the poloidal magnetic field is written as

Bp = r	�r�

= ¡ �0I
2S

Raxisrrr�r�

= ¡ �0I
2S

Raxisr

�
¡ 1J

@r
@�

�
: (135)

In terms of the cylindrical coordinate system (R; �; Z) and its unit basis vector eR and eZ , a
location vector r is written as

r=R(r; �)eR(�)+Z(r; �)eZ ; (136)

then in (r; �; �) coordinates, we obtain

@r
@�

��������
r;�

= @R
@�
eR(�)+

@Z
@�
eZ

= ¡r sin�eR(�)+ r cos�eZ
= ¡rê�; (137)

where ê�= cos�eZ ¡ sin�eR(�) is a unit vector. Then Eq. (135) is written as

Bp = ¡ �0I
2S

Raxisr

�
¡rê�
Rr

�
= ¡�0I

2S
r

1+ r

Raxis
cos�

ê� (138)

The toroidal component of the magnetic field is written

B�=
g(	)
R

= g(	)
Raxis+ r cos�

: (139)

Consider the case that g(	) is a constant function, g(	)=B�0Raxis, then Eq. (139) is written

B�=
B�0

1+ r

Raxis
cos�

(140)

I am curious about what the safety factor q looks like for the above flat current density profile.
Let us calculate q by using q= d	t/d	p.

d	t=
I
drB�d`p= drg

I
r
R
d� (141)

d	p=
�0I
4S

Raxis2rdr (142)

Then

q= d	t
d	p

=
dr
H g

R
rd�

�0I

4S
Raxis2rdr

=
g
H 1

R
d�

�0I

4S
Raxis2

= g
�0I

2S
Raxis
2

I
1

1+ " cos�
d�: (143)

Using maxima to perform the above integral, the above expression is written as

q= g
�0I

2S
Raxis
2

2�
1¡ "2

p = 4�Sg
�0IRaxis

2

1
1¡ "2

p : (144)
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Figure 28. Minimum loss energy as a function of the cosine of the launching pitch angle. �= 0.98

�����������
The minimum value of v0, denoted with v0min, is reached when �= � or �=0 depends on the

� in Eq. (168).

v0=
e

mR0

�0I
4�a2

R(a2¡ r2)

 
�0� sign(�0)

R+ a
R+ r

1¡ R+ r
R+a

(1¡ �02)
r !¡1

: (145)

v0min(�0)=max (min (v0(�0; �)); 0) (146)

(in practice  a is usually different from the actual poloidal flux 	p and is related to 	p by
 a=�j	pj/2�+C, where C is a constant)

We consider the confinement of the particles. The method is to determine whether the parti-
cles can reach a boundary flux surface by making use of the three constants of the motion. The
boundary flux surface is labeled by  a, where  a is the poloidal flux within that flux surface.

8 Equations of guiding-center motion�outdated, will be
deleted

YJ's remark: This section is outdated because I have found a more accurate form of the equa-
tions of the guiding center motion, as given in Sec. 1. Besides to be more accurate, the new
form is compact and suitable for numerical implementation

The equations for the guiding center motion are given by (refer to my note �collision-
less_drift_kinetic_equation.tm�)

X_ = vkb+
1


b�

�
�
m
rB+ vk

2𝛋
�
; (147)

32 Section 8



and
vk_ =¡

�
m
b �rB+ vk𝛋 �X_ ; (148)

where � � mv?
2 / (2B), b = B /B. The term vk𝛋 � X_ in Eq. (148) can be further simplified by

using Eq. (147), which gives

vk_ =¡
�
m
b �rB+

vk�

m

𝛋 �b�rB (149)

where use has been made of that the curvature 𝛋 is perpendicular to b.
[Benchmark: In GTC simulation (refer to H. Zhang's paper[6]), the time derivative of vk is

given by

v_k=¡
B+Bvk/
�r�b

mB
� �rB (150)

=) v_k=¡
�
m
b �rB ¡

vk�

m

r�b �rB; (151)

Next, I prove Eq. (149) is equivalent to Eq. (151). Using 𝛋 � b � rb = ¡b � r � b, the second
term on the right-hand side of Eq. (149) is written as

vk�

m

𝛋 �b�rB = ¡

vk�

m

(b�r�b) � (b�rB)

= ¡
vk�

m

r�b �rB+

vk�

m

(b �rB)(r�b �b)

� ¡
vk�

m

r�b �rB+0; (152)

where in obtaining the last equality, use has been made of that r � b � b � 0 (note that this is
correct to the order considered here, I will discuss this later). Using Eq. (152) in Eq. (149)
yields

vk_ =¡
�
m
b �rB ¡

vk�

m

r�b �rB; (153)

which is identical with Eq. (151).]

8.1 Equilibrium magnetic field in tokamak
The tokamak equilibrium magnetic field can be written

B=r	�r�+ g(	)r�: (154)

In my code, the values of the two free functions, 	=	(R; Z) and g(	), which specify the mag-
netic field, is read from the output file �G-eqdsk-file� of EFIT code. Using Eq. (154), the
axisymmetric equilibrium magnetic field can be written as

BR=¡
1
R

@	
@Z

; (155)

BZ=
1
R
@	
@R

; (156)

B�=
g(	)
R

: (157)

The partial derivative of the component of the magnetic field is written as

@BR
@R

= 1
R2

@	
@Z
¡ 1
R

@2	
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(158)
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=¡ 1
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(159)
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+ 1
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(160)

@BZ
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= 1
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@R@Z

(161)
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In my numerical code, the numerical data of the poloidal flux function 	(R; Z) and toroidal
field function g(	) are read in from the output G-eqdsk file of the EFIT code. Then all the par-
tial derivatives are calculated by using central finite-difference. The linear interpolation is used
to evaluate the various quantities that are needed at the instantaneous location of guiding-cen-
ters to push the orbits.

8.1.1 Solovév equilibrium

When I began to write the guiding center orbit code, in order to avoid the numerical interpo-
lating, I use Solovev's analytic equilibrium. (The latest version of my code constructs magnetic
field by reading the output G-eqdsk file of the EFIT code and thus can treat general tokamak
magnetic field.) The Solovév equilibrium is an analytic equilibrium in which the poloidal flux
function 	 is given by

	= B0
2R02�0q0

�
R2Z2+ �0

2

4
(R2¡R02)2

�
; (167)

where B0, R0, �0, q0 are constant parameters. Using Eq. (167), the partial derivatives are
written as

@	
@R

= B0
2R02�0q0

[2RZ2+�02(R2¡R02)R];
@	
@Z

= B0
R0
2�0q0

R2Z: (168)

@2	
@R2

= B0
2R02�0q0

[2Z2+�02(3R2¡R02)] (169)

@2	
@Z2

= B0
R0
2�0q0

R2;
@2	
@R@Z

= 2B0
R0
2�0q0

RZ (170)

(171)

The toroidal field function g is a constant function, g = cgR0B0, where cg is a dimensionless con-
stant.
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