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In Sec. 1 of this note, resonant wave particle interactions are demonstrated by a simple test-
particle simulation. Section 2 reproduces Stix's derivation of Landau damping from the view of
test particles[4]. In Sec. 3, linearized Vlasov-Poison equations are solved numerically to demon-
strate the �phase mix� in velocity space and the resulting Landau damping.

1 Test-particle simulation of Landau damping

Consider a longitudinal wave given by

E= ẑE cos(kz¡!t): (1)

The equations of motion of a test particle in the wave �eld are given by

m
dv

dt
= qE cos(kz¡!t); (2)

and
dz
dt

= v; (3)

where v�v � ẑ is the z component of the velocity of the particle.
Normalize z by the wavelength �, t by the wave period T , v by the phase velocity vp, i.e.,

z=
z
�
; t=

t
T
; v=

v
vp
; (4)

where � = 2� /k, T = 2� /!, vp = ! /k. Using the normalized quantities, Eqs. (2) and (3) are
written, respectively, as

d v
d t

=
2�kqE
m!2

cos[2�(z¡ t)]; (5)

and
d z
d t

=v: (6)

The initial distribution function of particles f0(z; v) is taken to be uniform in space and
Maxwellian in velocity,

f0(z; v)= fm(v)=
1

vt 2�
p exp

�
¡ v2

2vt
2

�
; (7)

which satis�es the normalization condition
R
¡1
1

f0(v)dv = 1 (Note that here vt = T /m
p

, which

is di�erent from the usual de�nition vt = 2T /m
p

used Sec. 3.4 of this note). In my particle
simulation code (/home/yj/project_new/pic_code), 4 � 105 particles are initially loaded
random in z and Maxwellian in v. Then the motion equations of every particle are followed
numerically to obtain the location and velocity at later time. In the numerical code, when a par-
ticle leaves from the region 0 6 x 6 1, it is shifted by one wavelength to return to this region.
This shift does not in�uence the force on the particle and it simulates the situation of in�nite
length in z direction, where when a particle leave the region 06 x 6 1 from the right boundary,
a particle of the same velocity will enter the region from the left boundary, and vice versa.
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The velocity distribution at later time is obtained by counting the number of particles in
each velocity interval. Figure 1a compares the velocity distribution function at t= 0 and t = 10,
which shows that the distribution is �atted in the resonant region v/vp= 1, which suggests that
the total kinetic energy of particles may be increased. Figure 2 plots the temporal evolution of
the total kinetic energy of the particles, which con�rms that the kinetic energy is increased by
the wave. The conservation of energy tell us that the increased kinetic energy of particles must
be drawn from the wave, i.e., the wave encounters damping.
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Figure 1. Comparison of the velocity distribution function (spatially averaged) at various time, which
shows that the distribution is distorted in the resonant region (v / vp � 1). Other parameters: vt / vp = 1,
2�kqE/m!2=1.
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Figure 2. Temporal evolution of the total kinetic energy of the particles, where Ek =
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Although the above simulation is performed by holding the wave amplitude constant, it takes
into account all the nonlinear physics of the particle motion in the wave �eld. Therefore this is a
nonlinear simulation.

1.1 Linear Landau damping
In the early phase of the simulation

t� 2�
p

/!b; (8)

where !b is the bounce angular frequency of particles in the trough of the wave, the trapped
particles e�ects can be neglected. This phase can be considered as the linear phase where the
linear Landau damping theory (discussed later in this note) is valid. The bounce angular fre-
quency of particles in the trough of the wave is given by[1]

!b=
kqE
m

r
: (9)
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Using this, the condition (8) is written as

t
T
� m!2

2�kqE

r
: (10)

This condition reduces to t /T � 1 for the case plotted in Fig. 2, where we see that the total
kinetic energy of the particles increases monotonously with time during this period. From the
data in Fig. 2, the temporal change rate of the total kinetic energy can be computed, which
gives d Ek/dt = 0.08. Next, I compare this result with those given by the analytic formula (39)
(given later in this note), which is written

dEk
dt

=¡ �!
jk jk

(qE)2

2m

�
df(v0)
dv0

�
v0=!/k

:

Using Eq. (7) and vt/vp=1, the above expression is written

dEk
dt

=�
(qE)2

2m!
1

2�
p exp

�
¡1
2

�
Multiplying by T and then dividing by mvt

2/2, the above expression is written

dEk
d t

=4�2
(kqE)2

m2!4
1

2 2�
p exp

�
¡1
2

�
In the simulation 2�kqE/m!2=1. Using this, expression (10) is written as

dEk
d t

=
1

2 2�
p exp

�
¡1
2

�
= 0.12

The result given by the analytic formula is slightly di�erent from that of the simulation (0.12 vs
0.08). Considering the various approximations used in deriving the analytic formula, the two
results can be considered to be in agreement with each other.

1.2 Nonlinear Landau damping

In the phase after the linear phase, Fig. 2 indicates that the total kinetic energy of the particles
oscillates with time, with the saturation level larger than the initial kinetic energy of the parti-
cles, i.e., there is nonzero net energy drawn from the wave by the particles. This is the nonlinear
Landau damping, which clearly demonstrates that net energy exchange between waves and par-
ticles can be nonzero on the long time scale without including any collisional e�ect.

1.3 Inverse Landau damping

Choose a drift-Maxwellian distribution

f0(z; v)= fm(v)=
1

vt 2�
p exp

�
¡(v¡ vb)

2

2vt
2

�
; (11)

with vb/ vp = 2. Then the derivative of the distribution function with respect to the velocity in
the resonant region is positive. This is the case where an inverse Landau damping is expected to
appear. Figure 3 compares the velocity distribution function at t = 0 and t = 10, which shows
that the distribution is �atted in the resonant region v/vp= 1. Figure 4 plots the temporal evo-
lution of the total kinetic energy of the particles, which confirms that the kinetic energy is
reduced by the wave.

Test-particle simulation of Landau damping 3
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Figure 3. Comparison of the velocity distribution function (spatially averaged) at various time, which
shows that the distribution is distorted in the resonant region (v /vp � 1). Other parameters: vt/vp = 1,
2�kqE/m!2=1.
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1.4 Density �uctuation induced by the wave
Figure (5) compares the spatial distribution at t= 0 and t= 10T , which shows that the distribu-
tion become nonuniform at t= 10T .
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Figure 5. Comparison of the spatial distribution function at t= 0 and t= 10, which shows that the dis-
tribution seems to become nonuniform at t= 10. Other parameters: vt= vp, 2�kqE/m!2=1.
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Figure 6 is a GIF animation, which shows the time evolution of the spatial and velocity dis-
tribution (spatially averaged) of the particles. The GIF animation can be viewed only in the
HTML version of this document (it does not work in the PDF version). As the animation
shows, the distribution function in the resonant region (v/vp� 1) oscillates with large amplitude
at early stage, and then the amplitude becomes smaller and saturated. The spatial distribution
also oscillates with large amplitude at early stage and then become much smaller and saturated.
The spatial �uctuation of the density induced by the longitude wave may explain the density
pump out phenomina induced by low-hybrid waves observed in many tokamaks.

Figure 6. GIF animation of the time evolution of the spatial and velocity distribution functions during
t= [0; 20T ], where T is the period of the longitudinal wave. Other parameters: vt= vp, 2�kqE /m!2= 1.
The GIF animation can be viewed only in the HTML version of this document (it does not work in the
PDF version).

The above simulation is in the test-particle approximation, which means the wave is given
and is not necessarily a self-consistent �eld. A self-consistent nonlinear simulation is given in my
notes /home/yj/theory/particle_simulation.tm.

2 Analytical theory of wave particle interaction

In this section, I reproduced Stix's derivation of Landau damping from the view of test parti-
cles[4]. This method is essentially similar to the particle simulation presented in Sec. 1. The dif-
ferences are that (1) we use approximate analytical method, instead of numerical one, to solve
the nonlinear equation of motion of particles in wave �eld; (2) we focus on the particles in the
resonant region v � vp; The analytical method used here is the iterative methods often used in
approximate theories[2] (Note that Stix's method is a mix of expansion and iterative methods
while the method used here is a standard iterative method[2]). The contribution of the wave
�eld to the particle motion is retained to the second order of the amplitude.

2.1 Iterative method for solving equation of motion in wave �eld

Consider the motion of a test particle moving in a longitudinal wave,

E= ẑE cos(kz¡!t); (12)

then the equation of motion is given by

m
dv
dt

= qE cos(kz ¡!t); (13)

Analytical theory of wave particle interaction 5



and
dz
dt

= v; (14)

with initial condition v(0) = v0 and z(0) = z0, where v� v � ẑ and v is the velocity of the particle.
Equations (13) and (14) are nonlinear system, for which exact solutions are hard to be found.
Here, we consider the amplitude of the electrical �eld, E, as a small perturbation, and use the
iterative method[2] to solve Eqs. (13) and (14) approximately. The initial guess of the solution
is obtained by setting E=0, which gives

v(0)= v0; (15)

and

z(0)= z0+ v0t: (16)

Substituting this solution back into the right-hand side of Eq. (13), we obtain

m
dv(1)

dt
= qE cos(kz0+ kv0t¡!t); (17)

which can be integrated over time to give

v(1)= v0+
qE
m

sin(kz0+�t)¡ sin(kz0)
�

; (18)

where �= kv0¡ ! and use has been made of the initial condition v(1)(0) = v0. Substituting this
solution for the velocity, Eq. (14) is written

dz(1)

dt
= v0+

qE
m

sin(kz0+�t)¡ sin(kz0)
�

; (19)

which can be integrated over time, giving

z(1) = z0+ v0t+
qE
m

Z
0

t sin(kz0+�t)¡ sin(kz0)
�

dt;

= z0+ v0t+
qE
m

Z
0

t sin(kz0+�t)¡ sin(kz0)
�2

d(kz0+�t);

= z0+ v0t+
qE

m

�
¡cos(kz0+�t)+ cos(kz0)

�2
¡ sin(kz0)

�
t

�
; (20)

where use has been made of the initial condition z(1)(0) = z0. Substituting the solution in Eq.
(20) back into the right-hand side of Eq. (13), we obtain

m
dv(2)

dt
= qE cos(kz(1)¡!t)

= qE cos
�
kz0+ kv0t+ k

qE
m

�
¡cos(kz0+�t)+ cos(kz0)

�2
¡ t sin(kz0)

�

�
¡!t

�
= qE cos

�
kz0+�t+ k

qE
m

�
¡cos(kz0+�t)+ cos(kz0)

�2
¡ sin(kz0)

�
t

��
: (21)

Since E is considered to be a small parameter, the term proportional to E can be considered to
be small when compared with kz0 + �t. Therefore, we expand the �rst cosine function in the
vicinity of kz0+�t. Thus the above equation is written approximately as

m
dv(2)

dt
� q E cos(k z0 + �t) ¡ sin(k z0 + �t)k

(qE)2

m

�
¡cos(kz0+ �t) + cos(kz0)

�2
¡

sin(kz0)
�

t

�
: (22)
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Next, calculate the time change rate of the kinetic energy of the particle, which is written as

d
dt

�
1
2
mv2

�
= mv

dv
dt

� mv(1)
dv(2)

dt
(23)

Using Eq. (18) for v(1) and Eq. (22) for mdv(2)/dt, Eq. (23) is written

d
dt

�
1
2
mv2

�
�
�
v0+

qE
m

sin(kz0+�t)¡ sin(kz0)
�

�
�
�
qE cos(kz0 + �t) ¡ sin(kz0 + �t)k

(qE)2

m

�
¡cos(kz0+�t) + cos(kz0)

�2
¡

sin(kz0)
�

t

��
� v0qE cos(kz0+�t)

¡ v0sin(kz0+�t)k
(qE)2

m

�
¡cos(kz0+�t) + cos(kz0)

�2
¡ sin(kz0)

�
t

�
+

(qE)2

m
sin(kz0+�t)¡ sin(kz0)

�
cos(kz0+�t); (24)

where the terms of order E3 have been neglected (if terms of order E3 and higher are included,
then the result will correspond to nonlinear Landau damping, is this correct?). Equations (24)
agrees with Eq. (8) in Chapter 8 of Stix's book[4] (however Stix's formula misses, by mistakes,
the �rst term of the above equation).

2.2 Averaging over initial spatial location and velocity of particles

Assume the distribution function of the particles is given by F (v0; z0) = f(v0)h(z0) and h(z0)= 1,
i.e. the distribution is uniform in space.

Consider the averaging over the initial position of particles. De�ne

h:::iz0�
k
2�

Z
0

2�/k

(:::)h(z0)dz0; (25)

which is an operator averaging over the initial position of particles in the interval of one wave
length. Using this operator on both sides of Eq. (24), we obtain�
d
dt

�
1
2
mv2

��
z0

= hv0q E cos(k z0 + �t)i ¡
�
sin(k z0 +

�t)k v0
(qE)2

m

�
¡cos(kz0+ �t) + cos(kz0)

�2
¡ sin(kz0)

�
t

��
+�

(qE)2

m
sin(kz0+�t)¡ sin(kz0)

�
cos(kz0+�t)

�
(26)

= 0 ¡ k
2�
k v0

(qE)2

m

Z
0

2�/k

sin(k z0 + �t)

�
¡cos(kz0+ �t) + cos(kz0)

�2
¡

sin(kz0)
�

t

�
d z0 +

k
2�

(qE)2

m

Z
0

2�/k sin(kz0+ �t)¡ sin(kz0)
�

cos(k z0 +

�t)dz0: (27)

Note that the term v0qE cos(kz0 + �t) corresponds to the power of the electric �eld acting on
those particles that move at a constant speed v0. Also note this term is reduced to zero when
averaged over the initial position z0 no mater whether it is a resonant particle (i.e., �� 0) or not
(i.e., �=/ 0). (This important fact is seldom mentioned in textbooks, which is one of the motiva-
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tions that I wrote this note.) Changing to the new variable x � kz0 + �t, the above equation is
written as�
d
dt

�
1
2
mv2

��
z0

= ¡ k
2�
kv0

(qE)2

m

Z
�t

2�+�t

sin(x)
�
¡cos(x)+ cos(x¡�t)

�2
¡ sin(x¡�t)

�
t

�
1
k
dx +

k

2�

(qE)2

m

Z
�t

2�+�t sin(x)¡ sin(x¡�t)
�

cos(x)
1

k
dx

= ¡ 1
2�
k v0

(qE)2

m

Z
�t

2�+�t

sin(x)
�

cos(x¡ �t)
�2

¡ sin(x¡ �t)
�

t

�
d x ¡

1
2�

(qE)2

m

Z
�t

2�+�t sin(x¡�t)
�

cos(x)dx

= ¡ 1
2�
kv0

(qE)2

m

�
1
�2

Z
�t

2�+�t

sin(x)cos(x ¡ �t)dx ¡ t
�

Z
¡�t

2�¡�t
sin(x)sin(x ¡

�t) dx

�
¡ 1
2�

(qE)2

m
1
�

Z
�t

2�+�t

sin(x¡�t)cos(x)dx

= ¡ 1
2�
kv0

(qE)2

m

h
�
�2

sin(�t)¡ t
�
�cos(�t)

i
+

1
2�

(qE)2

m
1
�
�sin(�t)

=
(qE)2

2m

�
¡kv0

1
�2

sin(�t)+ kv0
t
�
cos(�t) +

1
�
sin(�t)

�
=

(qE)2

2m

�
¡(�+!)

1
�2

sin(�t)+ (�+!)
t
�
cos(�t) +

1
�
sin(�t)

�
(28)

=
(qE)2

2m

h
¡ !
�2

sin(�t) + t cos(�t)+
!t
�
cos(�t)

i
; (29)

which agrees with Eq. (8) in Chapter 8 of Stix's book. Next, we will average Eq. (29) over the
distribution of initial velocity. De�ne the averaging operator in velocity space

h:::iv0=
Z
¡1

1
(:::) f(v0)dv0; (30)

where f(v0) is the one-dimensional distribution function, which satis�es the following normal-
izing condition Z

¡1

1
f(v0)dv0=1: (31)

Changing to the variables �� kv0¡!, equation (30) is written as

h:::iv0=
1
jk j

Z
¡1

1
(:::) f

�
�+!
k

�
d�; (32)

De�ne

g(�)� f
�
�+!

k

�
: (33)

then equation (32) is written as

h:::iv0=
1
jk j

Z
¡1

1
(:::)g(�)d�; (34)

Taking the average over the initial velocity, Eq. (29) is written as��
d
dt

�
1
2
mv2

��
z0

�
v0

=

�
(qE)2

2m

h
¡ !
�2

sin(�t)+ t cos(�t)+
!t
�
cos(�t)

i�
v0

=
1
jk j

(qE)2

2m

Z
¡1

1h
¡ !
�2

sin(�t)+ t cos(�t)+
!t
�
cos(�t)

i
g(�)d� (35)

It can be proved that the integration
R
¡1
1

t cos(�t)g(�)d� and
R
¡1
1 t

�
cos(�t)g(�)d� in the above

equation approach zero rapidly for large t (refer to Sec. 2.5.3). Thus, in the sense of time
asymptotic, we are left with only the integration of the �rst term, which is written as

¡ 1
jk j

(qE)2

2m

Z
¡1

1 !
�2

sin(�t)g(�)d�: (36)

8 Section 2



2.3 Resonant particles

Since there is a 1/�2 factor in the integrand of the above integral, the important contribution to
the integral must come from the vicinity of � = 0 (i.e. resonant particles). Therefore we expand
g(�) as

g(�)= g(0)+ g 0(0)�+ g 00(0)
�2

2
+ ::: (37)

Since sin(�t) / �2 is odd in �, only terms that are also odd need to be retained in the above
expansion. Using these, expression (36) is written as

¡ 1
jk j

(qE)2

2m

Z
¡1

1 !
�2

sin(�t)g(�)d� � ¡ 1
jk j

(qE)2

2m

Z
¡1

1 !
�2

sin(�t)(g 0(0)�)d�

= ¡ 1
jk j

(qE)2

2m
g 0(0)!

Z
¡1

1 1
�
sin(�t)d�

= ¡ 1
jk j

(qE)2

2m
g 0(0)!�

= ¡ �!
jk jk

(qE)2

2m

�
df(v0)
dv0

�
v0=!/k

: (38)

Using these results, Eq. (35) is written as��
d
dt

�
1
2
mv2

��
z0

�
v0

�¡ �!
jk jk

(qE)2

2m

�
df(v0)
dv0

�
v0=!/k

: (39)

which agrees with Eq. (16) in Chapter 8 of Stix's book[4]. Equation (39) indicates that the time
rate of change of the averaged kinetic energy of resonant particles is proportional to the deriva-
tive of the initial distribution function at the phase velocity of the wave.

2.4 Wave damping

If the longitudinal wave is an electron plasma wave, then the wave energy consists of two com-
ponents, the energy of the electric �eld and the averaged kinetic energy of the particle oscilla-
tions,

W =WE+Wp; (40)

where WE is the energy density of the electric �eld averaged in one wavelength, which is given
by

WE=
k
2�

Z
0

2�/k"0
2
[E cos(kx)]2dx=

1
4
"0E

2; (41)

Wp is the averaged kinetic energy of the particle oscillations, which, for electron plasma wave, is
equal to the electric �eld energy WE[3]. Using these results, equation (40) is written

W =
1
2
"0E

2: (42)

The energy conservation requires that the kinetic energy gained by the resonant particles must
come from the wave energy, i.e.,

dW

dt
=

�!

jk jk
(qE)2

2m

�
df(v0)

dv0

�
v0=!/k

: (43)

Using Eq. (42), equation (43) can be written

dE
dt

=
�!!p

2

2jk jk
1
n0

�
df(v0)
dv0

�
v0=!/k

E; (44)

Analytical theory of wave particle interaction 9



where !p= n0q
2/m"0

p
is the electron plasma frequency. De�ne

=
�!!p

2

2jk jk
1
n0

�
df(v0)
dv0

�
v0=!/k

(45)

then Eq. (44) is written
dE

dt
= E;

which can be integrated to give

E(t)=E(0)et: (46)

The damping rate of the amplitude of the electric �eld given by Eq. (45) agrees the Landau
damping in the weak growth rate approximation (equation (8-19) in Stix's book[4]).

2.5 Summary and discussions
In the above, we calculate the average power absorbed by a group of resonant particles moving

in a longitude wave. The result [Eq. (39)] indicates that (1) if ! /k > 0 and
h
df(v0)

dv0

i
v0=!/k

<0,

then the power is positive, which means the particles get energy from the wave, which further

means the wave are damped. (2) if !/k < 0 and
h
df(v0)

dv0

i
v0=!/k

>0, then the power is also posi-

tive, which also means the wave are damped. The two cases [(1) and (2)] can be summarized in
a simple sentence: If there are more resonant particles moving slower than the wave phase
velocity than those moving faster, then the wave is damped (where the resonant particles refer
to the particles with v�!/k).

The result given above is obtained in the test particle approximation, which means the wave
is given and is not necessarily a self-consistent �eld.

2.5.1 Lower order approximation

In Eq. (23), the time change rate of the kinetic energy of a particle (the absorbed power by the
particle) is approximated by

d
dt

�
1
2
mv2

�
= v(1)m

dv(2)

dt
; (47)

which uses a high order approximation of the velocity v(2). Next, we consider lower order
approximations of d(mv2 / 2)dt and check whether Landau damping can be recovered in these
lower order approximations. If we approximate d(mv2/2)dt as

d
dt

�
1
2
mv2

�
� v(0)m

dv(1)

dt
= v0qE cos(kz0+ kv0t¡!t); (48)

then it is obvious that d(mv2 /2)dt will reduce to zero when it is averaged over initial position
z0 in one wavelength. Therefore, Landau damping is missed in this approximation. If we approx-
imate d(mv2/2)dt as

d
dt

�
1
2
mv2

�
� v(1)m

dv(1)

dt

=

�
v0+

qE
m

sin(kz0+�t)¡ sin(kz0)
�

�
qE cos(kz0+ kv0t¡!t); (49)

then, according to the derivation given in the above section, we have�
d
dt

�
1
2
mv2

��
z0

=
(qE)2

2m
1
�
sin(�t) (50)

and ��
d
dt

�
1
2
mv2

��
z0

�
v0

=
1
jk j

(qE)2

2m

Z
¡1

1 1
�
sin(�t)g(�)d�: (51)
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The right-hand side of Eq. (50) do not approach zero for large t (I have veri�ed this for the case
that g(�) = 1/(1 + �2)). Since there is a 1/� factor in the integrand of the above integral, the
important contribution to the integral must come from the vicinity of � = 0. Therefore we
expand g(�) as

g(�)= g(0)+ g 0(0)�+ g 00(0)
�2

2
+ ::: (52)

Since sin(�t) / � is even in �, only terms that are also even need to be retained in the above
expansion. Using these, Eq. (50) is written as��

d
dt

�
1
2
mv2

��
z0

�
v0

=
1
jk j

(qE)2

2m

Z
¡1

1 1
�
sin(�t)g(�)d�

� 1

jk j
(qE)2

2m

Z
¡1

1 1

�
sin(�t)g(0)d�

=
�

jk j
(qE)2

2m
g(0); (53)

which is obviously not Landau damping. Then what is this contribution? The answer is that it
is an �error term� often encountered in the iterative method. In the above section, we saw that
the term sin(�t)/� was canceled when we go higher order approximation (refer to the derivation
between Eqs. (28) and (29)). The iterative method has the undesirable feature that in the early
iteration it gives erroneous values to the higher order terms. One can only check that a term is
correct by making one more iteration, which of course is usually convincing but no rigorous
proof. Therefore, strictly speaking, the result given here does not prove the existence of Landau
damping, but only suggests that the Landau damping is very likely to exist.

2.5.2 Using power

The power on a particle is the velocity multiplied by the force, i.e.,

P = Fv

= Eq cos(kz¡!t)v: (54)

Di�erent order approximations of v and z can be used in Eq. (54) to evaluate the power. If the
approximations v� v(0)= v0 and z� z(0)= z0+ v0t are used, Eq. (54) is written as

P �Eq cos(kz0+�t)v0; (55)

which is obviously zero when it is averaged over initial position z0 in one wavelength. If the
approximations and v� v(1) and z� z(1) are used, Eq. (54) is written as

P �
�
qE cos(kz0+ �t)¡ sin(kz0+ �t)k

(qE)2

m

�
¡cos(kz0+�t)+ cos(kz0)

�2
¡ sin(kz0)

�
t

���
v0+

qE

m

sin(kz0+�t)¡ sin(kz0)
�

�
� Eq cos(k z0 + �t)v0 + Eq cos(k z0 + �t)

qE
m

sin(kz0+ �t)¡ sin(kz0)
�

¡ sin(k z0 +

�t)k
(qE)2

m

�
¡cos(kz0+�t) + cos(kz0)

�2
¡ sin(kz0)

�
t

�
v0; (56)

where, the term proportional to E3 has been neglected. Equation (56) is identical with Eq. (24).
Therefore the derivation after this point is the same as given in Sec. 2.2.

2.5.3 Time asymptotic behavior of integral
R
¡1
1

t cos(�t)g(�)d�

Consider the concrete case that g(�) = 1/(1+ �2), the integration can be performed analytically
(by using Wolfram Mathematica), which givesZ

¡1

1
t cos(�t)g(�)d� =

Z
¡1

1
cos(x)g(

x
t
)dx

= �
e¡t

t
; (57)

which rapid approaches zero for large t.

Analytical theory of wave particle interaction 11



3 Self-consistent-�eld linear simulation of Landau damping

3.1 One-dimensional Vlasov-Poisson equations
The test-particle simulation of Landau damping is given is Sec. 1. In this section, we consider
the self-consistent simulation of the linear Landau damping. The Vlasov equation is written

@f
@t
+v � rf + q

m
(E+v�B) � rvf =0; (58)

where f is the electron distribution function, q and m are the charge and mass of electrons,
respectively. The linearized version of the above equation is written

@f1
@t

+v � rf1+
q

m
(E0+v�B0) � rvf1=¡

q

m
(E1+v�B1) � rvf0: (59)

We consider the case of B0 = 0 and E0 = 0. Further consider only the electrostatic case, i.e.
@B1/@t = 0, i.e., there is not magnetic �uctuation. Then the linearized Vlasov equation (59) is
written

@f1
@t

+v � rf1=¡
q
m
E1 � rvf0: (60)

Consider the one-dimensional case where f1, and E1 are both independent of x and y coordi-
nates and E1=E1ẑ, then the above equation is written

@f1
@t

+ vz
@f1
@z

=¡ q
m
E1

@f0
@vz

: (61)

Integrating both sides of Eq. (61) over vx and vy, we obtain

@F1
@t

+ vz
@F1
@z

=¡ q
m
E1

@F0
@vz

; (62)
where

F0=

Z
¡1

1 Z
¡1

1
f0dvxdvy; (63)

and

F1=

Z
¡1

1 Z
¡1

1
f1dvxdvy; (64)

are the reduced distribution functions. Poisson's equation is written

@E
@z

=
1
"0

�
niqi+ q

Z
¡1

1
fd3 v

�
; (65)

where ni and qi are the number density and charge of ions, respectively. In equilibrium the
number density of electrons and ions are equal to each other. Assuming the number density of
the massive ions remain unchanged, Poisson's equation for the perturbed quantities is written

@E1
@z

=
1
"0
q

Z
¡1

1
f1 d

3v; (66)

In terms of the reduced distribution function, equation (66) is written

@E1
@z

=
1
"0
q

Z
¡1

1
F1 dvz: (67)

Equations (62) and (67) governs the time evolution of F1 and E1. Consider the case that F0 is
spatially uniform, then all the coe�cients of Eqs. (62) and (67) are independent of the spatial
coordinate, which indicates that di�erent spatial Fourier harmonics are decoupled. Performing
Fourier transform about z on both sides of Eqs. (62) and (67), we obtain

@F̂1
@t

+ ikvzF̂1=¡
q
m
Ê1

@F0
@vz

; (68)

ikÊ1=
1
"0
q

Z
¡1

1
F̂1 dvz ; (69)
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where F̂1 and Ê1 are the spatial Fourier transform of F1 and E1, respectively. Using Eq. (69) in
Eq. (68) yields

@F̂1
@t

=¡ikvz F̂1¡
q2

"0m
@F0
@vz

1
ik

Z
¡1

1
F̂1 dvz (70)

Given an equilibrium distribution function F0(vz) and an initial perturbation F̂1(t= 0; vz), equa-
tion (70) can be solved analytically by using the Laplace transformation. Here, to avoid the
fancy mathematics involved in the Laplace transformation, I solve Eq. (70) by a direct numer-
ical method.

3.2 Normalization
The reduced equilibrium distribution function F0 satisfies the normalization conditionR
¡1
1

F0(vz)dvz = n0, where n0 the number density of electrons. Denote the thermal velocity of
the equilibrium distribution by vt. Then Eq. (70) can be written

@F̂1
@t

=¡ikvz F̂1¡
q2n0
"0m

1
ikvt

�
vt
n0

@F0
@vz

� Z
¡1

1
F̂1 dvz ; (71)

which can be further written

@F̂1
@t

=¡ikvt vz F̂1¡
!p
2

ikvt

�
vt
2

n0

@F0
@vz

� Z
¡1

1
F̂1 d vz; (72)

where vz = vz/vt, !p= n0 q
2/("0m)

p
is the electron plasma frequency. De�ne t= t!p, then Eq.

(72) is written
@F̂1
@t

=¡ikvt
!p

vz F̂1¡
!p
ikvt

�
vt
2

n0

@F0
@vz

�Z
¡1

1
F̂1 d vz ; (73)

De�ne a= ikvt/!p, then the above equation is written

@F̂1
@t

=¡avz F̂1¡
1
a

�
vt
2

n0

@F0
@vz

�Z
¡1

1
F̂1 d vz; (74)

3.3 Phase mixing and linear Landau damping
Consider the case that the equilibrium distribution F0 is Maxwellian in velocity space:

F0(vz)=
n0

vt �
p exp

�
¡vz

2

vt
2

�
; (75)

which satisfies the normalization condition
R
¡1
1

F0(vz)dvz = n0. The derivative of F0 with
respect to vz is written

@F0
@vz

=
n0

vt �
p exp

�
¡vz

2

vt
2

��
¡2vz
vt
2

�
: (76)

Using this, Eq. (74) is written

@F̂1
@t

=¡a vz F̂1¡
1
a

1

�
p exp(¡vz2)(¡2vz)

Z
¡1

1
F̂1 d vz: (77)

Take the initial condition of F̂1 to be

F̂1(t=0; vz)=
1

�
p exp(¡vz2)+

i

�
p exp(¡vz2); (78)

which is a Maxwellian distribution that satis�es the normalization
R
¡1
1

F̂1(vz)d vz = 1+ i. Equa-
tion (77) with the initial condition Eq. (78) was solved numerically to obtain the time evolution
of F̂1 (the code is in /home/yj/project/landau_damping/). Figure 7 compares the velocity dis-
tribution function at t = 0 with that at t = 40, which shows that the distribution function
develops �ne structures in velocity space.

Self-consistent-field linear simulation of Landau damping 13
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Figure 7. Comparison of F̂1 at t = 0 and t!p = 40. (a) real part; (b) imaginary part. Other parameters
kvt/!p= 0.5.

It is ready to realize that the �ne velocity space structures are partially due to the �rst term
on the right-hand side of Eq. (77). When only this term is retained, Eq. (77) is written

@F̂1
@t

=¡i
�
kvt
!p

�
vz F̂1; (79)

which has the dispersion relation

!=

�
kvt
!p

�
vz; (80)

which indicates that Eq. (79) has di�erent eigenfrequencies for di�erent points in velocity space.
Thus, an initially rather smooth velocity distribution function will become not so smooth after
some time due to the distribution function oscillate with different frequencies at different
velocity points. This is the so-called �phase mixing�. It is obvious that, after some time, the
phase mixing will make the velocity distribution function F̂1(vz) rather messy, which poses a
great challenge to the numerical resolution of F̂1(vz). Given a �xed velocity grids, the numerical
results will become inaccurate when the grids is not �ne enough to resolve the �ne structures of
velocity distribution.

Note that the electric �eld is related to the integration of F1, i.e.

Ê1=
1
ik

q
"0

Z
¡1

1
F̂1 dvz (81)

Then it is fairly obvious that the phase mixing have the possibility of reducing the magnitude of
the perturbed electric �eld. Figure 8 plot the time evolution of Ê1 (the factor q / (k"0) in Eq.
(81) is removed), which shows that electric �eld oscillates with the amplitude decreasing with
time. This con�rms that the phase mixing reduces the magnitude of the electric �eld.
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Figure 8. (a) time evolution of real and imaginary parts of Ê1. (b) time evolution of jÊ1j in logarithm
scale. kvt/!p= 0.5.
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3.4 Comparison with linear analytical theory
Next, we compare the numerical results with the electron plasma wave dispersion relation, which
is given by[1]

1+ 2

�
!p
kvt

�
2

[1+ �Z(�)] = 0; (82)

where � =!/kvt, vt= 2Te/me

p
, and

Z(�)=
1

�
p

Z
C

e¡z
2

z¡ �
dz; (83)

is the plasma dispersion function. The plasma dispersion function can be written as

Z(�) = i �
p

exp(¡�2)erfc(¡i�); (84)

where erfc is the complementary error function of imaginary argument, which is implemented in
Wolfram Mathematica. By using FindRoot function of Wolfram Mathematica, the equation (82)
can be easily solved numerically to �nd the root. For the parameter used in the simulation kvt/
!p= 0.5, Findroot gives � = 2.4508¡ i0.0725. From this, we obtain !/!p= �kvt/!p = 1.2254¡
i0.0362.

The oscillation frequency of the electric �eld can be estimated by counting the peaks in Fig.
8, from which we obtain !r / !p = 1.226, which agrees the theoretic value 1.2254 given above.
Figure 8 shows that the amplitude of the electric �led decreases exponentially with time. Figure
9 compares the theoretic growth rate with the simulation results, which also shows good agree-
ment with each other.
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Figure 9. Comparison of the damping rate given by Eq. (82) ( /!p = ¡0.0362) with the simulation
results for the parameterkvt/!p= 0.5.

In the weak growth rate approximation, the real frequency of electron plasma wave is given
by

!r
2=!p

2+
3

2
k2vt

2; (85)

For the numerical case given here, kvt /!p = 0.5. Using this in Eq. (85), we obtain !r / !p =
1.173, which roughly agrees with the exact value !r/!p= 1.2254.

In the weak growth rate approximation, the growth rate is given by Eq. (45), i.e.,

=
�!!p

2

2jk jk
1
n0

�
df0(v)
dv

�
v=!/k

; (86)

Using this, we obtain

 =
�!!p

2

2k jk j
1
n0

�
n0

vt �
p exp

�
¡v

2

vt
2

��
¡2v
vt
2

��
v=!/k

=
�!!p

2

2k2

�
1

vt �
p exp

�
¡ !2

k2 vt
2

��
¡ 2!

kvt
2

��
: (87)
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From this, we obtain


!p

= �
p !p

kvt

"
exp

 
¡ !r

2/!p
2

k2vt
2/!p

2

! 
¡ !r

2/!p
2

k2 vt
2/!p

2

!#
: (88)

Using !/!p= 1.225 in Eq. (88), we obtain /!p=¡0.0524, which roughly agrees with the exact
value  /!p = ¡0.0362 obtained above. Note that if we used ! � !p, instead of the exact fre-
quency ! = 1.225!p, then Eq. (88) would give  /!p = ¡0.259, which is almost one order larger
than the exact value  /!p=¡0.036. This highlights the inaccuracy of the approximate formula
we encounter in textbooks[1], where !=!p is used to estimate the damping rate.

Figure 10 compares the exact numerical solution of the dispersion relation (82) with the
approximate solution given by Eqs. (85) and (88). The results indicate that the approximate
growth rate give by Eq. (88) is much lower than than the exact value for kvt/!pe> 1.
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Figure 10. Comparision of the exact numerical solution of the dispersion relation (82) with the approxi-
mate solution given by Eqs. (85) and (88). Numerical calculation uses the Matlab implementation of the
error function of imaginary argument by Marcel Leutenegger (January 2008). The root of the dispersion
equation is found by using �fsolve� of Matlab.

3.5 On the consrvation of particle number
In the above, we see that the integration j

R
¡1
1

F̂1dvz j decreases with time, which seems to be
inconsistent with the conservation of particle number. Note the spatial dependence of the per-
turbed distribution function is eikz, i.e., the perturbed distribution function is given by F̂1e

ikz,
the real part of which corresponds to the physical distribution function, i.e., F1(t; vz; z) = A(t;

v)cos(kz + �), where A = jF̂1j and � is the angle of F̂1 on the complex plane. The particle
number for the distribution function F1 in a region of the wave length 2�/k is given by

N =

Z
0

2�/kZ
¡1

1
F1dvz dz

=

Z
0

2�/k

dz

Z
¡1

1
A(t; v)cos(kz+ a)dvz

=

Z
¡1

1
A(t; v)

�Z
0

2�/k

dz cos(kz+�)

�
dvz (89)

Note that the term in the parenthesises is zero. Therefore the above expression is always zero no
matter what value the integration

R
¡1
1

F̂1dvz is . Thus the number of particles is conserved in
this case.

4 Two-stream instability
In Sec. 3, the equilibrium velocity distribution of electrons is chosen to be Maxwellian, where we
see that perturbations are damped, which is the well-known Landau damping. In this section,
we investigate a case where perturbation grows, instead of being damped. Consider an equilib-
rium distribution function consisting of two counter-propagating Maxwellian beams of mean
speed vb and thermal spread vt, i.e.,

F0(vz) =
n0
2

�
1

vt �
p exp

�
¡(vz¡ vb)

2

vt
2

�
+

1

vt �
p exp

�
¡(vz+ vb)2

vt
2

��
: (90)
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Then @F0/@vz is written

@F0
@vz

=
n0
2

�
1

vt �
p exp

�
¡ (vz ¡ vb)2

vt
2

��
¡2 (vz ¡ vb)

vt
2

�
+

1

vt �
p exp

�
¡ (vz+ vb)2

vt
2

��
¡

2 (vz+ vb)

vt
2

��
(91)

Using the same code discussed in Sec. 3, I solve Equation (74) with @F0/@vz given by Eq. (91)
and the initial perturbation given by Eq. (77). Figure 11 plots the equilibrium distribution func-
tion with vb/vt=4.
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Figure 11. Equilibrium distribution function given by Eq. (90) with vb/vt=4.

Figure 12 plots the time evolution of the perturbed electric �eld, which shows the the electric
�eld grows exponentially in time and thus corresponds to an instability. This instability is called
two-stream instability since it happens in the system with two opposite electron beams.
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Figure 12. Comparison of the simulation results with analytical growth rate given by Eq. (92). The
parameters are kvt/!p= 0.05 and vb/vt=4.

In Fig. 12, the simulation results are also compared with the analytical results in the cold
beam approximation (vt! 0), which is given by equation (8.1.35) in Gurnett's book[1], i.e.,


!p

= 1+4
k2vb

2

!p
2

s
¡

 
1+

k2vb
2

!p
2

!vuut ; (92)

To make the simulation result able to be compared with the results in the cold beam approxi-
mation, the thermal velocity of the beam has been chosen to be a small number kvt/!p = 0.05.
The results in Fig. 12 shows that the simulation results agree with the analytical results. The
small discrepancy can be attributed to that equation (92) was derived by assuming the electron
distribution function is a Dirac � function while in the simulation, the distribution function is a
Maxwellian distribution with small a thermal spread (kvt / !p = 0.05). Also note that in this
case, the approximate phase velocity of the electron plasma wave is vp = !p / k = 20vt and the
beam velocity vb = 4vt. Thus, the distribution function is very small at the phase velocity.
Therefore the Landau damping in this case is neglectably small. In fact, equation (92) was
derived in the �uid mode in which the Landau damping is not included.
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Figure 13. Real part (a) and imaginary part (b) of the perturbed distribution function F̂1 at t!p= 80.
The parameters are kvt/!p= 0.05 and vb/vt=4.

5 tmp��to be deleted
����As is given in the wikipedia, the ponderomotive force is a nonlinear force that a
charged particle experiences in an inhomogeneous oscillating electromagnetic �eld. The pondero-
motive force Fp is expressed by

Fp=¡
e2

4m!2
rE2; (93)

where e is the electrical charge of the particle, m is the mass of the particle, E is the amplitude
of the inhomogeneous oscillating electric field (at low enough amplitudes the magnetic field
exerts very little force), ! is the angular frequency of oscillation of the �eld. to be continued�

"(k; !)= 1+
e2

"0mek

Z
C

@f0/@v
!¡ kv dv=0

1¡ 2 e2

"0mek
n0

vt �
p 1

kvt

Z
C

exp(¡t2)
� ¡ t tdt=0

Z(�) =2ie¡�
2

Z
¡1

i�

e¡t
2
dt: (94)

Z(�)= i �
p

w(�); (95)

where w(�) is Faddeeva's function, which is de�ned by

w(�)= exp(¡�2)erfc(¡i�): (96)

Z(�) = i �
p

exp(¡�2)erfc(¡i�)

= i �
p

exp(¡�2) 2

�
p

Z
¡i�

1
e¡t

2
dt

= 2i exp(¡�2)
Z
¡1

i�

e¡t
2
dt (97)
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