tmp -- -to be deleted

-- -- -- -- As is given in the wikipedia, the ponderomotive force is a nonlinear force that a charged particle experiences in an inhomogeneous oscillating electromagnetic field. The ponderomotive force $ \mathbf{F}_p$ is expressed by

$\displaystyle \mathbf{F}_p = - \frac{e^2}{4 m \omega^2} \nabla E^2,$ (94)

where $ e$ is the electrical charge of the particle, $ m$ is the mass of the particle, $ E$ is the amplitude of the inhomogeneous oscillating electric field (at low enough amplitudes the magnetic field exerts very little force), $ \omega$ is the angular frequency of oscillation of the field. to be continued --

$\displaystyle \varepsilon (k, \omega) = 1 + \frac{e^2}{\varepsilon_0 m_e k} \int_C
\frac{\partial f_0 / \partial v}{\omega - k v} d v = 0 $

$\displaystyle 1 - 2 \frac{e^2}{\varepsilon_0 m_e k} \frac{n_0}{v_t \sqrt{\pi}}
\frac{1}{k v_t} \int_C \frac{\exp (- t^2)}{\zeta - t} t d t = 0 $

$\displaystyle Z (\zeta) = 2 i e^{- \zeta^2} \int_{- \infty}^{i \zeta} e^{- t^2} d t.$ (95)

$\displaystyle Z (\zeta) = i \sqrt{\pi} w (\zeta),$ (96)

where $ w (\zeta)$ is Faddeeva's function, which is defined by

$\displaystyle w (\zeta) = \exp (- \zeta^2) \ensuremath{\operatorname{erfc}} (- i \zeta) .$ (97)


$\displaystyle Z (\zeta)$ $\displaystyle =$ $\displaystyle i \sqrt{\pi} \exp (- \zeta^2) \ensuremath{\operatorname{erfc}} (- i \zeta)$  
  $\displaystyle =$ $\displaystyle i \sqrt{\pi} \exp (- \zeta^2) \frac{2}{\sqrt{\pi}} \int_{- i
\zeta}^{\infty} e^{- t^2} d t$  
  $\displaystyle =$ $\displaystyle 2 i \exp (- \zeta^2) \int_{- \infty}^{i \zeta} e^{- t^2} d t$ (98)

yj 2016-01-26