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1 Introduction

Artificial intelligence (AI) research has tried many different approaches since its founding. In the
first decades of the 21st century, the AI research is dominated by highly mathematical optimization
machine learning (ML), which has proved successful in solving many challenging real life problems.

Many problems in AI can be solved theoretically by searching through many possible solutions:
Reasoning can be reduced to performing a search. Simple exhaustive searches are rarely sufficient
for most real-world problems. The solution, for many problems, is to use "heuristics" or "rules of
thumb" that prioritize choices in favor of those more likely to reach a goal. A very different kind of
search came to prominence in the 1990s, based on the mathematical theory of optimization. Modern
machine learning is based on these methods. Instead, of using detailed explanations to guide the
search, it uses a combination of[1]: (a) general architectures; (b) trying trillions of possibilities,
guided by simple ideas (like gradient descent) for improvement; and (c) the ability to recognize
progress (by defining a objective function).

I am interested in applying machine learning to problems in computational physics problems
that traditional numerical methods can not easily handle either because of its computational costs
being too high or its traditional algorithms are too complicated to easily implement.

Enrico Fermi once criticized the complexity of a model (that contains many free parameters)
by quoting Johnny von Neumann �With four parameters I can fit an elephant, and with five I can
make him wiggle his trunk�. What Fermi implies is that it is easy to fit existing data and what is
important is to have a model with predicting capability (fitting data not seen yet). The artificial
neural network method tackles this difficulty by increasing the number of free parameters to
millions, with the hope of obtaining predicting capability.

2 Neural network

Neural networks consists of multiple layers of interconnected nodes (neurons), each having a weight
for a connection, a bias, and an activation function. Each layer build upon the previous layer. This
progression of computations through the network is called forward propagation. Another process
called backpropagation uses algorithms which moves backwards through the layers to efficiently
compute the partial derivatives of the objective function with respect to the weights and biases.
Combining the forward and backward propagation, we can calculate errors in predictions and
then adjusts the weights and biases using the gradient descent method. This process is called
training/learning.

2.1 Node (neuron or unit), weight, bias, and activation

As is shown in Fig. 1, we use wjkl to denote the weight for the connection from the kth neuron in
the (l¡ 1)th layer to the jth neuron in the lth layer. Use bjl to denote the bias of the jth neuron in
the lth layer.
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Figure 1. Definition of layers, neurons, weights, and biases in a neural network. The jth neuron in the lth

layer is referred to as neuron (l; j)

We use ajl to denote the output (activation) of the jth neuron in lth layer. A neural network
model assumes that ajl is related to the al¡1 (output of the previous layer) via

aj
l =�

�X
k

wjk
l ak

l¡1+ bj
l
�
; (1)

where the summation is over all neurons in the (l¡1)th layer and � is a function called activation
function which can take various forms, e.g., step function,

�(z)=
�
1 if z> 0
0 else

; (2)

rectified linear unit (ReLU),

�(z)=max (0; z); (3)

and sigmoid (�S�-shaped curve, also called logistic function)

�(z)= 1
1+ exp(¡z) : (4)

For natation ease, define zjl by

zj
l=

X
k

wjk
l ak

l¡1+ bj
l ; (5)

which can be interpreted as an weighted input to the neuron (l; j), then Eq. (1) is written as

aj
l =�(zjl): (6)

In matrix form, Eq. (5) is written as

zl=wlal¡1+ bl; (7)

where wl is a J �K matrix, zl and bl are column vectors of length J , al¡1 is a column vector of
lengthK, where J andK are the number of neurons in the lth layer and (l¡1)th layer, respectively.

The input layer is where data inputs are provided, and the output layer is where the final
prediction is made. The input and output layers of a deep neural network are called visible layers.
The layers between the input layer and output layer are called hidden layers. Note that the input
layer is usually not considered as a layer of the network since it does not involve any computation.
In tensorflow, layers refer to the computing layers (i.e., hidden layers and the output layer, not
including the input layer). The activation function of each layer can be different. The activation
function of the output layer is often chosen as None, ReLU, logistic/tanh, and is usually different
from those used in the hidden layers. Here �None� means activation �(z)= z.
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2.2 Objective function
Define an objective function (can be called loss or cost function depending on contexts) by

C(w; b)� 1
2n

X
x

ky(x)¡ aLk2; (8)

where w and b denotes the collection of all weights and biases in the network, n is the total number
of training examples x, the summation is over all the training examples, y(x) is the desired output
from the network (i.e., correct answer) when x is the input, and aL is the actual output from the
output layer of the network and is a function of w; b, and x. Note that y and aL are vectors (with
number of elements being the number of neurons in the output layer) and k: : :k denotes the vector
norm. Explicitly writing out the vector norm, Eq. (8) is written as

C(w; b)� 1
2n

X
x

X
j=1

NL

(yj(x)¡ ajL)2; (9)

where NL is the number of neurons in the output layer.
The cost function is the average error of the approximate solution away from the desired exact

solution. The goal of a learning algorithm is to find weights and biases that minimize the cost
function. A method of minimizing the cost function over (w; b) is the gradient descent method:

wjk
l !wjk

l ¡ �
@C

@wjk
l
; (10)

bj
l! bj

l ¡ �
@C

@bj
l
; (11)

where � is called learning rate, which should be positive.
In using the gradient descent method, we need to compute the partial derivatives @C/@wjkl and

@C /@bjl. Next we will discuss how to compute them.

2.3 Gradients of objective function
Note that the loss function involves an average over all the training examples. Denote the loss
function for a specific training example by Cx, i.e.,

Cx=
1
2

X
j=1

NL

(yj(x)¡ ajL)2; (12)

then expression (9) is written as

C= 1
n

X
x

Cx; (13)

Then the partial derivatives @C /@wjkl and @C /@bjl can be written as the sum of @Cx/@wjkl and
@Cx/@bjl, i.e.,

@C

@wjk
l
= 1
n

X
x

@Cx
@wjk

l
; (14)

@C

@bj
l
= 1
n

X
x

@Cx
@bj

l
: (15)

The above formulas indicate that, once @Cx/@wjkl and @Cx/@bjl are known, obtaining @C/@wjkl and
@C /@bjl is trivial, i.e., just averaging them. Therefore, we will focus on Cx (i.e., the cost function
for a fixed training example) and discuss how to compute @Cx/@wjkl and @Cx/@bjl.

In practice, we do not sum over all the training examples. Instead, we average the derivative
over a small number (say 16) of training examples (a mini batch) and use these approximate
derivatives to advance a step. For the next step, we stochastically change to using a different mini
batch. This is called stochastic gradient descent (SGD) method.
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2.4 Back-propagating algorithm
The cost function Cx is a function of weights and biases of all neurons (the input x and output
y(x) are fixed parameters). For a specific neuron (l; j), its weights and biases enter Cx via the
combination zj

l=
P

kwjk
l ak

l¡1+ bj
l. Then it is useful to define the following partial derivative:

�j
l� @Cx

@zj
l
; (16)

where the partial derivative are taken with fixed weights and biases for all neurons except neuron
(l; j). Note that the ak

l¡1 appearing in the expression of zjl does not depend on wjk
l or bjl. It only

depends on the weights and biases in the layers 6(l ¡ 1), which are all fixed when taking the
derivative in expression (16). �jl defined in expression (16) is often called the error of neuron (l; j).

Using the chain rule, @Cx/@wjkl and @Cx/@bjl can be expressed in terms of �jl:

@Cx
@bj

l
= @Cx

@zj
l

@zj
l

@bj
l
= �j

l ; (17)

and
@Cx
@wjk

l
= @Cx

@zj
l

@zj
l

@wjk
l
= �j

lak
l¡1: (18)

Therefore, if �jl is known, it is trivial to compute the gradients needed in the gradient descent
method.

lth layer (l+1)th layer
a1
l

a3
l

a2
l

z1
l+1=

P
kw1k

l+1ak
l + b1

l+1

z2
l+1=

P
kw2k

l+1ak
l + b2

l+1

a1
l+1=�(z1

l+1)

a2
l+1=�(z2

l+1)

For the output layer (Lth layer), �jl defined in Eq. (16) is written as

�j
L= @Cx

@zj
L
= @Cx
@aj

L

@aj
L

@zj
L
: (19)

The dependence of Cx on aj
L is explicitly given by Eq. (12), from which the above expression for

�j
L is written as

�j
L=(ajL¡ yj(x))� 0(zjL): (20)

Therefore �jL is easy to compute.
Backpropagation is a way of computing �jl for every layer using recurrence relations: the relation

between �l and �l+1. Noting how the error is propagating through the network, we know the
following identity:

@Cx
@zJ

l
dzJ

l =
X
j

@Cx

@zj
l+1

dzj
l+1; (21)

with

dzj
l+1=wjJ

l+1d(aJl ); (22)
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i.e.,
dzj

l+1=wjJ
l+1� 0(zJl )dzJl : (23)

Therefore
@Cx
@zJ

l
=

X
j

@Cx

@zj
l+1

wjJ
l+1� 0(zJl ): (24)

i.e.,
�J
l =

X
j

�j
l+1wjJ

l+1� 0(zJl ): (25)

Equation (25) gives the recurrence relations of computing �l from �l+1. This is called the back-
propagation algorithm. Eq. (25) can be written in the matrix form:

�l=((wl+1)T�l+1)�� 0(zl); (26)

where T stands for matrix transpose, � is the element-wise product.

3 Automatic differentiation
Automatic differentiation (autodiff) is a set of techniques for computing derivatives of numeric
functions expressed as source code (i.e. the internal mechanism of the function is known). It
works by breaking down functions into elementary operations (addition, multiplication, etc.) whose
derivatives are known, and then applies the chain rule to compute the derivatives.

Autodiff can be considered as a kind of symbolic differentiation. The difference of autodiff from
the traditional symbolic differentiaton is that the goal is not to get a compact formula for humans
to understand, but for computers to evaluate. Therefore the final result from a autodiff is not an
analytical formula, but numerical data. This goal also makes autodiff more efficient since autodiff
doses not need to perform some intermedia processes that appear when you use traditional symbolic
differentiation to get a formula and then numerically evaluate the formula.

Autodiff can be better than numerical differentiation (e.g., finite difference) in that it avoid
truncation errors. When you are given a black-box function, you can not use autodiff since the
internal mechinism of the function is unknown. In this case, the only choice is to use numerical
differentiation.

Autodiff has two main modes: forward and backward. Forward mode computes a single deriva-
tive during one pass of the expression tree. The back mode computes all the derivatives in a single
pass of the expression tree, avoiding some computational repetition (compared using forward mode
to compute all the derivatives sperately). It's more efficient for functions with many inputs and
few outputs, making it ideal for machine learning where we often compute gradients of scalar loss
functions with respect to many parameters. Backpropagation is a specific instance of backward-
mode autodiff. Here is a simple Python code implementing autodiff:

Forward:

class Expression:
def __add__(exp1, exp2):

return Plus(exp1, exp2)
def __mul__(exp1, exp2):

return Multiply(exp1,exp2)
class Variable(Expression):

def __init__(self,value):
self.value = value

def evaluate(self):
return self.value

def derive(self, v):
return 1 if self == v else 0

class Plus(Expression):
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def __init__(self,exp1,exp2):
self.a = exp1
self.b = exp2

def evaluate(self):
return self.a.evaluate() + self.b.evaluate()

def derive(self,v):
return self.a.derive(v) + self.b.derive(v)

class Multiply(Expression):
def __init__(self,exp1,exp2):

self.a = exp1
self.b = exp2

def evaluate(self):
return self.a.evaluate() * self.b.evaluate()

def derive(self, v):
return (self.a.derive(v)*self.b.evaluate()

+self.b.derive(v)*self.a.evaluate())

# Example: derivatives of z(x,y) at (x, y) = (2, 3)
x = Variable(2)
y = Variable(3)
z = x * (x + y) + y * y
print(z.derive(x)) # dz/dx, Output: 7
print(z.derive(y)) # dz/dy, Output: 8

This simple example illustrates several important concepts:
* Class, subclass, inheritance
* Operator overloading
* Polymorphism
* Recursion

The following is the backward (or reverse) method.

class Expression:
def __add__(exp1, exp2):

return Plus(exp1,exp2)
def __mul__(exp1, exp2):

return Multiply(exp1, exp2)

class Variable(Expression):
def __init__(self,value):

self.value = value
self.partial = 0

def evaluate(self):
return self.value

def derive(self,seed):
self.partial += seed

class Plus(Expression):
def __init__(self,exp1,exp2):

self.a = exp1
self.b = exp2

def evaluate(self):
return self.a.evaluate() + self.b.evaluate()

def derive(self,seed):
self.a.derive(seed)
self.b.derive(seed)
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class Multiply(Expression):
def __init__(self,exp1,exp2):

self.a = exp1
self.b = exp2

def evaluate(self):
return self.a.evaluate() * self.b.evaluate()

def derive(self,seed):
self.a.derive(seed * self.b.evaluate())
self.b.derive(seed * self.a.evaluate())

x = Variable(2)
y = Variable(3)
z = x * (x + y) + y * y
z.derive(1)
print(x.partial) # dz/dx Output: 7
print(y.partial) # dz/dy Output: 8

Another method is to use dual numbers. Dual number are expressions of the form a+ b", where
a and b are real numbers, and " is a symbol taken to satisfy "2=0 with "=/ 0. Using a dual number
in the Taylor series, we obtain

f(a+ b")=
X
n=0

1
f (n)(a)
n!

(b")n= f(a)+ bf 0(a)"; (27)

since all terms invovling "2 and greater powers are zero by the defintion of ". We find the coefficient
of " in the result is the first derivative f 0(a). This result can be used in computer programs to find
derivative of a function by defining a class and overloading the basic operators, e.g.

a1+ b1"+ a2+ b2"=(a1+a2)+ (b1+ b2)"; (28)

(a1+ b1")?(a2+ b2")= a1a2+(a1b2+ a2b1)": (29)

Here is a Python code:

class Dual:
def __init__(self, realPart, infs=0):

self.realPart = realPart
self.infs = infs

def __add__(self, other):
return Dual(

self.realPart + other.realPart,
self.infs + other.infs

)

def __mul__(self, other):
return Dual(

self.realPart * other.realPart,
other.realPart * self.infs + self.realPart * other.infs

)

def f(x, y):
return x * (x + y) + y * y

x = Dual(2)
y = Dual(3)
epsilon = Dual(0, 1)
a = f(x + epsilon, y)
b = f(x, y + epsilon)
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print("dz/dx =", a.infs) # Output: dz/dx= 7
print("dz/dy =", b.infs) # Output: dz/dy = 8

4 misc

5 Least square
In the least square method, the loss function is defined as

L=
X
i=1

n

jŷ(xi)¡yij2; (30)

where ŷ(xi) is the output of the model for the input xi, n is the number of data points.
In the most general case, each data point considers of multiple independent variables and

multiple dependent variables (x;y). In simple cases, each data point has one independent variable
and one dependent variable. For example, a data set consists of n data-points (xi; yi), i = 1, :::,
n, where xi is an independent variable and yi is a dependent variable whose value is found by
observation. The model function has the form y(x)= f(x; 𝛃), where m adjustable parameters are
held in the vector 𝛃. A least squar model is called linear if the model comprises a linear combination
of the parameters, i.e.,

f(x; 𝛃)=
X
j=1

m

�j'j(x); (31)

where 'j(x) are basis functions chosen. Letting Xij= 'j(xi), then the model prediction for input
xi can be written as

fi� f(xi; 𝛃)=
X
j=1

m

Xij�j: (32)

For n data points, the above can be written in matrix form:

f=X𝛃; (33)

where f=(f1; : : : fn)T .
For linear least-square fitting, we can solve the �normal equation� to get the fitting coefficients.

Alternatively, one can use iterative methods, e.g., the gradient descent method, to minimize the
mean square error over the coefficients. The following is a complete example in Python:

import numpy as np
import matplotlib.pyplot as plt
class Linear_Regression:

def __init__(self):
self.b = [0, 0]

def predict(self, X):
Y_pred = self.b[0] + self.b[1]*X
return Y_pred

def update_coeffs(self, X, Y, learning_rate):
Y_pred = self.predict(X)
m = len(Y)
self.b[0] = self.b[0] - (learning_rate * ((1/m) *

np.sum(Y_pred - Y)))
self.b[1] = self.b[1] - (learning_rate * ((1/m) *

np.sum((Y_pred - Y) * X)))
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regressor = Linear_Regression()
Nd=11
X = np.array([i for i in range(Nd)])
Y = np.array([2*i for i in range(Nd)]) + np.random.uniform(high=5.0,size=Nd)
fig, ax = plt.subplots()
ax.plot(X,Y, 'k.',label='data')
Y_pred = regressor.predict(X)
ax.plot(X, Y_pred, label='Initial fit line')

learning_rate = 0.01
i = 0
while i<100:

regressor.update_coeffs(X,Y,learning_rate)
i = i+1

Y_pred = regressor.predict(X)
ax.plot(X, Y_pred, 'b-',label='Final Fit Line')
ax.legend()
plt.show()

The loss function is defined by the mean square error, which is not directly used in the above
code. Only the partial derivatives of the loss function is directly used.

6 Logistic regression for binary classification
Hypothesis function (the model): Denote the output of the model by ŷ, which is given by

ŷ=�(z); (34)

where z=w �x+ b and � is the sigmoid function given by Eq. (4). The model is nonlinear in the
unknowns w and b.

The loss function is chosen as

L=¡ 1
m

X
i=1

m

[yi log(ŷi)+ (1¡ yi)log(1¡ ŷi)]; (35)

where yi is the correct answer of the ith training example (yi can take only two values, 0 or 1).
The value of yî is interpreted as the probability of y being 1.

Because the model function is nonlinear and the loss function is complicated, there is usually no
closed-form solution that minimizes the loss function. Iterative methods, such as gradient descent,
are needed to solve for w and b. The partial derivatives needed in the gradient desent method can
be written as

@L
@w

= ¡ 1
m

X
i

�
yi
1
ŷi
� 0(z)xi¡ (1¡ yi)

1
(1¡ ŷi)

� 0(z)xi

�
= ¡ 1

m

X
i

��
yi
1
ŷi
¡ (1¡ yi)

1
(1¡ ŷi)

�
� 0(z)xi

�
= ¡ 1

m

X
i

��
yi¡ yî

ŷi(1¡ ŷi)

�
� 0(z)xi

�
= ¡ 1

m

X
i

��
yi¡ yî

ŷi(1¡ ŷi)

�
�(1¡�)xi

�
= ¡ 1

m

X
i

��
yi¡ yî

ŷi(1¡ ŷi)

�
ŷi(1¡ ŷi)xi

�
= ¡ 1

m

X
i

[ (yi¡ yî)xi] (36)
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Using
d�
dz

= 1
(1+ exp(¡z))2exp(¡z)=�2exp(¡z)=�(1¡�) (37)

The above formula is simplified as

@L
@w

= ¡ 1
m

X
i

��
yi¡ yî

ŷi(1¡ ŷi)

�
�(1¡�)xi

�
= ¡ 1

m

X
i

��
yi¡ yî

ŷi(1¡ ŷi)

�
ŷi(1¡ ŷi)xi

�
= ¡ 1

m

X
i

[ (yi¡ yî)xi]

(38)

Similary, we obtain
@L
@w

=¡ 1
m

X
i

(yi¡ yî): (39)
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