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Abstract

This note discusses the linear ideal magnetohydrodynamic (MHD) theory of tokamak plasmas. This note also
serves as a document for the GTAW code (General Tokamak Alfvén Waves code), which is a Fortran code calcu-
lating Alfven eigenmodes in realistic tokamak geometry.

1 MHD equations

The time evolution of the fluid velocity u is governed by the momentum equation

ρ

(
∂u

∂t
+u · ∇u

)

= ρqE−∇p+J×B, (1)

where ρ, ρq, p, J, E, and B are mass density, charge density, thermal pressure, current density, electric field, and
magnetic field, respectively. The time evolution of the mass density ρ is governed by the mass continuity equation

∂ρ

∂t
+∇ · (ρu)= 0. (2)

The time evolution equation for pressure p is given by the equation of state

d

dt
(pρ−γ) = 0, (3)

where γ is the ratio of specific heats. The time evolution of B is given by Faraday’s law

∂B

∂t
=−∇×E. (4)

The current density J can be considered as a derived quantity, which is defined through Ampere’s law (the dis-
placement current being ignored)

J=
1

µ0
∇×B (5)

The electric field E is considered to be a derived quantity, which is defined through Ohm’s law

E=−u×B+ ηJ. (6)

The charge density ρq can be considered to be a derived quantity, which is defined through Poisson’s equation,

ρq= ε0∇ ·E. (7)

The above equations constitute a closed set of equations for the time evolution of four quantities, namely, B, u, ρ,
and p (the electric field E, current density J, and charge density ρq are eliminated by using Eqs. (5), (6), and (6)).
In addition, there is an equation governing the spatial structure of the magnetic field, namely

∇ ·B=0. (8)

In summary, the MHD equations can be categorized into three groups of equations, namely[1],

1. Evolution equations for base quantities B, u, ρ, and p:
∂B

∂t
=−∇× (−u×B+ η(∇×B)/µ0)=∇× (u×B) + η∇2

B/µ0

ρ
(
∂u

∂t
+u · ∇u

)

= ρqE−∇p+(∇×B)/µ0×B

∂ρ

∂t
+∇ · (ρu)= 0,

d

dt
(pρ−γ)= 0,

2. Equation of constraint: ∇ ·B=0.

3. Definitions: (i.e., they are considered to be derived quantities.)

E= η(∇×B)/µ0−u×B,

J=(∇×B)/µ0,

ρq= ε0∇ ·E.
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The electrical field term ρqE in the momentum equation (1) is usually neglected because this term is usually much
smaller than other terms for low-frequency phenomena in tokamak plasmas.

1.1 Self-consistency check

It is well known that the divergence of Faraday’s law (4) is written

∂∇ ·B
∂t

=−∇ · (∇×E)= 0, (9)

which implies that ∇ ·B=0 will hold in later time if it is satisfied at the initial time.

Because the displacement current is neglected in Ampere’s law, the divergence of Ampere’s law is written

∇ ·J=0. (10)

On the other hand, the charge density is defined through Poisson’s equation, Eq. (7), i.e.,

ρq ≡ ε0∇ ·E
= ε0∇ · (ηJ−u×B). (11)

which indicates that the charge density ρq is usually time dependent, i.e., ∂ρq/∂t=/ 0. Therefore the charge conser-
vation is not guaranteed in this framework. This inconsistency is obviously due to the fact that we neglect the dis-
placement current ∂E / ∂t in Ampere’s law. Since, for low frequency phenomena, the displacement current ∂E / ∂t
term is usually much smaller than the the conducting current J, neglecting the displacement current term induces
only small errors in calculating J by using Eq. (5).

1.2 Generalized Ohm’s law

Referece [2] gives a clear derivation of the generalized Ohm’s law, which takes the following form

E+u×B− ηJ=
1

en
J×B− 1

en
∇ ·Pe+

me

ne2

[
∂J

∂t
+∇ · (Ju+uJ)

]

, (12)

where the first term on the right-hand side is called the “Hall term”, the second term is the electron pressure term,
and the third term is called the “electron inertia term” since it is proportional to the mass of electrons.

Note that both u and J are the first-order moments, with u being the (weighted) sum of the first-order moment
of electrons and ions while J being the difference between them. The generalized Ohm’s law is actually the differ-
ence between the electrons and ions first-order moment equations. The generalized Ohm’s law is an equation that
governs the time evolution of J. Also note that Ampere’s law, with the displacement current retained, is an equa-
tion governing the time evolution of E. However, in the approximation of the resistive MHD, the time derivative
terms ∂E/∂t and ∂J /∂t are ignored in Ampere’s law and Ohm’s law, respectively. In this approximation, Ohm’s
law is directly solved to determine E and Ampere’s law is directly solved to determine J.

1.3 Eliminating mass density ρ from equation of state

The equation of state (3) involves three physical quantities, namely ρ, p, and u. It turns out that the continuity
equation can be used in the equation to eliminate ρ. The equation of state

d

dt
(pρ−γ)= 0, (13)

can be written as
dp

dt
ρ−γ− γρ−(γ+1)p

dρ

dt
=0, (14)

which simplifies to
dp

dt
= γ

p

ρ

dρ

dt
(15)

Expand the total derivative, giving

∂p

∂t
+u · ∇p= γ

p

ρ

(
∂ρ

∂t
+u · ∇ρ

)

(16)

Using the mass continuity equation to eliminate ρ in the above equation gives

∂p

∂t
=−γp∇ ·u−u · ∇p. (17)

This equation governs the time evolution of the pressure. A way to memorize this equation is that, if γ = 1, the
equation will take the same form as a continuity equation, i.e.,

∂p

∂t
=−∇ · (pu). (18)
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2 Summary of resistive MHD equations

For the convenience of reference, the MHD equations discussed above are summarized here. The time evolution of
the four quantities, namely B, u, p, and ρ, are governed respectively by the following four equations:

∂B

∂t
=∇× (u×B) + η∇2

B/µ0, (19)

ρ

(
∂u

∂t
+u · ∇u

)

=−∇p+(∇×B)/µ0×B, (20)

∂p

∂t
=−γp∇ ·u−u · ∇p, (21)

∂ρ

∂t
=−ρ∇ ·u−u · ∇ρ. (22)

Note that only Eq. (19) involves the resistivity η. When η=0, the above system is called ideal MHD equations.

3 Linearized ideal MHD equation

Next, consider the linearized version of the ideal MHD equations. Use u0, B0, p0, and ρ0 to denote the equilibrium
fluid velocity, magnetic field, plasma pressure, and mass density, respectively. Use u1, B1, p1, and ρ1 to denote the
perturbed fluid velocity, magnetic field, plasma pressure, and mass density, respectively. Consider only the case
that there is no equilibrium flow, i.e., u0 = 0. From Eq. (21), the linearized equation for the time evolution of the
perturbed pressure is written as

∂p1
∂t

=−γp0∇ ·u1−u1 · ∇p0. (23)

The linearized momentum equation is

ρ0
∂u1

∂t
=−∇p1+ µ0

−1(∇×B1)×B0+ µ0
−1(∇×B0)×B1. (24)

The linearized induction equation is
∂B1

∂t
=∇× (u1×B0). (25)

These three equations constitute a closed system for u1, B1, and p1. Note that the linearized equation for the per-
turbed mass density ρ1

∂ρ1
∂t

=−ρ0∇ ·u1−u1 · ∇ρ0 (26)

is not needed when solving the system of equations (23)-(25) because ρ1 does not appear in equations (23)-(25).

3.1 Plasma displacement vector ξ

In dealing with the linear case of MHD theory, it is convenient to introduce the plasma displacement vector ξ,
which is defined through the following equation

u1=
∂ξ

∂t
. (27)

Using the definition of ξ and the fact that the equilibrium quantities are independent of time, the linearized induc-
tion equation (25) is written

∂B1

∂t
=
∂

∂t
[∇× (ξ×B0)]. (28)

Similarly, the equation for the perturbed pressure [Eq. (23)] is written

∂p1
∂t

=
∂

∂t
[−ξ · ∇p0− γp0∇ · ξ]. (29)

In terms of the displacement vector, the linearized momentum equation (24) is written

ρ0
∂2ξ

∂t2
=−∇p1+ µ0

−1(∇×B1)×B0+ µ0
−1(∇×B0)×B1. (30)

Equations (28), (29), and (30) constitute a closed system for B1, p1, and ξ.

3.2 Fourier transformation in time

A general perturbation can be written

h(t)=
1

2π

∫

−∞

∞

ĥ(ω)e−iωtdω, (31)
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where the coefficient ĥ(ω) is given by the Fourier transformation of h(t), i.e.,

ĥ(ω) =

∫

−∞

∞

h(t)eiωtdt, (32)

Using the definition of the Fourier transformtion, it is ready to prove that

∫

−∞

∞ ∂

∂t
h(t)eiωtdt=−iωĥ(ω), (33)

and
∫

−∞

∞ ∂2

∂t2
h(t)eiωtdt=−ω2ĥ(ω). (34)

Performing Fourier transformation (in time) on both sides of the the linearized momentum equation (30) and
noting that the equilibrium quantities are all independent of time, we obtain

−ω2ρ0ξ̂=−∇p̂1+ µ0
−1(∇× B̂1)×B0+ µ0

−1(∇×B0)× B̂1, (35)

where use has been made of the property in Eq. (34). Similarly, the Fourier transformation of the equations of
state (29) is written

p̂1=−ξ̂ · ∇p0− γp0∇ · ξ̂, (36)

and the Fourier transformation of Faraday’s law (28) is written

B̂1=∇×
(
ξ̂×B0

)
, (37)

Equations (35)-(37) agree with Eqs. (12)-(14) in Cheng’s paper[3]. They constitute a closed set of equations for ξ̂,

B̂1, and p̂1. In the next section, for notation ease, the hat on ξ̂, B̂1, and p̂1 will be omitted, with the understanding
that they are the Fourier transformations of the corresponding quantities.

3.3 Discrete frequency perturbation

In dealing with eigenmodes, we ususally encounter discrete frequency perturbations, i.e., h(t) is periodic function of
t so that they contian only discrete frequency components. In this case, the inverse Fourier transformtion in Eq.
(31) is replaced by the Fourier series, i.e.,

h(t)=
∑

j=−∞

∞

c(ωj)e
−iωjt, (38)

where the coefficients cj are given by

c(ωj)=
1

T

∫

0

T

h(t)eiωjtdt, (39)

with ωj = j2π /T and T being the period of h(t) (T is larger enough so that 1/T is very small compared with fre-

quency we are interested). The relation between h(t) and ĥ(ω) given by Eqs. (33) and (34) also applies to the rela-
tion between h(t) and c(ω), i.e.,

∫

−∞

∞ ∂

∂t
h(t)eiωtdt=−iωc(ω) (40)

and
∫

−∞

∞ ∂2

∂t2
h(t)eiωtdt=−ω2c(ω). (41)

Using the transformtion given by Eq. (39) on Eqs. (28), (29), and (30), respectively, we obtain the same equation
as Eqs. (35)-(37).

3.4 Eigenmodes

A general perturbation is given by Eq. (31), which is composed of infinit single frequency perturbation of the form

ĥ(ω, r)e−iωt. It is obvious that a general perturbation can also be considered to be composed of single frequency
perturbation of the form

ĥ(ω, r)e−iωt+ ĥ(−ω, r)eiωt, (42)

(it is also obvious that the range of ω can be limited in [0,+∞] for this case). Because a physical quanty is always
a real function, h(t, r) in the above should be a real function. It is ready to prove that the Fourier transformation
of h(t, r) has the following symmetry in frequency domain:

ĥ(−ω, r) = ĥ
⋆
(ω, r). (43)
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Writing

ĥ(ω, r) =Aeiα, (44)

where A and α are real numbers, then the expression (42) is written

ĥ(ω, r)e−iωt+ ĥ(−ω, r)eiωt
=ĥ(ω, r)e−iωt+ ĥ

⋆
(ω, r)eiωt

=ĥ(ω, r)e−iωt+ [ĥ(ω, r)e−iωt]⋆

=2A cos[α(r)−ωt] (45)

Using Eq. (45), the Fourier transformation is written

h(t, r) =

∫

0

∞

A(ω, r) cos[α(ω, r)−ωt]dω. (46)

If ĥ(ω, r) satisfies the eigenmode equations (35)-(37), then it is ready to verify that ĥ
⋆
(ω, r) is also a solution to

the equations. Since of Eq. (43), ĥ(−ω, r) is also a slution to the equations. Therefore ĥ(ω, r)e−iωt + ĥ(−ω, r)eiωt,
i.e., 2A cos[α(r)− ωt], is a solution to the linear equations (28), (29), and (30). This tell us how to construct a real

(physical) eigenmode from the complex funtion ĥ(ω, r), i.e., the real part of ĥ(ω, r)e−iωt is a physical eigenmode.

Note that it is the real part of ĥ(ω, r)e−iωt, instead of the real part of ĥ(ω, r), that is a physical eigenmode.

Note that ω is a real number by the definition of Fourier transformation. However, strictly speaking, the above
Fourier transformation should be replaced by Laplace transformation. In this case, ω is a complex number. In the
following, we will assume that we are using Laplace transformation, instead of Fourier transformation. In the fol-
lowing section, we will prove that the eigenvalue ω2 of the ideal MHD system must be a real number.

3.5 Linear force operator

Using Eqs. (36) and (37) to eliminate p1 and B1 from Eq. (35), we obtain

−ω2ρ0ξ=F(ξ), (47)

where F(ξ), the linear force operator, is given by

F(ξ)=∇(ξ · ∇p0+ γp0∇ · ξ)+ (∇×∇× (ξ×B0))/µ0×B0+(∇×B0)/µ0×∇× (ξ×B0) (48)

It can be proved that the linear force operator F(ξ) is self-adjoint (or Hermitian) (I have not proven this), i.e., for
any two functions η1 and η2 that satisfy the same boundary condition, we have

∫

η2 ·F(η1)d3x=
∫

η1 ·F(η2)d3x. (49)

As a consequence of the self-adjointness, the eigenvalue, ω2, must be a real number, which implies that ω itself is
either purely real or purely imaginary. [Proof: Taking the complex conjugate of Eq. (47), we obtain

− ρ0(ω
2ξ)⋆= [F(ξ)]⋆. (50)

Note that the expression of F(ξ) given in Eq. (48) have the property [F(ξ)]⋆ = F(ξ⋆), Using this, equation (50) is
written

−ω2⋆ρ0ξ
⋆=F(ξ⋆), (51)

Taking the scalar product of both sides of the above equation with ξ and integrating over the entire volume of the
system, gives

−ω2⋆

∫

ρ0ξ
⋆ · ξd3x=

∫

F(ξ⋆) · ξd3x, (52)

Using the self-ajointness of F, the above equation is written

−ω2⋆

∫

ρ0ξ⋆ · ξd3x=
∫

F(ξ) · ξ⋆d3x, (53)

⇒−ω2⋆

∫

ρ0ξ
⋆ · ξd3x=−ω2

∫

ρ0ξ · ξ⋆d3x, (54)

⇒ (ω2−ω2⋆)

∫

ρ0ξ · ξ⋆d3x=0 (55)

Since
∫
ρ0ξ · ξ⋆d3x is non-zero for any non-trivial eigenfunction, it follows from Eq. (55) that ω2=ω2⋆, i.e., ω2 must

be a real number, which implies that ω is either purely real or purely imaginary.] It can also be proved that two
eigenfunctions with different ω2 are orthogonal to each other. [Proof:
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−ωm
2⋆ρ0ξm

⋆ =F(ξm
⋆ ), (56)

−ωn
2ρ0ξn=F(ξn), (57)

Taking the scalar product of both sides of Eq. (56) with ξn and integrating over the entire volume of the system,
gives

⇒−ωm2⋆
∫

ρ0ξm
⋆ · ξnd3x=

∫

F(ξm
⋆ ) · ξnd3x, (58)

Taking the scalar product of both sides of Eq. (57) with ξm
⋆ and integrating over the entire volume of the system,

gives

⇒−ωn2
∫

ρ0ξn · ξm⋆ d3x=
∫

F(ξn) · ξm⋆ d3x, (59)

Combining the above two equations, we obtain

(ωm
2⋆−ωn

2)

∫

ρ0ξm
⋆ · ξnd3x =

∫

[F(ξn) · ξm⋆ −F(ξm
⋆ ) · ξn]d3x (60)

Using the self-ajointness of F, we know the right-hand side of Eq. (59) is zero. Thus Eq. (59) is written

(ωm
2⋆−ωn

2)

∫

ρ0ξm
⋆ · ξnd3x=0. (61)

Using ωm
2⋆=ωm

2 , the above equation is written

(ωm
2 −ωn

2)

∫

ρ0ξm
⋆ · ξnd3x=0. (62)

Since we assume ωm
2 =/ ωn

2, the above equation reduces to

∫

ρ0ξm
⋆ · ξnd3x=0, (63)

i.e., ξm
⋆ and ξn are orthogonal to each other.]

4 Components of MHD equations in toroidal geometry

Next, we consider the form of the linearized MHD equations in toroidal devices (e.g. tokamak). In these devices,
there exist magnetic surfaces. The motion of plasma along the surface and perpendicular to the surface are very dif-
ferent. Thus, it is useful to decompose the perturbed quantities into components lying on the surface and perpen-
dicular to the surface. Following Ref. [3, 4], we write the displacement vector and perturbed magnetic field as

ξ= ξψ
∇Ψ

|∇Ψ|2 + ξs
(B0×∇Ψ)

B0
2

+ ξb
B0

B0
2
, (64)

and

B1=Qψ
∇Ψ

|∇Ψ|2 +Qs
(B0×∇Ψ)

|∇Ψ|2 +Qb
B0

B2
, (65)

where Ψ =Ψpol/(2π) + C with Ψpol the poloidal magnetic flux within a magnetic surface and C being an arbitrary
constant and (In the process of deriving the eigenmode equation, we do not need the specific definition of Ψ. What
we need is only that ∇Ψ is a vector in the direction of ∇p0 and thus ∇Ψ is perpendicular to both B0 and J0).
Taking scalar product of the above two equations with ∇Ψ, B0×∇Ψ, and B0, respectively, we obtain

ξψ= ξ · ∇Ψ, ξs= ξ ·
(
B0×∇Ψ

|∇Ψ|2
)

, ξb= ξ ·B0, (66)

Qψ=B1 · ∇Ψ, Qs=B1 ·
(
B0×∇Ψ

B0
2

)

, Qb=B1 ·B0. (67)

Next, we derive the component equations for the induction equation (37) and momentum equation (35). The
derivation is straightforward but tedious. Those who are not interested in these details can skip them and read
directly Sec. 4.7 for the final form of the component equations.

4.1 ∇Ψ component of induction equation

The induction equation is given by Eq. (37), i.e.,

B1=∇× (ξ×B0). (68)

6 Section 4



Next, consider the ∇Ψ component of the above equation. Taking scalar product of the above equation with ∇Ψ, we
obtain

B1 · ∇Ψ=∇× (ξ×B0) · ∇Ψ. (69)

⇒Qψ=∇×
[

ξψ
|∇Ψ|2∇Ψ×B0+

ξs
B2

(B0×∇Ψ)×B0

]

· ∇Ψ (70)

⇒Qψ=∇×
[

ξψ
|∇Ψ|2∇Ψ×B0+ ξs∇Ψ

]

· ∇Ψ (71)

⇒Qψ=

[

∇×
(

ξψ
|∇Ψ|2∇Ψ×B0

)

+∇× (ξs∇Ψ)

]

· ∇Ψ (72)

⇒Qψ=

[

∇×
(

ξψ
|∇Ψ|2∇Ψ×B0

)

+∇ξs×∇Ψ

]

· ∇Ψ (73)

⇒Qψ=

[

∇×
(

ξψ
|∇Ψ|2∇Ψ×B0

)]

· ∇Ψ (74)

⇒Qψ=

[

(B0 · ∇)

(
ξψ

|∇Ψ|2∇Ψ

)

− ξψ
|∇Ψ|2∇Ψ · ∇B0

]

· ∇Ψ (75)

Qψ=

[
ξψ

|∇Ψ|2(B0 · ∇)(∇Ψ)+∇Ψ(B0 · ∇)

(
ξψ

|∇Ψ|2
)

− ξψ
|∇Ψ|2∇Ψ · ∇B0

]

· ∇Ψ (76)

Qψ=

[
ξψ

|∇Ψ|2(B0 · ∇)(∇Ψ)+

(
1

|∇Ψ|2
)

∇Ψ(B0 · ∇)ξψ+ ξψ∇Ψ(B0 · ∇)
1

|∇Ψ|2 −
ξψ

|∇Ψ|2∇Ψ · ∇B0

]

· ∇Ψ (77)

Qψ=

[
ξψ

|∇Ψ|2(B0 · ∇)(∇Ψ) · ∇Ψ+(B0 · ∇)ξψ+ ξψ |∇Ψ|2(B0 · ∇)
1

|∇Ψ|2 −
ξψ

|∇Ψ|2(∇Ψ · ∇B0) · ∇Ψ

]

(78)

Excluding (B0 · ∇)ξψ terms, the terms on the right hand side (r.h.s) of the above equation can be written

ξψ
|∇Ψ|2(B0 · ∇)(∇Ψ) · ∇Ψ+ ξψ |∇Ψ|2(B0 · ∇)

1

|∇Ψ|2 −
ξψ

|∇Ψ|2(∇Ψ · ∇B0) · ∇Ψ

=
ξψ

|∇Ψ|2(B0 · ∇)(∇Ψ) · ∇Ψ− 1

|∇Ψ|2 ξψ(B0 · ∇)|∇Ψ|2− ξψ
|∇Ψ|2(∇Ψ · ∇B0) · ∇Ψ

=
ξψ

|∇Ψ|2(B0 · ∇)(∇Ψ) · ∇Ψ− ξψ
|∇Ψ|22∇Ψ · (B0 · ∇)∇Ψ− ξψ

|∇Ψ|2(∇Ψ · ∇B0) · ∇Ψ

=− ξψ
|∇Ψ|2∇Ψ · (B0 · ∇)∇Ψ− ξψ

|∇Ψ|2(∇Ψ · ∇B0) · ∇Ψ

=− ξψ
|∇Ψ|2∇Ψ · [(B0 · ∇)∇Ψ+∇Ψ · ∇B0] (79)

Using ∇(A ·B)=B · ∇A+A · ∇B+A×∇×B+B×∇×A, we obtain

∇(∇Ψ ·B0) = B0 · ∇∇Ψ+∇Ψ · ∇B0+∇Ψ×∇×B0 (80)

0 = ∇Ψ · ∇(∇Ψ ·B0)=∇Ψ · [B0 · ∇∇Ψ+∇Ψ · ∇B0] (81)

The r.h.s of the above equation is exactly the term appearing on the right-hand side of Eq. (79). Thus we obtain

Qψ=B0 · ∇ξψ, (82)

which agrees with Eq. (20) in Cheng’s paper[3].

4.2 B0×∇Ψ component of induction equation

The B0×∇Ψ component of the induction equation is given by

B1 ·B0×∇Ψ=∇× (ξ×B0) · (B0×∇Ψ), (83)

which can be further written as

B0
2Qs = ∇×

(

ξψ
∇Ψ×B0

|∇Ψ|2 + ξs∇Ψ

)

· (B0×∇Ψ)

=

[

∇×
(

ξψ
∇Ψ×B0

|∇Ψ|2
)

+∇ξs×∇Ψ

]

· (B0×∇Ψ)

=

[

ξψ∇× ∇Ψ×B0

|∇Ψ|2 +∇ξψ ×∇Ψ×B0

|∇Ψ|2 +∇ξs×∇Ψ

]

· (B0×∇Ψ)

=

[

ξψ∇× ∇Ψ×B0

|∇Ψ|2 +∇ξs×∇Ψ

]

· (B0×∇Ψ)

= −|∇ψ |2Sξψ+(∇ξs×∇Ψ) · (B0×∇Ψ), (84)

where

S=

(

∇× B0×∇Ψ

|∇Ψ|2
)

· (B0×∇Ψ)

|∇Ψ|2 , (85)
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is the negative local magnetic shear. Using (A × B) · (C ×D) = (A ·C)(B ·D) − (A ·D)(B ·C), equation (84) is
written as

B0
2Qs=−|∇Ψ|2Sξψ+ |∇Ψ|2B0 · ∇ξs, (86)

⇒Qs=

(
|∇Ψ|
B0

)
2

(B0 · ∇ξs−Sξψ). (87)

Eq. (87) agrees with Eq. (21) in Cheng’s paper[3].

4.3 B0 component of induction equation

The component of the induction equation in the direction of B0 is written as

B0 ·B1=B0 · ∇× (ξ×B0) (88)

⇒Qb=B0 · ∇× (ξ×B0) (89)

The term on right-hand side of the above equation is written as

∇× (ξ×B0) = ∇×
(
∇Ψ×B0

|∇Ψ|2 ξψ+
ξs
B2

(B0×∇Ψ)×B0

)

= ∇×
(
∇Ψ×B0

|∇Ψ|2 ξψ+ ξs∇Ψ

)

= ξψ∇× ∇Ψ×B0

|∇Ψ|2 +∇ξψ× ∇Ψ×B0

|∇Ψ|2 +∇ξs×∇Ψ. (90)

Using this, the right-hand side of Eq. (89) is written as

B0 · ∇× (ξ×B0) = ξψB0 · ∇× ∇Ψ×B0

|∇Ψ|2 +

(
∇Ψ×B0

|∇Ψ|2 ×B0

)

· ∇ξψ+(∇Ψ×B0) · ∇ξs

= ξψB0 · ∇× ∇Ψ×B0

|∇Ψ|2 +

(

− B0
2

|∇Ψ|2∇Ψ

)

· ∇ξψ+(∇Ψ×B0) · ∇ξs (91)

= ξψB0 ·
(

−B0∇ · ∇Ψ

|∇Ψ|2 +B0 · ∇ ∇Ψ

|∇Ψ|2 − ∇Ψ

|∇Ψ|2 · ∇B0

)

+

(

− B0
2

|∇Ψ|2∇Ψ

)

· ∇ξψ + (∇Ψ×B0) ·
∇ξs

= ξψB0 ·
(

B0 · ∇ ∇Ψ

|∇Ψ|2 − ∇Ψ · ∇B0

|∇Ψ|2
)

− ξψB0
2∇ ·

(
∇Ψ

|∇Ψ|2
)

− B0
2

|∇Ψ|2∇Ψ · ∇ξψ − (B0 × ∇Ψ) ·
∇ξs (92)

Before we try to simplify the above equation, we derive the expression for the divergence of ξ, which is written as

∇ · ξ = ∇ ·
[

∇Ψ

|∇Ψ|2 ξψ+
(B0×∇Ψ)

B0
2 ξs+

B0

B0
2 ξb

]

=
∇Ψ · ∇ξψ
|∇Ψ|2 + ξψ∇ ·

(
∇Ψ

|∇Ψ|2
)

+
(B0×∇Ψ)

B0
2

· ∇ξs+ ξs∇ · (B0×∇Ψ)

B0
2

+B0 · ∇
(
ξb
B0

2

)

(93)

It can be proved that the fourth term of the above equation can be written as (refer to (10.8) for the proof)

∇ · (B0×∇Ψ)

B0
2 = −2

1

B0
2κ · (B0×∇Ψ). (94)

Then Eq. (93) is written as

∇ · ξ= ∇Ψ · ∇ξψ
|∇Ψ|2 + ξψ∇ ·

(
∇Ψ

|∇Ψ|2
)

+
(B0×∇Ψ)

B0
2

· ∇ξs− ξs
2

B0
2
κ · (B0×∇Ψ)+B0 · ∇

(
ξb
B0

2

)

(95)

Eq. (95) agrees with Eq. (23) in Cheng’s paper, but a B0
2 factor is missed in the fourth term of Cheng’s equation[3].

Using Eq. (95), Eq. (92) is written as

B0 · ∇× (ξ×B0)= ξψB0 ·
(

B0 · ∇ ∇Ψ

|∇Ψ|2 −
∇Ψ

|∇Ψ|2 · ∇B0

)

−B0
2∇ · ξ− 2κ · (B×∇Ψ)ξs+B0

2
B0 · ∇

(
ξb
B0

2

)

(96)

It can be proved that

B0 ·
(

B0 · ∇ ∇Ψ

|∇Ψ|2 −
∇Ψ · ∇B0

|∇Ψ|2
)

=−2κ · ∇Ψ
B2

|∇Ψ|2 + µ0
dp0
dΨ

. (97)

(Refer to Sec. 10.10 for the proof.) Then Eq. (96) is written as

B0 · ∇× (ξ×B0)= ξψ

(

− 2B0
2

|∇Ψ|2∇Ψ ·κ+ µ0
dp0
dΨ

)

−B0
2∇ · ξ− 2κ · (B×∇Ψ)ξs+B0

2
B0 · ∇

(
ξb
B0

2

)

, (98)

and the component of the induction equation in the direction of B0 [Eq. (89)] is finally written as

Qb= ξψ

(

− 2B0
2

|∇Ψ|2∇Ψ ·κ+ µ0
dp0
dΨ

)

−B0
2∇ · ξ− 2κ · (B×∇Ψ)ξs+B0

2
B0 · ∇

(
ξb
B0

2

)

(99)

Eq. (99) agrees with Eq. (22) in Cheng’s paper[3].
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4.4 Component of the momentum equation parallel to B0

The three components of the linearized momentum equation can be obtained by taking scalar product of Eq. (35)
with ∇Ψ, B0×∇ψ, and B0, respectively. We first consider the B0 component of the momentum equation, which is
written as

−ω2ρ0ξ ·B0=−B0 · ∇p1+B0 · [µ0
−1(∇×B0)×B1], (100)

i.e.,

ω2ρ0ξb=B0 · ∇p1+J0 · (B0×B1). (101)

The last term on the right-hand side of Eq. (101) can be written as

J0 · (B0×B1) = J0 ·B0×
[

Qψ

|∇Ψ|2∇Ψ+
Qs

|∇Ψ|2(B0×∇Ψ)

]

= J0 ·
[

Qψ

|∇Ψ|2B0×∇Ψ+
Qs

|∇Ψ|2B0× (B0×∇Ψ)

]

= J0 ·
[

Qψ

|∇Ψ|2B0×∇Ψ− Qs
|∇Ψ|2B0

2∇Ψ

]

(102)

= J0 ·
[

Qψ

|∇Ψ|2B0×∇Ψ

]

− 0

= ∇Ψ ·
[

Qψ

|∇Ψ|2J0×B0

]

= ∇Ψ ·
[

Qψ

|∇Ψ|2∇p0
]

= ∇Ψ ·
[

Qψ

|∇Ψ|2 p0
′∇Ψ

]

= Qψp0
′ .

where p0
′ ≡ dp0/dΨ. Using Eq. (82), i.e., Qψ=B0 · ∇ξψ, the above equation is written as

J0 ·B0×B1=(B0 · ∇ξψ)p0′ (103)

Substituting Eq. (103) into Eq. (101) gives

ω2ρ0ξb=B0 · ∇p1+(B0 · ∇ξψ)p0′ (104)

Using B0 · ∇p0′ =0 in the above equation gives

ω2ρ0ξb=B0 · ∇(p1+ p0
′ ξψ), (105)

which agrees with Eq. (19) in Cheng’s paper[3].

4.5 ∇Ψ component of momentum equation

Next we consider the radial component of the momentum equation. Taking scalar product of the momentum equa-
tion with ∇Ψ, we obtain

−ω2ρ0ξψ=−∇Ψ · ∇p1+∇Ψ · µ0
−1(∇×B1)×B0+∇Ψ · µ0

−1(∇×B0)×B1. (106)

After some algebra (the details are given in Sec. (10.5)), Eq. (106) is written

−ω2ρ0ξψ = −∇Ψ · ∇P1+ µ0
−1|∇Ψ|2B0 · ∇

(
Qψ

|∇Ψ|2
)

+(µ0
−1|∇Ψ|2S −B0 ·J0)Qs+2µ0

−1κ · ∇ΨQb, (107)

where

P1≡ p1+
B1 ·B0

µ0
, (108)

and κ ≡ b · ∇b is the magnetic field curvature with b = B0 /B0 the unit vector along equilibrium magnetic field.
Equation (107) agrees with Eq. (17) in Cheng’s paper[3]. In passing, let us examine the physical meaning of P1

defined by (108). In linear approximation, we have

B2 = |B0+B1|2
= B0

2+B1
2+2B0 ·B1

≈ B0
2+2B0 ·B1 (109)

This indicates the perturbation in the square of the magnetic strength is 2B0 · B1. Therefore, the perturbation in
magnetic pressure is written

∆Pmag≡ ∆(B2)

2µ0
=

2B0 ·B1

2µ0
=

B0 ·B1

µ0
, (110)

which indicate P1 defined by Eq. (108) is the total perturbation in the thermal and magnetic pressure.
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4.6 B0×∇Ψ component of momentum equation

The B0×∇Ψ component of the linearized momentum equation is written

−ω2ρ0|∇Ψ|2ξs=−(B0×∇Ψ) · ∇p1+(B0×∇Ψ) · µ0
−1(∇×B1)×B0+(B0×∇Ψ) · µ0

−1(∇×B0)×B1. (111)

The last term of Eq. (111) is written

(B0×∇Ψ) · µ0
−1(∇×B0)×B1 = (B0×∇Ψ) ·J0×B1

= −J0 · (B0×∇Ψ)×B1

= −J0 · (B0×∇Ψ)×
[

Qψ

|∇Ψ|2∇Ψ+
Qb
B0

2B0

]

= −J0 ·
[

Qψ
|∇Ψ|2(0− |∇Ψ|2B0)+

Qb
B0

2(B0
2∇Ψ− 0)

]

= −J0 · [−QψB0+Qb∇Ψ]

= B0 ·J0Qψ. (112)

Using Eq. (335), i.e.,

∇ × B1 = ∇ Qψ

|∇Ψ|2 × ∇Ψ −
(

B0 · ∇ Qs
|∇Ψ|2

)

∇Ψ +

(

∇ Qs
|∇Ψ|2 · ∇Ψ

)

B0 +
Qs

|∇Ψ|2∇ × (B0 × ∇Ψ) + ∇Qb
B0

2 × B0 +

Qb
B0

2µ0J0. (113)

the second last term on the right-hand side of Eq. (111) is written

(B0×∇Ψ) · µ0
−1(∇×B1)×B0 = µ0

−1(B0×∇Ψ) ·
[

∇ Qψ
|∇Ψ|2 ×∇Ψ−

(

B0 · ∇ Qs
|∇Ψ|2

)

∇Ψ+
Qs

|∇Ψ|2∇× (B0×∇Ψ)+

∇Qb
B0

2 ×B0+
Qb
B0

2µ0J0

]

×B0

= µ0
−1(B0 × ∇Ψ) ·

[(

B0 · ∇
Qψ

|∇Ψ|2
)

∇Ψ −
(

B0 · ∇ Qs
|∇Ψ|2

)

∇Ψ × B0 +
Qs

|∇Ψ|2∇ ×

(B0×∇Ψ)×B0+∇Qb
B0

2 ×B0×B0

]

= µ0
−1(B0 × ∇Ψ) ·

[

−
(

B0 · ∇ Qs
|∇Ψ|2

)

∇Ψ × B0 +
Qs

|∇Ψ|2∇ × (B0 × ∇Ψ) × B0 +

B0(B0 · ∇Qb
B0

2)−B0
2∇Qb

B0
2

]

= µ0
−1(B0 × ∇Ψ) ·

[

−
(

B0 · ∇ Qs
|∇Ψ|2

)

∇Ψ × B0 +
Qs

|∇Ψ|2∇ × (B0 × ∇Ψ) × B0 −
B0

2∇Qb
B0

2

]

(114)

= µ0
−1B0

2(B0 · ∇Qs)
︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸

+ µ0
−1(B0 × ∇Ψ) ·

[

Qs

(

B0 · ∇ 1

|∇Ψ|2
)

B0 × ∇Ψ +
Qs

|∇Ψ|2∇ ×

(B0×∇Ψ)×B0−B0
2∇Qb

B0
2

]

(115)

The term ∇× (B0×∇Ψ) in the above equation is written as

∇× (B0×∇Ψ) = −∇× (∇Ψ×B0)

= −[−B0(∇ ·∇Ψ)+B0 · ∇∇Ψ−∇Ψ · ∇B0]

= B0(∇2Ψ)− (B0 · ∇)∇Ψ+∇Ψ · ∇B0

⇒ Qs
|∇ψ |2∇× (B0×∇Ψ)×B0 =

Qs
|∇Ψ|2 [−(B0 · ∇)∇Ψ×B0+∇Ψ · ∇B0×B0] (116)

Gathering terms involving Qs, excluding the first term, in expression (115) gives

(B0×∇Ψ) ·
[

Qs

(

B0 · ∇ 1

|∇Ψ|2
)

B0×∇Ψ+
Qs

|∇Ψ|2 [−(B0 · ∇∇Ψ)×B0+(∇Ψ · ∇B0)×B0]

]

,

which can be proved to be zero (refer to Sec. 10.6 for the proof). Gathering terms involving Qb in expression (115)
gives

(B0×∇Ψ) ·
[

−B0
2∇Qb

B0
2

]

=(B0×∇Ψ) ·
[

−B0
2Qb∇ 1

B0
2 −∇Qb

]

=−(B0×∇Ψ) · ∇Qb
︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸

−B0
2Qb(B0×∇Ψ) · ∇ 1

B0
2

It can be proved that the second term of the above expression is equal to 2κ · (B0 × ∇Ψ)Qb (refer to Sec. 10.9 for
details). Thus, from Eq. (114), we obtain

(B0×∇Ψ) · µ0
−1(∇×B1)×B0= µ0

−1B0
2(B0 · ∇Qs)− µ0

−1(B0×∇Ψ) · ∇Qb+2µ0
−1κ · (B0×∇Ψ)Qb (117)
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Using Eqs. (112) and (117) in Eq. (111) yields

−ω2ρ0|∇Ψ|2ξs = −(B0 × ∇Ψ) · ∇p1 + µ0
−1B0

2(B0 · ∇Qs) − µ0
−1(B0 × ∇Ψ) · ∇Qb + 2µ0

−1κ · (B0 × ∇Ψ)Qb + B0 ·
J0Qψ. (118)

Using Qb=B1 ·B0, the above equation can be arranged as

−ω2ρ0|∇Ψ|2ξs=−(B0×∇Ψ) · ∇(p1+ µ0
−1

B1 ·B0) + µ0
−1B0

2
B0 · ∇Qs+2µ0

−1κ · (B0×∇Ψ)Qb+B0 ·J0Qψ, (119)

which agrees with Eq. (18) in Cheng’s paper[3].

4.7 Summary of component equations

For the ease of reference, Eqs. (29), (82), (87), (99), (105), (76), and (119) are repeated here:

p1+ p0
′ ξψ=−γp0∇ · ξ, (120)

Qψ=B0 · ∇ξψ, (121)

Qs=
|∇Ψ|2
B0

2 (B0 · ∇ξs−Sξψ), (122)

Qb=

(

− 2B0
2

|∇Ψ|2κψ+ µ0p0
′

)

ξψ−B0
2∇ · ξ− 2κsB0

2ξs+B0
2
B0 · ∇

(
ξb
B0

2

)

(123)

−ω2ρ0ξψ = −∇Ψ · ∇P1+ µ0
−1|∇Ψ|2B0 · ∇

(
Qψ

|∇Ψ|2
)

+(µ0
−1|∇Ψ|2S −B0

2σ)Qs+2µ0
−1κψQb. (124)

−ω2ρ0|∇Ψ|2ξs=−(B0×∇Ψ) · ∇P1+B0
2σQψ+ µ0

−1B0
2
B0 · ∇Qs+2µ0

−1κsB0
2Qb, (125)

ω2ρ0ξb=B0 · ∇(p1+ p0
′ ξψ), (126)

where p0
′ ≡ dp0/dΨ, σ≡B0 · J0/B0

2, κs≡κ · (B0×∇Ψ)/B0
2, which is usually called the geodesic curvature, κψ≡κ ·

∇Ψ, which is usually called the normal curvature.

4.8 Eigenmode equations using (P1, ξψ, ξs,∇ · ξ) as variables

Using Eqs. (121) and (122) to eliminate Qψ, Qs, Eqs. (124) and (125) are written, respectively, as

∇Ψ · ∇P1 = ω2ρ0ξψ+ µ0
−1|∇Ψ|2B0 · ∇

(
B0 · ∇ξψ
|∇Ψ|2

)

+ (µ0
−1|∇Ψ|2S −B0

2σ)
|∇Ψ|2
B0

2 (B0 · ∇ξs−Sξψ)

+ 2µ0
−1κψQb. (127)

and

−ω2ρ0|∇Ψ|2ξs = −(B0×∇Ψ) · ∇P1+B0
2σB0 · ∇ξψ+ µ0

−1B0
2
B0 · ∇

[
|∇Ψ|2
B0

2 (B0 · ∇ξs−Sξψ)

]

+ 2µ0
−1B0

2κsQb (128)

Following Ref. [3], we will express the final eigenmodes equations in terms of the following four variables: P1, ξψ, ξs,
and ∇ · ξ. In order to achieve this, we need to eliminate unwanted variables. Since we will use P1≡ p1+B0 ·B1/µ0

instead of p1 as one of the variables. we write the equation (120) for the perturbed pressure in terms of P1 variable,
which gives

P1− µ0
−1Qb+ p0

′ ξψ=−γp0∇ · ξ. (129)

Using (129) to eliminate Qb in Eq. (128), we obtain

−ω
2ρ0|∇Ψ|2
B0

2 ξs = −
(
B0×∇Ψ

B0
2

)

· ∇P1+ σB0 · ∇ξψ+ µ0
−1

B0 · ∇
[
|∇Ψ|2
B0

2 (B0 · ∇ξs−Sξψ)

]

+ 2κsγp0∇ · ξ+2κsP1+2κsp0
′ ξψ (130)

Using pressure equation (120) to eliminate p1 in Eq. (126), we obtain

ω2ρ0ξb=−γp0B0 · ∇(∇ · ξ), (131)

which can be used in Eq. (123) to eliminate ξb, yielding

Qb= ξψ

(

− 2B0
2

|∇Ψ|2κψ+ µ0p0
′

)

−B0
2∇ · ξ− 2κsB0

2ξs− γp0
ω2ρ0

B0
2
B0 · ∇

(
B0 · ∇(∇ · ξ)

B0
2

)

. (132)
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Using Eq. (132) to eliminate Qb in Eq. (129), we obtain

P1+ µ0
−1

[
2B0

2

|∇Ψ|2κψξψ+B0
2∇ · ξ+2κsB0

2ξs+
γp0
ω2ρ0

B0
2
B0 · ∇

(
B0 · ∇(∇ · ξ)

B0
2

)]

=−γp0∇ · ξ (133)

Equations (130) and (133), which involves only surface derivative operators, can be put in the following matrix
form:

(
E11 E12

E21 E22

)(
ξs

∇ · ξ

)

=

(
F11 F12

F21 F22

)(
P1

ξψ

)

(134)

with the matrix elements given by

E11=−ω
2ρ0|∇Ψ|2
B0

2
− µ0

−1
B0 · ∇

(
|∇Ψ|2
B0

2
B0 · ∇

)

(135)

E12=−2κsγp0 (136)

E21=2µ0
−1κs (137)

E22=
µ0
−1B0

2+ γp0
B0

2 + µ0
−1 γp0
ω2ρ0

B0 · ∇
(
B0 · ∇
B0

2

)

(138)

F11=2κs−
(
B0×∇Ψ

B0
2

)

· ∇ (139)

F12= σB0 · ∇− µ0
−1

B0 · ∇
(
|∇Ψ|2
B0

2 S

)

+2κs
dp0
dΨ

(140)

F21=− 1

B0
2 (141)

F22=−µ0
−1 2

|∇Ψ|2κψ. (142)

Equations (134)-(142) agree with equations (25), (28), and (29) of Ref [3].
Using Eq. (129) to eliminate Qb in Eq. (127), we obtain

∇Ψ · ∇P1 = ω2ρ0ξψ+ µ0
−1|∇Ψ|2B0 · ∇

(
B0 · ∇ξψ
|∇Ψ|2

)

+ (µ0
−1|∇Ψ|2S −B0

2σ)
|∇Ψ|2
B0

2 (B0 · ∇ξs−Sξψ)

+ 2κψ[P1+ γp0∇ · ξ+ ξψp0
′ ] (143)

The equation for the divergence of ξ [Eq. (95)] is written

∇Ψ · ∇ξψ = |∇Ψ|2∇ · ξ − |∇Ψ|2∇ ·
(

∇Ψ

|∇Ψ|2
)

ξψ − |∇Ψ|2(B0×∇Ψ)

B0
2

· ∇ξs + 2|∇Ψ|2κsξs +
γp0|∇Ψ|2
ω2ρ0

B0 ·

∇
(
B0 · ∇(∇ · ξ)

B0
2

)

. (144)

Equations (143) and (144) can be put in the following matrix form

∇Ψ · ∇
(
P1

ξψ

)

=

(
C11 C12

C21 C22

)(
P1

ξψ

)

+

(
D11 D12

D21 D22

)(
ξs

∇ · ξ

)

, (145)

with the matrix elements given by

C11=2κψ (146)

C12=ω2ρ0+ µ0
−1|∇Ψ|2B0 · ∇

(
B0 · ∇
|∇Ψ|2

)

− (µ0
−1|∇Ψ|2S −B0

2σ)
|∇Ψ|2
B0

2 S+2κψ
dp0
dΨ

(147)

D11=(µ0
−1|∇Ψ|2S −B0

2σ)
|∇Ψ|2
B0

2 B0 · ∇ (148)

D12=2γp0κψ (149)

C21=0 (150)

C22=−|∇Ψ|2∇ ·
(

∇Ψ

|∇Ψ|2
)

(151)

D21=−|∇Ψ|2(B0×∇Ψ)

B0
2 · ∇+2|∇Ψ|2κs (152)

D22= |∇Ψ|2+ γp0|∇Ψ|2
ω2ρ0

B0 · ∇
(
B0 · ∇
B0

2

)

. (153)
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Equations (146)-(153) agree with Equations (26) and (27) in Ref.[3]. (It took me several months to manage to put
the equations in the matrix form given here.)

4.9 Normalized form of eigenmodes equations

Denote the strength of the equilibrium magnetic field at the magnetic axis by Ba, the mass density at the magnetic
axis by ρa, and the major radius of the magnetic axis by Ra. Define a characteristic speed VA≡ Ba/ ρaµ0

√
, which

is the Alfvén speed at the magnetic axis. Using the Alfvén speed, we define a characteristic frequency ωA≡ VA/Ra.

Multiplying the matrix equation (134) by 2µ0/Ba
2 gives

(

E11 E12

E21 E22

)(

ξs
∇ · ξ

)

=

(

F11 F12

F21 F22

)(

P1

ξψ

)

, (154)

with new quantities defined as follows: P1≡P1/[Ba
2/(2µ0)], E11≡E11

2µ0

Ba
2
, E12≡E12

2µ0

Ba
2
, F12≡F12

2µ0

Ba
2
, E21≡E21

2µ0

Ba
2
,

E22 ≡ E22
2µ0

Ba
2
, and F22 ≡ F22

2µ0

Ba
2
. Using the equations (135), (136), (140), (137), (138), and (142), the expression of

E11,E12, E21, E22,F12, and E22 are written respectively as

E11=−2ω2ρ0
Ra

2

|∇Ψ|2
B0

2 − 2

Ba
2B0 · ∇

(
|∇Ψ|2
B0

2 B0 · ∇
)

, (155)

E12=−2κsγp0, (156)

E21= κs
4

Ba
2 , (157)

E22=
2B0

2/Ba
2+ γp0

B0
2 +

Ra
2

Ba
2

γp0
ω2ρ0

B0 · ∇
(
B0 · ∇
B0

2

)

, (158)

F12=
2

Ba
2
µ0σB0 · ∇− 2

Ba
2
B0 · ∇

(
|∇Ψ|2
B0

2
S

)

+2κs
d p0
dΨ

, (159)

F22=− 4

Ba
2

κψ
|∇Ψ|2 , (160)

where ω = ω /ωA, ρ0 = ρ0/ ρa, p0 = p0/ [Ba
2/(2µ0)]. Next, consider re-normalizing the matrix equation (145). Mul-

tiply the first equation of matrix equation (145) by 2µ0/Ba
2, giving

∇Ψ · ∇
(

P1

ξψ

)

=

(

C11 C12

0 C22

)(

P1

ξψ

)

+

(

D11 D12

D21 D22

)(
ξs

∇ · ξ

)

, (161)

with the new matrix elements defined as follows: C12 ≡ C12
2µ0

Ba
2
, D11 ≡ D11

2µ0

Ba
2
, and D12 ≡ D12

2µ0

Ba
2
. (Note that,

although the second equation of matrix equation (161) uses P1, instead of P1, as a variable , it is actually identical
with the second equation of matrix equation (145) because the P1 term is multiplied by zero.) Using Eqs. (147),
(148) (149) , we obtain

C12=
2

Ra
2ω

2ρ0+
2

Ba
2 |∇Ψ|2B0 · ∇

(
B0 · ∇
|∇Ψ|2

)

− 2

Ba
2(|∇Ψ|2S −B0

2µ0σ)
|∇Ψ|2S
B0

2 +2κψ
d p0
dΨ

. (162)

D11=
2

Ba
2(|∇Ψ|2S −B0

2µ0σ)
|∇Ψ|2
B0

2 B0 · ∇ (163)

D12=2γp0κψ. (164)

Note that, after the normalization, all the coefficients of the resulting equations are of the order 100, thus, are suit-
able for accurate numerical calculation. Also note that, for typical tokamak plasmas, the normalization factor 2µ0/
Ba

2 is of the order 10−6, which is six order away from 100. Therefore the normalization performed here is necessary
for accurate numerical calculation. [If the normalizing factor is two (or less) order from 100, then, from my experi-
ence, it is usually not necessary to perform additional normalization for the purpose of optimizing the numerical
accuracy, i.e., the original units system has provided a reasonable normalization. Of course, suitable re-normaliza-
tion will be of benefit to developing a clear physical insight into the problem in question.]

5 Flux coordinate system

In the above, we do not specify which coordinate system to use. In this article, we will use the straight-line mag-
netic surface coordinate system (i.e. flux coordinate system) (ψ, θ, ζ). The details of this coordinate system are
given in my notes on tokamak equilibrium (/home/yj/theory/tokamak_equilibrium/tokamak_equilibrium.tm).
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5.1 Magnetic field expression in flux coordinate system

Any axisymetrical magnetic field consistent with the equilibrium equation ∇p0=J0×B0 can be written in the form

B0=▽Ψ×▽φ+ g(Ψ)▽φ,

where Ψ ≡ AφR. In the straight-line magnetic surface coordinates system (ψ, θ, ζ), the contra-variant form of the
equilibrium magnetic field is expressed as

B0=−Ψ′[∇ζ ×∇ψ+ q(ψ)∇ψ×∇θ], (165)

where Ψ′= dΨ/dψ. The covariant form of the equilibrium magnetic field is given by

B0=

(

Ψ′ J
R2

∇ψ · ∇θ+ gq
∂δ

∂ψ
+ gδq ′

)

∇ψ+

(

−B0
2

Ψ′
J − gq

)

∇θ+ g∇ζ. (166)

where J is the Jacobian of (ψ, θ, ζ) coordinate system.

5.2 Radial differential operator

The form of the radial differential operator ∇Ψ · ∇ in (ψ, θ, ζ) coordinates is given by

∇Ψ · ∇=Ψ′|∇ψ |2 ∂
∂ψ

+Ψ′(∇θ · ∇ψ) ∂
∂θ

+Ψ′(∇ψ · ∇ζ) ∂
∂ζ
. (167)

(Refer to my notes “tokamak_equilibrium.tm” for the proof.)

5.3 Surface differential operators

The MHD eigenmode equations (154) and (161) involve two surface operators, B0 · ∇ and (B0 ×∇Ψ/B0
2) · ∇ (they

are called surface operators because they involve only differential on magnetic surfaces). Next, we provide the form
of the two operators in flux coordinate system (ψ, θ, ζ). Using Eq. (165), the B0 · ∇ operator (usually called mag-
netic differential operator) is written

B0 · ∇=−Ψ′J −1

(
∂

∂θ
+ q

∂

∂ζ

)

. (168)

Using the covariant form of the equilibrium magnetic field [Eq. (166)], the (B0×∇Ψ/B0
2) · ∇ operator is written

B0×∇Ψ

B0
2 · ∇=

(

1+Ψ′g
J −1

B0
2 q

)
∂

∂ζ
+Ψ′g

J −1

B0
2

∂

∂θ
. (169)

5.4 Fourier expansion over θ and ζ

A perturbation G(ψ, θ, ϕ) must be a periodic function of the poloidal angle θ and toroidal angle ζ, and thus can be
expanded as the following two-dimensional Fourier series,

G(ψ, θ, ζ)=
∑

n=−∞

∞ ∑

m=−∞

∞

Gnm(ψ)e
i(mθ−nζ), (170)

where the expansion coefficient Gnm is given by

Gnm(ψ) =
1

(2π)2

∫

0

2π ∫

0

2π

G(ψ, θ, ζ)ei (nζ−mθ)dθdζ. (171)

Our next task is to derive the equations that the coefficients Gnm must satisfy.

5.5 Surface operator acting on perturbation

Next, consider the calculation of the surface operators acting on the above perturbation. Using Eq. (168), we
obtain

B0 · ∇(aG) = −Ψ′J −1
∑

n=−∞

∞ ∑

m=−∞

∞ [
∂a

∂θ
+ i(m−nq)a

]

Gnme
i(mθ−nζ), (172)

where a= a(ψ, θ) is a known function that is independent of ζ. Similarly, we have

B0 · ∇(aB0 · ∇G)

= −Ψ′
B0 · ∇

[

aJ −1
∑

m,n

i(m−nq)Gnm(ψ)e
i (mθ−nζ)

]

= (Ψ′)2J −1
∑

m,n

[
∂

∂θ
(aJ −1)+ i(m−nq)aJ −1

]

i (m−nq)Gnm(ψ)e
i (mθ−nζ)

= (Ψ′)2
∑

m,n

[

i(m−nq)J −1 ∂

∂θ
(aJ −1)− (m−nq)2aJ −2

]

Gnm(ψ)e
i (mθ−nζ). (173)
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Using Eq. (169), we obtain
(
B0×∇Ψ

B0
2

)

· ∇G

=

(

1+Ψ′gq
J −1

B0
2

)

(−in)
∑

m,n

Gnm(ψ)e
i (mθ−nζ)+Ψ′g

J −1

B0
2

∑

m,n

imGnm(ψ)e
i (mθ−nζ)

=
∑

m,n

[

i(m−nq)Ψ′ g
J −1

B0
2

− in

]

Gnm(ψ)e
i(mθ−nζ). (174)

6 Discrete form of elements of matrix C, D, E, and F

The elements of matrix C, D, E, and F are two dimensional differential operators about (θ, ζ), which can be called
surface differential operators. As discussed above, we use Fourier expansion to treat the differential with respect to
θ and ζ. In this method, we need to take inner product between different Fourier harmonics. Noting this, we recog-
nize that it is useful to define the following inner product operator:

〈W 〉n′nm′m≡ 1

(2π)2

∫

0

2π ∫

0

2π

exp[i(n′ζ −m′θ)]W exp[i(mθ−nζ)]dθdζ ,

where W is a surface differential operator of the following form

W = a(ψ, θ)
∂

∂θ
+ b(ψ, θ)

∂

∂ζ
. (175)

Because both of the coefficients in expression (175) are independent of ζ, it is ready to see that, for n′ =/ n,
〈W 〉n′nm′m=0. This indicates that Gnm with different n are decoupled with each other.

For notation ease, 〈W 〉n′nm′m is denoted by 〈W 〉m′m when n′=n, i.e.,

〈W 〉m′m=
1

2π

∫

0

2π

exp[i(nζ −m′θ)]W exp[i(mθ−nζ)]dθ,

[For the special case that W is an algebra operator W =W (ψ, θ), equation (175) can be reduced to

〈W 〉m′m=
1

2π

∫

0

2π

ei (m−m′)θWdθ, (176)

where W (ψ, θ) is independent of ζ because, as we will see below, W is determined by equilibrium quantities (for

example, W (ψ, θ) =
J −2

B0
2
), which is axisymetrical. Expression (176) is a Fourier integration over the interval [0, 2π],

which can be efficiently calculated by using the FFT algorithm (details are given in Chapter 13.9 of Ref. [5]).] After
using the Fourier harmonics expansion and taking the inner product, every element of the matrices C, D, E, and F
becomes a L × L matrix, where L is the total number of the Fourier harmonics included in the expansion. Taking
the matrix E as an example, it is discretized as

(

E11 E12

E21 E22

)

→













E11
(11) ... E11

(1L) E12
(11) ... E12

(1L)

··· ··· ··· ··· ··· ···
E11

(L1)
... E11

(LL)
E12

(L1)
... E12

(LL)

E21
(11)

... E21
(1L)

E22
(11)

... E22
(1L)

··· ··· ··· ··· ··· ···
E21

(L1)
... E21

(LL)
E22

(L1)
... E22

(LL)













, (177)

where E11
(m′m) ≡ 〈E11〉m′m, E12

(m′m) ≡ 〈E12〉m′m, E21
(m′m) ≡ 〈E21〉m′m, E22

(m′m) ≡ 〈E22〉m′m. Next, let us derive the

expressions of E11
(m′m)

, E12
(m′m)

, E21
(m′m)

, E22
(m′m)

. The goal of he derivation is to perform the surface differential
operators so that all the inner products take the form of the Fourier integration given by Eq. (176). For the conve-
nience of reference, the expression of matrix E is repeated here:

E=






−2ω2ρ0

Ra
2

|∇Ψ|2

B0
2

− 2

Ba
2
B0 · ∇

(
|∇Ψ|2

B0
2

B0 · ∇
)

−2κsγp0

κs
4

Ba
2

2B0
2/Ba

2 + γp0

B0
2

+
Ra

2

Ba
2

γp0
ω2ρ0

B0 · ∇
(

B0 · ∇

B0
2

)




.

Then E11
(m′m) is written as

E11
m′m ≡ 〈E11〉m′m

= −2ω2ρ0
Ra

2

〈
|∇Ψ|2
B0

2

〉

m′m

− 2

Ba
2

〈

B0 · ∇
(
|∇Ψ|2
B0

2
B0 · ∇

)〉

m′m

(178)
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Making use of Eq. (173), equation (178) is written as

E11
m′m = −2ω2ρ0

Ra
2

〈
|∇Ψ|2
B0

2

〉

m′m

− 2

Ba
2
(Ψ′)2

[

i(m − n q)

〈

J −1 ∂

∂θ

(
|∇Ψ|2J −1

B0
2

)〉

m′m

− (m −

nq)2
〈
|∇Ψ|2J −2

B0
2

〉

m′m

]

. (179)

Note that all the operators within the inner operator 〈...〉m′m of the above equation are algebra operators. There-
fore the calculation of the inner product 〈...〉m′m reduces to the calculation of the Fourier integration (176), which
can be efficiently calculated by using the FFT algorithm (it is thus implemented in GTAW). Similarly, the discrete
form of the other matrix elements are written respectively as:

E12
m′m ≡ 〈E12〉m′m

= −2γp0〈κs〉m′m. (180)

E21
m′m ≡ 〈E21〉m′m

=
4

Ba
2
〈κs〉m′m (181)

E22
m′m = 〈E22〉m′m

=
2

Ba
2〈1〉m′m+ γp0

〈
1

B0
2

〉

+
Ra

2

Ba
2

γp0
ω2ρ0

〈

B0 · ∇
(
B0 · ∇
B0

2

)〉

m′m

=
2

Ba
2 〈1〉m′m + γp0

〈
1

B0
2

〉

+
Ra

2

Ba
2

γp0
ω2ρ0

(Ψ ′)2
[

i(m − n q)

〈

J −1 ∂

∂θ

(
J −1

B0
2

)〉

m′m

− (m −

nq)2
〈
J −2

B0
2

〉

m′m

]

(182)

Next, consider the discrete form of the normalized F matrix, which is given by

(

F11 F12

F21 F22

)

=






2κs−
(

B0×∇Ψ

B0
2

)

· ∇, 2

Ba
2
µ0σB0 · ∇− 2

Ba
2
B0 · ∇

(
|∇Ψ|2S

B0
2

)

+2κs
d p0

dΨ

− 1

B0
2
, − 4

Ba
2

κψ

|∇Ψ|2




 (183)

Using Eqs. (139) and (159), we obtain

F11
m′m = 〈F11〉m′m

= 2〈κs〉m′m−
〈(

B0×∇Ψ

B0
2

)

· ∇
〉

m′m

= 2〈κs〉m′m− i(m−nq)Ψ′g

〈
J −1

B0
2

〉

m′m

+ in〈1〉m′m (184)

F12
m′m = 〈F12〉m′m

=

〈
2

Ba
2µ0σB0 · ∇− 2

Ba
2B0 · ∇

(
|∇Ψ|2S
B0

2

)

+2κs
d p0
dΨ

〉

m′m

=
2

Ba
2
〈µ0σB0 · ∇〉m′m− 2

Ba
2

〈

B0 · ∇
(
|∇Ψ|2S
B0

2

)〉

m′m

+2
d p0
dΨ

〈κs〉m′m

= −Ψ′ 2

Ba
2i(m − nq)〈µ0σJ −1〉m′m + Ψ′ 2

Ba
2

[

i(m − nq)

〈
|∇Ψ|2S
B0

2 J −1

〉

m′m

+

〈

J −1 ∂

∂θ

(
|∇Ψ|2S
B0

2

)〉

m′m

]

+

2
d p0
dΨ

〈κs〉m′m (185)

〈F21〉m′m=−
〈

1

B0
2

〉

m′m

(186)

〈F22〉m′m=− 4

Ba
2

〈
κψ

|∇Ψ|2
〉

m′m

, (187)

Next, we derive the discrete form of matrix C and D. Before doing this, we examine matrix equation (161), which
can be written as

(
∇Ψ · ∇ 0

0 ∇Ψ · ∇

)(

P1

ξψ

)

=

(

C11 C12

0 C22

)(

P1

ξψ

)

+

(

D11 D12

D21 D22

)(
ξs

∇ · ξ

)

. (188)

Using the expression of the operator ∇Ψ · ∇, i.e.,

∇Ψ · ∇=Ψ′|∇ψ |2 ∂
∂ψ

+Ψ′(∇θ · ∇ψ) ∂
∂θ

+Ψ′(∇ζ · ∇ψ) ∂
∂ζ
, (189)
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equation (188) is written as
(

Ψ′|∇ψ |2 0

0 Ψ′|∇ψ |2

)




∂P1

∂ψ

∂ξψ

∂ψ



 =




−Ψ′∇θ · ∇ψ ∂

∂θ
−Ψ′(∇ζ · ∇ψ) ∂

∂ζ
0

0 −Ψ′∇θ · ∇ψ ∂

∂θ
−Ψ′(∇ζ · ∇ψ) ∂

∂ζ





(

P1

ξψ

)

+

(

C11 C12

0 C22

)(

P1

ξψ

)

+

(

D11 D12

D21 D22

)(

ξs
∇ · ξ

)

(190)

Define the first matrix on the r.h.s of the above equation as H, then H12=H21=0, and H11 and H22 are given by

H11=H22=−Ψ′∇θ · ∇ψ ∂

∂θ
−Ψ′(∇ζ · ∇ψ) ∂

∂ζ
. (191)

Then

〈H11〉m′m= 〈H22〉m′m=−imΨ′〈∇θ · ∇ψ〉m′m+ inΨ′ 〈∇ζ · ∇ψ〉m′m (192)

〈C11〉m′m=2〈κψ〉m′m (193)

〈C12〉 =
2

Ra
2
ω2ρ0〈1〉m′m+

2

Ba
2

〈

|∇Ψ|2B0 · ∇
(
B0 · ∇
|∇Ψ|2

)〉

m′m

− 2

Ba
2

〈

(|∇Ψ|2S −B0
2µ0σ)

|∇Ψ|2
B0

2
S

〉

m′m

+2〈κψ〉m′m
d p0
dΨ

=
2

Ra
2ω

2ρ0〈1〉m′m +
2

Ba
2 (Ψ

′)2
[

i(m − n q)

〈

|∇Ψ|2J −1 ∂

∂θ

(
J −1

|∇Ψ|2
)〉

m′m

− (m − n q)2〈J −2〉m′m

]

−

2

Ba
2

〈

(|∇Ψ|2S −B0
2µ0σ)

|∇Ψ|2S
B0

2

〉

m′m

+2〈κψ〉m′m
d p0
dΨ

〈C22〉m′m=−
〈

|∇Ψ|2∇ ·
(

∇Ψ

|∇Ψ|2
)〉

m′m

(194)

The formula for calculating the right-hand side of Eq. (194) is given in Sec. 9.6.

〈D11〉m′m = −i(m−nq)
2

Ba
2Ψ

′

〈

(|∇Ψ|2S −B0
2µ0σ)

J −1|∇Ψ|2
B0

2

〉

m′m

(195)

〈D12〉m′m=2γp0〈κψ〉m′m. (196)

〈D21〉m′m = −i(m−nq)Ψ′g

〈
|∇Ψ|2J −1

B0
2

〉

m′m

+ in〈|∇Ψ|2〉m′m+2〈|∇Ψ|2κs〉m′m (197)

〈D22〉m′m = 〈|∇Ψ|2〉m′m+
γp0
ω2ρ0

Ra
2

2

〈

|∇Ψ|2B0 · ∇
(
B0 · ∇
B0

2

)〉

m′m

= 〈|∇Ψ|2〉m′m + (Ψ ′)2
γp0
ω2ρ0

Ra
2

2

[

i(m − n q)

〈

|∇Ψ|2J −1 ∂

∂θ

(
J −1

B0
2

)〉

m′m

− (m −

nq)2
〈
|∇Ψ|2J −2

B0
2

〉

m′m

]

(198)

6.1 Weight functions used in Fourier integration
In the GTAW code, the weight functions appearing in the Fourier integration are numbered as follows:

W1(ψ, θ)≡ J −2

B0
2 ,W2(ψ, θ)≡J −1 ∂

∂θ

(
J −1

B0
2

)

(199)

W3≡ |∇Ψ|2J −2

B0
2

,W4≡J −1 ∂

∂θ

(
|∇Ψ|2J −1

B0
2

)

(200)

W5≡ |∇Ψ|2
B0

2 ,W6≡ κs (201)

W7≡ 1

B0
2 ,W8=

J −1

B0
2 ,W9= µ0σJ −1 (202)

W10=J −1 |∇Ψ|2S
B0

2 ,W11=J −1 ∂

∂θ

(
|∇Ψ|2S
B0

2

)

(203)

W12=
κψ

|∇Ψ|2 ,W13= |∇Ψ|2 (204)

W14= |∇Ψ|2J −1 ∂

∂θ

(
J −1

B0
2

)

,W15= κψ (205)
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W16=
ΨR
R

+ΨRR+ΨZZ − 1

|∇Ψ|2(2ΨRΨRΨRR+4ΨRΨZΨZR+2ΨZΨZΨZZ) (206)

W17=(|∇Ψ|2S −B0
2µ0σ)

|∇Ψ|2S
B0

2 (207)

W18=(|∇Ψ|2S −B0
2µ0σ)

|∇Ψ|2J −1

B0
2 (208)

W19=∇θ · ∇ψ,W20=∇ζ · ∇ψ (209)

W21= |∇Ψ|2J −1 ∂

∂θ

(
J −1

|∇Ψ|2
)

, W22=J −2 (210)

W23=
|∇Ψ|2J −1

B0
2 ,W24= |∇Ψ|2κs (211)

The formulas for calculating the equilibrium quantities, such as the geodesic curvature κs, normal curvature κψ,
and the local magnetic shear S, are given in Sec. 9.4.

6.2 Numerical methods for finding continua

In the GTAW code, the matrix elements E21
m′m and E22

m′m are multiplied by ω2 (check whether this will make ω2=0
a root of Det(E(ω)) = 0?). After this, the matrix elements E can be written in the following form

E=Ea+ω2Eb, (212)

where Ea and Eb are 2L× 2L matrix which are both independent of ω.

The continua are determined by the condition that Det(E(ω)) = 0, which is the condition that the matrix equa-
tion EX =0 has nonzero solutions. Using Eq. (212), the matrix equation EX =0 can be written

EaX =−ω2EbX. (213)

Thus finding ω that can make EX = 0 have nonzero solution reduces to finding the eigenvalues of the generalized
eigenvalue problem in Eq. (213). In my code, the generalized eigenvalue problem in Eq. (213) is solved numerically
by using the zggev subroutine in Lapack library. The numerical results of the continuous spectrum are given in
Sec. 9.2.

6.3 Analytical approximations to continuous spectrum

Before we give the numerical solution for the continuous spectrum, we consider some approximations that can be
made when solving continuous spectrum.

6.3.1 Slow sound approximation

Examining the expression (138) for matrix element E22, we find that the first term of E22 can be written as

µ0
−1B0

2+ γp0
B0

2 = µ0
−1

(

1+
γβ

2

)

, (214)

where β≡ p0/(B0
2/2µ0), while the second term of E22 can be written as

µ0
−1 γp0
ω2ρ0

B0 · ∇
(
B0 · ∇
B0

2

)

≈ µ0
−1

(
γp0
ω2ρ0

k‖
2

)

,

≈ µ0
−1

(
γp0
VA

2ρ0

)

= µ0
−1

(
γp0
B0

2

µ0ρ0
ρ0

)

= µ0
−1

(
γβ

2

)

. (215)

where k‖ is the parallel wave vector and we have used the approximation ω /k‖ ≈ VA. Using Eqs. (214) and (215),

the ratio of the second term to the first term of E22 is written as (γβ /2)/ [1 + γβ /2]. For low β (β ≪ 1) equilib-
rium, the ratio is small and therefore the second term of E22 can be dropped. This approximation is called the slow
sound approximation in the literature[6, 7]. Numerical results indicate this approximation will remove all the sound
continua while keeping the Alfven continua nearly unchanged.

18 Section 6



6.3.2 Zero beta limit

If we set all the thermal pressure terms in E12 and E22 to be zero (this is equivalent with setting γ = 0), the sound
wave will be removed from the system. This approximation is called zero beta limit in literature[6]. Numerical
results indicate the zero beta limit will remove all the sound continua. Compared with the slow sound approxima-
tion, the zero beta limit will make the frequency of the Alfven continua a little lower, and make the zeroth continua
gaps (BAE gaps) disappear[7].

6.3.3 Cylindrical geometry limit

Consider the form of matrix E in the cylindrical geometry limit, in which the equilibrium quantities are indepen-
dent of poloidal angle. Equation (284) indicates that the geodesic curvature κs is zero in this case. Thus, the
matrix elements E12 and E21 are zero. Next, consider the matrix elements E11 and E22. Because all equilibrium
quantities are independent of the poloidal angle, different poloidal harmonics of the perturbation are decoupled.
Therefore, we can consider a perturbation with a single poloidal mode number . For a poloidal harmonic with
poloidal mode number m, matrix element E11 is written

E11 = −ω
2ρ0|∇Ψ|2
B0

2 − µ0
−1

B0 · ∇
(
|∇Ψ|2
B0

2 B0 · ∇
)

= −ω
2ρ0|∇Ψ|2
B0

2 + µ0
−1 |∇Ψ|2

B0
2 (Ψ′J −1)2(m−nq)2, (216)

and matrix element E22 is written

E22 =
µ0
−1B0

2+ γp0
B0

2 + µ0
−1 γp0
ω2ρ0

B0 · ∇
(
B0 · ∇
B0

2

)

=
µ0
−1B0

2+ γp0
B0

2 − µ0
−1 γp0
ω2ρ0

1

B0
2(Ψ

′J −1)2(m−nq)2. (217)

The continua are the roots of the equation det(E)= 0, which, in the cylindrical geometry limit, reduces to

E11E22=0. (218)

Two branches of the roots of Eq. (218) are given by E11 = 0 and E22 = 0, respectively. The equation E11 = 0 is
written

−ω2ρ0+ µ0
−1(Ψ′J −1)2(m−nq)2=0, (219)

which gives

ω2=
(Ψ′J −1)2(m−nq)2

µ0ρ0
, (220)

which is the Alfvén branch of the continua. Figure 1a plots the results of Eq. (220). The equation E22 = 0 is
written

ω2=
γp0

µ0
−1B0

2+ γp0

(Ψ′J −1)2

µ0ρ0
(m−nq)2, (221)

which is the sound branch of the continua. Figure 1b plots the results of Eq. (221).
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Figure 1. n = 1 Alfven continua (left) and sound continua (right) in the cylindrical geometry limit for m = 0, 1, 2, 3, 4, and 5 (calcu-
lated by using Eqs. (220) and (221)). The equilibrium used for this calculation is for EAST discharge #38300@3.9s (G-eqdsk filename
g038300.03900, which was provided by Dr. Guoqiang Li). The number density of ions is given in Fig. 12. Because the Jacobian J in
toroidal geometry depends on the poloidal angle, the average value of J on a magnetic surface is used in evaluating the right-hand side
of (220).

Figures compares the Alfven continua in the cylindrical limit with those in the toroidal geometry. The results
indicate that the Alfven continua in the toroidal geometry reconnect, forming gaps near the locations where the
Alfven continua in the cylindrical limit intersect each other.
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Figure 2. Comparision of the the Alfven continua in toroidal geometry (black solid lines) and Alfven continua in the cylin-
drical limit (other lines). The Alfven continua in toroidal geometry are obtained by using the slow-sound-approximation. The
equilibrium is EAST discharge #38300 at 3.9s.

The result in Eq. (220) is not clear from the view of physics since it involves the Jacobian, which is a mathe-
matical factor due to the freedom in the choice of coordinates. Next, we try to write the right-hand side of Eq.
(220) in more physical form. In cylindrical geometry limit, magnetic surfaces are circular. Thus the radial coordi-
nate can be chosen to be the geometrical radius of the circular magnetic surface, and the usual poloidal angle (i.e.,
equal-arc angle) can be used as the poloidal coordinate. Then the poloidal magnetic flux is written as

Ψp=

∫

0

r

Bp(r)2πR0 dr, (222)

where 2πR0 is the length of the cylinder. We know that Ψ used in the Grad-Shafranov equation is related to Ψp by

Ψ=±Ψp

2π
+C. (223)

Using Eqs. (222) and (223), we obtain

Ψ′≡ dΨ

dr
=±BpR0 . (224)

Next, we calculate the Jacobian J , which is defined by

J −1=∇ψ×∇θ · ∇ζ. (225)

Since we choose ψ = r and ζ = φ (the positive direction of θ is count clockwise when observers view along the posi-
tive direction of φ), the above equation is written

J −1 = ∇r×∇θ · φ̂
R0
.

= − 1

rR0
. (226)

Using Eqs. (224) and (226) , (Ψ′J −1)2 is written

(Ψ′J −1)2=

(

BpR0
1

rR0

)
2

=
Bp

2

r2
(227)

Using these, Eq. (220) is written

ω2=
Bp

2(m−nq)2

r2µ0ρ0
. (228)

Using the definition of safety factor in the cylindrical geometry

q=
Bφr

R0Bp
, (229)

equation (228) is written

ω2=
Bφ

2(m−nq)2

µ0ρ0q2R0
2
. (230)

In the cylindrical geometry, the parallel (to equilibrium magnetic field) wave-number is given by

k‖=
m−nq

qR0
. (231)

Using this, Eq. (230) is written

ω2= k‖
2 Bφ

2

µ0ρ0
. (232)

Using the definition of Alfven speed VAφ
2 ≡Bφ

2 /(µ0ρ0), the above equation is written as

ω2= k‖
2VAφ

2 , (233)
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which gives the well known Alfven resonance condition. For later use, define

ωa
2=

Bp
2(m−nq)2

r2µ0ρ0
, (234)

then Eq. (228) is written as ω2=ωa
2.

Similarly, by using Eq. (227), equation (217) for E22 is written as

E22=
µ0
−1B0

2+ γp0
B0

2 − µ0
−1 γp0
ω2ρ0

1

B0
2

Bp
2

r2
(m−nq)2.

Then equation E22=0 reduces to

µ0
−1B0

2+ γp0
B0

2 − µ0
−1 γp0
ω2ρ0

1

B0
2

Bp
2

r2
(m−nq)2=0 (235)

⇒ω2=
µ0
−1γp0

ρ0

1

B0
2

Bp
2

r2
(m−nq)2

µ0

−1
B0

2+ γp0

B0
2

⇒ω2=
µ0
−1γp0

ρ0

µ0
−1B0

2+ γp0

Bp
2

r2
(m−nq)2

⇒ω2=

γp0

ρ0

B0
2

µ0ρ0
+
γp0

ρ0

Bp
2

µ0ρ0r2
(m−nq)2

⇒ω2=
Cs

2

VA
2+Cs

2ωa
2, (236)

where Cs
2 = γp0/ ρ0, VA

2 = B0
2/(µ0ρ0). Equation (166) gives the sound branch of the continua. For present tokamak

plasma parameters, Cs is usually one order smaller than VA. Thus, equation (236) indicates the sound continua are
much smaller than the Alfven continua for the same m and n.

6.3.4 Approximate central frequency and radial location of continua gap

In the cylindrical geometry, continua with different poloidal mode numbers will intersect each other, as shown in
Fig. 1. Next, we calculate the radial location of the intersecting point of two continua with poloidal mode number
m and m+1, respectively. In the intersecting point, we have

ωAm
2 =ωAm+1

2 , (237)

i.e.

k‖m
2 VA

2= k‖m+1
2 VA

2 (238)

which gives

k‖m= k‖m+1, (239)

or

k‖m=−k‖m+1 (240)

Inspecting the expression for k‖ in Eq. (323), we know that only the case in Eq. (240) is possible, which gives

m−nq

qR0
=−(m+1)−nq

qR0
, (241)

which further reduces to

q=
2m+1

2n
≡ qgap. (242)

The above equation determines the radial location where the m continuum intersect the m + 1 continuum. Note
that a mode with two poloidal modes has two corresponding resonant surfaces. For the case where the mode has m
and m + 1 poloidal harmonics, the resonant surfaces are respectively q = m/n and q = (m + 1)/n. Note that the
value of q given in Eq. (242) is between the above two values.

In toroidal geometry, the different poloidal modes are coupled, and the continuum will “reconnect” to form a gap
in the vicinity of the original intersecting point, as shown in Fig. . Therefore the original intersecting point, Eq.
(242), gives the approximate location of the gap. Furthermore, using Eq. (242), we can determine the frequency of
the intersecting point, which is given by

ω2= k‖m
2 VA

2=
(

n

2m+1

)
2 VA

2

R0
2 , (243)

which can be further written

ω=
1

2q gap

VA
R0
. (244)

According to the same reasoning given in the above, Eq. (244) is an approximation to the center frequency of the
TAE gap. The frequency and the location given above are also an approximation to the frequency and location of
the TAE modes that lie in the gap.

Discrete form of elements of matrix C, D, E, and F 21



For the ellipticity-induced gap (EAE gap), which is formed due to the coupling of m and m + 2 harmonics, the
location is approximately determined by

k‖m=−k‖m+2, (245)

which gives

qgap=
m+1

n
, (246)

and the approximate center angular frequency is

ω2= k‖
2VA

2=
(

n

m+1

)
2VA

2

R0
2 , (247)

which can be written as

ω=
2

2qgap

VA
R0
.

Generally, for the gap formed due to the coupling of m and m+∆ harmonics, we have

k‖m=−k‖m+∆,

which gives

qgap=
2m+∆

2n
, (248)

and

ω2= k‖
2VA

2=

(
∆n

2m+∆

)
2VA

2

R0
2 . (249)

Equation (249) can also be written as

ω=
∆

2q gap

VA
R0
. (250)

7 Shooting method for finding global eigenmodes

After using Fourier spectrum expansion and taking the inner product over θ, Eq. (190) can be written as the fol-
lowing system of ordinary differential equations:

d

dψ














P1
(1)

(ψ)
···

P1
(L)

(ψ)

ξψ
(1)

(ψ)
···

ξψ
(L)

(ψ)














=













A11
(11) ... A11

(1L) A12
(11) ... A12

(1L)

··· ··· ··· ··· ··· ···
A11

(L1)
... A11

(LL)
A12

(L1)
... A12

(LL)

A21
(11)

... A21
(1L)

A22
(11)

... A22
(1L)

··· ··· ··· ··· ··· ···
A21

(L1)
... A21

(LL)
A22

(L1)
... A22

(LL)


























P1
(1)

(ψ)
···

P1
(L)

(ψ)

ξψ
(1)

(ψ)
···

ξψ
(L)

(ψ)














, (251)

where L is the total number of the poloidal harmonics included in the Fourier expansion, the matrix elements Aαβ
(ij)

are functions of ψ and ω2. Next, we specify the boundary condition for the system. Note that equations system
(251) has 2L first-order differential equations, for which we need to specify 2L boundary conditions to make the
solution unique. The geometry determines that the radial displacement at the magnetic axis must be zero, i.e.,

ξψ
(l)
(ψ= ψ0) = 0, For l=1, 2, ..., L. (252)

We consider only the modes that vanish at the plasma boundary, for which we have the following boundary condi-
tions:

ξψ
(l)
(ψ= ψLCFS)= 0, For l=1, 2, ..., L (253)

Now Eqs. (252) and (253) provide 2L boundary conditions, half of which are at the boundary ψ = ψ0 and half are
at the boundary ψ = ψLCFS. Therefore equations system (251) along with the boundary conditions Eqs. (252) and
(253) constitutes a standard two-points boundary problem[5]. Note, however, that we are solving a eigenvalue
problem, for which there is an additional equation for ω2:

dω2

dψ
=0. (254)

This increases the number of equations by one and so we need one additional boundary condition. Note that, by
eliminating all P1

(l)
, equations system (251) can be written as a system of second-order differential equations for

ξψ
(l)
. Further note that the unknown functions ξψ

(l)
satisfy homogeneous equations and homogeneous boundary con-

ditions, which indicates that if ξψ
(l)

with l = 1, 2, ...L are solutions, then cξψ
(l)

are also solutions to the original equa-

tions, where c is a constant. Therefore the value of the derivative of dξψ
(l)

/dψ at the boundary have one degree of

freedom. Due to this fact, one of the derivatives dξψ
(1)

/dψ, dξψ
(2)

/dψ,..., dξψ
(L)

/dψ at ψ0 can be set to be a nonzero

value. For example, setting the value of dξψ
(1)

/dψ at ψ0 to be 0.5 and making use of ξψ
(l)

=0 at ψ0, we obtain

A21
(11)

(ψ0)P1
(1)

(ψ0)+A21
(12)

(ψ0)P1
(2)

(ψ0)+ ...+A21
(1L)

(ψ0)P1
(L)

(ψ0)= 0.5, (255)
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which can be solved to give

P1
(L)

(ψ0)=
1

A21
(1L)

(ψ0)

[

0.5−A21
(11)

(ψ0)P1
(1)

(ψ0)−A21
(12)

(ψ0)P1
(2)

(ψ0)− ...
]

, (256)

which provides the additional boundary condition we need. In the present version of my code, for convenience, I

directly set the value of P1
(L)

(ψ0) to a small value, instead of using Eq. (256). The following sketch map describes
the function F(X) for which we need to find roots in the shooting process.

X=











P1
(1)(ψ0)

P1
(2)(ψ0)
:̇

P1
(L−1)(ψ0)
ω2











−→F(X) =












ξψ
(1)

(ψLCFS)

ξψ
(2)

(ψLCFS)

:̇

ξψ
(L−1)

(ψLCFS)

ξψ
(L)

(ψLCFS)












(257)

8 Benchmark of GTAW code

To benchmark GTAW code, we use it to calculate the continua and gap modes of the Solovev equilibrium and com-
pare the results with those given by NOVA code. The Solovev equilibrium used in the benchmark case is given by

Ψ=
B0

2R0
2κ0q0

[

R2Z2+
κ0
2

4
(R2−R0

2)2
]

, (258)

p0= p0(0)− B0(κ0
2+1)

µ0R0
2κ0q0

Ψ, g= g0, (259)

with B0 = 1T , R0 = 1m, g0 = 1mT , κ0 = 1.5, q0 = 3, and p0(0) = 1.1751 × 104Pa. The flux surface with the minor
radius being 0.3m (corresponding to Ψ = 2.04 × 10−2Tm2) is chosen as the boundary flux surface. Main plasma is
taken to be Deuterium and the number density is taken to be uniform with nD = 2 × 1019m−3. Figure 3 compares
the Alfven continua calculated by NOVA and GTAW, which shows good agreement between them.
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Figure 3. Comparison of the n= 1 Alfven continua calculated by NOVA and our code. The continua are calculated in the slow
sound approximation[7] and the equilibrium used is the Solovev equilibrium given in Eqs. (258) and (259).

A gap mode with frequency f = 297kHz is found in the NAE gap by both NOVA and GTAW. The poloidal
mode numbers of the two dominant harmonics are m=2 and m=5, which is consistent with the fact that a NAE is
formed due to the coupling between m and m+ 3 harmonics. Before comparing the radial structure of the poloidal
harmonics given by the two codes, a discussion about the assumption adopted in NOVA is desirable. As is pointed
out by Dr. Gorelenkov, NOVA at present is restricted to up-down symmetric equilibrium and, for this case, it can
be shown that the amplitude of all the radial displacement can be transformed to real numbers. For this reason,
NOVA use directly real numbers for the radial displacement in its calculation. In GTAW code, the amplitude of the
poloidal harmonics of the radial displacement are complex numbers. The Solovev equilibrium used here is up-down
symmetric and the results given by GTAW indicate the poloidal harmonics of the radial displacement can be trans-
formed (by multiplying a constant such as (1 − i)) to real numbers. After transforming the radial displacement to
real numbers, the results can be compared with those of NOVA. Figure 4 compares the radial structure of the dom-
inant poloidal harmonics (m = 2, 3, 4, 5) given by the two codes, which indicates the results given by the two codes
agree with each other well.
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Figure 4. The dominant poloidal harmonics (m = 2, 3, 4, 5) of a n = 1 NAE as a function of the radial coordinate. The solid
lines are the results of GTAW while the dashed lines are those of NOVA. The corresponding poloidal mode numbers are indi-
cated in the figure. The frequency of the mode f = 297kHz. The equilibrium is given by Eqs. (258) and (259).
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plotted are the frequency of the NAE (f = 297kHz) and the m=2 and m=5 continua in cylindrical limit.

Figure 6 plots the mode structure of the NAE on φ=0 plane, which shows that the mode has an anti-ballooning
structure, i.e., the mode is stronger at the high-field side than at the low-field side.
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Figure 6. Two dimension mode structure of the NAE in Fig. 4. The dashed line in the figure indicates the boundary magnetic
surface and the small circle indicates the inner boundary used in the numerical calculation.
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Figure 7. Real part (a), imaginary part (b), and absolute value of the amplitude (c) of the poloidal harmonics of a n = 1 TAE as a
function of the radial coordinate. The frequency of the mode is f = 93kHz. The dominant poloidal harmonics are those with m= 3 and
m=4. The equilibrium is given by Eqs. (258) and (259).
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Figure 8. Slow sound approximation of the continua of the Solovev equilibrium. Also plotted are the frequency of the TAE
(f = 93kHz) and the m=3 and m=4 continua in cylindrical limit. Toroidal mode number n=1.

For the case that p0(0) = 1.5× 104Pa, a TAE with f = 102kHz is found in the TAE gap. The radial dependence
of the poloidal harmonics of the mode is plotted in Fig. 9. Figure 10 plots the frequency of the mode on the Alfven
continua graphic.
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Figure 9. Real part (a), imaginary part (b), and absolute value of the amplitude (c) of the poloidal harmonics of a n = 1 TAE as a
function of the radial coordinate. The frequency of the mode is f = 102kHz. The dominant poloidal harmonics are those with m=3 and
m=4. The equilibrium is given by Eqs. (258) and (259), (old)
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Figure 10. Slow sound approximation of the continua of the Solovev equilibrium. Also plotted are the frequency of the TAE
(f = 102kHz) and the m=3 and m=4 continua in cylindrical limit. Toroidal mode number n=1.(old)

9 Numerical results for EAST tokamak

The content in this section has been published in my 2014 paper[8].

9.1 EAST Tokamak equilibrium

The tokamak equilibrium used in this paper is reconstructed by EFIT code by using the information of profiles
measured in EAST experiment[9]. The shape of flux surfaces within the last-closed-flux surface (LCFS) are plotted
in Fig. 11, where θ = const curves are also plotted. In the paper, I said that the equilibrium was a double-null con-
figuration with the LCFS connected to the lower X point. This is wrong. The configuration with the LCFS con-
nected to the lower X point should be called lower single null configuration. The double-null configuration is a con-
figuration with LCFS connected to both the lower and upper X points. In practice, if the spacial seperation
between the flux surface connected to the low X point and the flux surface connected to the upper X point, dRsep,
is smaller than a value (e.g. 1cm), the configuration can be considered as a double null configuration, where dRsep
is the spacial separation between the two flux surfaces on the low-field side of the midplane.
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Figure 11. Grid points (the intersecting points of two curves in the figure) corresponding to uniform poloidal flux and uniform
poloidal arc length for EAST discharge #38300 at 3.9s (G-file name: g038300.03900, which was provided by Dr. Guoqiang Li).

The profiles of safety factor, pressure, and electron number density are plotted in Fig. 12.
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Figure 12. Safety factor and pressure (a), toroidal field function (b), and electron number density (c) as a function of the radial
coordinate for EAST discharge #38300 at 3.9s (G-eqdsk filename g038300.03900).

The mass density ρ0 is calculated from ρ0=mini, where mi is the mass of the main ions (deuterium ions in this
discharge), ni is the number density of the ions, which is inferred from ne by using the neutral condition ni = ne
(impurity ions are neglected).
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9.2 Numerical results of MHD continua

The eigenfrequency of Eq. (213), ω2, as a function of the radial coordinate gives the continua for the equilibrium. It
can be proved analytically that the eigenfrequency of Eq. (213), ω2, is a real number (I do not prove this). Making
use of this fact, we know that a crude method of finding the eigenvalue of Eq. (213) is to find the zero points of the
real part of the determinant of E. Since, in this case, both the independent variables and the value of the function
are real, the zero points can be found by using a simple one-dimension root finder. This method was adopted in the
older version of GTAW (bisection method is used to find roots). In the latest version of GTAW, as mentioned
above, the generalized eigenvalue problem in Eq. (213) is solved numerically by using the zggev subroutine in
Lapack library. (The eigenvalue problem is solved without the assumption that ω2 is real number. The eigenvalue
ω2 obtained from the routine is very close to a real number, which is consistent with the analytical conclusion that
the eigenvalue ω2 must be a real number.)

Figure 16 plots the eigenfrequency of Eq. (213) as a function of the radial coordinate Ψ. The result is calculated
in the slow sound approximation, thus giving only the Alfven branch of the continua. Also plotted in Fig. 16 are
the Alfven continua in the cylindrical limit. As shown in Fig. 16, the Alfven continua in toroidal geometry do not
intersect each other, thus forming gaps at the locations where the cylindrical Alfven continua intersect each other.

The first gap, which is formed due to the coupling of sound wave and Alfven wave, starts from zero frequency.
This gap is called BAE gap since beta-induced Alfven eigenmode (BAE) can exist in this gap. The second gap is
called TAE gap, which is formed mainly due to the coupling of m and m + 1 poloidal harmonics. The third gap is
called EAE gap, which is formed mainly due to the coupling of m and m+ 2 poloidal harmonics. The fourth gap is
called NAE gap, which is formed due to the coupling of m and m + 3 poloidal harmonics. A gap can be further
divided into sub-gaps according to the two dominant poloidal harmonics that are involved in forming the gap. For
example, a sub-gap of the TAE gap is the one that is formed mainly due to the coupling of m = 1 and m = 2 har-
monics. For the ease of discussion, we call this sub-gap “(1, 2) sub-gap”, where the two numbers stand for the
poloidal mode numbers. The frequency range of a sub-gap is defined by the frequency difference of the two extreme
points on the continua. The radial range of the sub-gap can be defined as the radial region whose center is the loca-
tion of one of the extreme points on the continua, width is the half width between the neighbor left and right
extreme points.
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Figure 16. n = 1 Alfven continua in toroidal geometry (red dots)(calculated in slow sound approximation) and in cylindrical
geometry limit for m= 0, 1, 2, 3, 4, and 5 (calculated by using Eq. (220)). The equilibrium used for this calculation is for EAST
shot #38300 at 3.9s (G-eqdsk filename g038300.03900, which was provided by Dr. Guoqiang Li). (main ions are deuterium,
impurity ions are assumed to be absent).

Figure 17 compares the continua of the full ideal MHD model with those of slow sound and zero β approxima-
tions. The results indicate that the slow sound approximation eliminates the sound continua while keeps the Alfven
continua almost unchanged. The zero β approximation eliminates the BAE gap.
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Figure 17. (a) full continua (b) slow sound approximation of the continua (c) zero β approximation of the continua. Other parame-
ters: toroidal mode number n = 1, the range of poloidal harmonics number is truncated within [−10: 10]. The equilibrium used for this
calculation is for EAST shot 38300 at 3.9s.

(Numerical results indicate that the eigenvalue ω2 is always grater than or equal to zero. Can this point be
proved analytically?)

In order to verify the numerical convergence about the number of the poloidal harmonics included in the expan-
sion, we compares the results obtained when the poloidal harmonic numbers are truncated in the range [−10, 10]
and those obtained when the truncation region is [−15, 15]. The results are plotted in Fig. 18, which shows that the
two results agree with each other very well for the low order continua in the core region of the plasma. For continua
in the edge region or higher order continua, there are some discrepancies between the two results. These discrepan-
cies are due to that higher order poloidal harmonics are needed in evaluating the continua for those cases.
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Figure 18. Comparison of the results obtained when the poloidal harmonic numbers are truncated in the range [−10, 10] (solid
circles) and those obtained when the truncation region is [−15, 15] (cross marks). The equilibrium used for this calculation is for
EAST shot #38300 at 3.9s.

The n = 4 Alfven continua are plotted in Fig. 19, which shows that there are more TAE gaps than those of the
n=1 case. The number of gaps is roughly given by n(qedge− qaxis) for a monotonic q profile[10].
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Figure 19. n = 4 Alfven continua (in slow sound approximation). The poloidal harmonic numbers are truncated in the range
[−15, 20]. The equilibrium used for this calculation is for EAST shot 38300 at 3.9s. The corresponding Alfven continua in the
cylindrical limit are also plotted.

Remarks: If, instead of the definition (169), we define the 〈...〉m′m operator as

〈W 〉m′m=
1

2π

∫

0

2π

Wei (m+m′)θdθ, (260)
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then, can we still obtain correct results for the continuous spectrum? When I began to work on the calculation of
the continuous spectrum, I noticed that the definition (169), instead of (260), is adopted in Cheng’s paper[3]. By
intuition, I thought the definition (260) should work as well as (169). Since the definition (260) is simpler than
(169) (there is no additional minus in (260)), I prefer using the definition (260). This choice does not cause me
trouble when I use symmetrical truncation of the poloidal harmonics. Trouble appears when I try using asymmet-
rical truncation of the poloidal harmonics. For example, when asymmetrical truncation of the poloidal harmonics is
used (e.g. poloidal harmonics in the range [−10, 15]), it is easy to verify analytically that the determinant of the
resulting matrix for the case γ = 0 is zero for any values of ω2. It is obvious that this will not give correct results
for the continuous spectrum. It took me two days to find out the definition in (169) must be used in order to deal
with asymmetrical truncation of poloidal harmonics. In summary, the advantage of using the definition (169) over
(260), is that the former can deal with the asymmetrical truncation of the poloidal harmonics, while the latter is
limited to the case of symmetrical truncation.

9.3 Numerical results of global modes

When analyzing the modes calculated numerically, we need to distinguish two kinds of modes: the continuum
modes and the gap modes. In principle, the continuum mode is defined as the mode whose frequency is within the
Alfven continua while the gap mode is defined as the mode whose frequency is within the frequency gap of the
Alfven continua. However, for realistic equilibria, any given frequency will touch the continua at one of the radial
locations.

However, for realistic structure of continua, both the range and the center of the frequency of a gap change with
the radial coordinate, as is shown in Fig. 16. As a result, a given frequency usually can not be within a gap for all
radial locations, i.e., the frequency usually intersects the Alfven continua at some radial locations. These locations
are the Alfven resonant surfaces. As is pointed out in Ref. [?], the mode structure have singularity given by
[c1ln|ψ − ψs|+ c2] at the resonant surface, where ψs is the radial coordinate of the resonant surface and c2 can have
finite discontinuity.

In practice, continuum modes can be easily distinguished from gap modes by examining the radial structure of
the poloidal harmonics of the mode. If the radial mode structure has dominant singularities at the Alfven resonant
surfaces, then the modes are continua modes. If the dominant peaks of the mode are not at the Alfven resonant
surfaces, then the mode is probably a gap mode (further confirmation can be obtained by examining poloidal mode
number of the dominant harmonics, discussed later). The mode structure of gap modes can also have singular peak
at the resonant surface, but the peak is usually smaller than the dominant peak.

Mode structure of a n=1 TAE mode is plotted in Fig. 20
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Figure 20. Real part (a), imaginary part (b), and amplitude (c) of the poloidal harmonics of a n = 1 TAE mode as a function of the
radial coordinate. The frequency of the mode is f = 101kHz. The poloidal harmonics with m= 1 and m= 2 are dominant. The equilib-
rium used for this calculation is for EAST shot 38300 at 3.9s (G-file name: g038300.03900). (D)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1

ω
/(

2π
)/

kH
z

normalized poloidal flux

BAE gap
TAE gap

EAE gap

NAE gap

101kHz
m=1
m=2

Figure 21. Slow sound approximation of the continua. Also plotted are the frequency of the TAE mode (f = 101kHz) and the
m=1 and m=2 continua in cylindrical limit. Toroidal mode number n=1. The equilibrium is the same as Fig (D)
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Fig. 22. plots the radial mode structure of another TAE with frequency f = 61.91kHz.
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Figure 22. Real part (a), imaginary part (b), and amplitude (c) of the poloidal harmonics of a n = 1 TAE mode as a function of the
radial coordinate. The frequency of the mode is f = 61.91kHz. The poloidal harmonics with m = 2 and m = 3 are dominant. The equi-
librium used for this calculation is for EAST shot 38300 at 3.9s (G-file name: g038300.03900). (D)
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Figure 23. Slow sound approximation of the continua. Also plotted are the frequency of the TAE mode (f = 61.91kHz) and
the m=2 and m=3 continua in cylindrical limit. Toroidal mode number n=1. The equilibrium is the same as Fig (D)

An example of ellipticity-induced Alfven Eigenmode (EAE) is plotted in Fig. 24. The mode is identified as an
EAE mode because it satisfies the following three requirements: (1) the mode has two dominant harmonics with
poloidal mode number differing by two (m=2 and m=4 for this case); (2) the frequency of the mode f = 130kHz is
within in the continuum gap formed due to the coupling of these two poloidal harmonics; (3) the location of the
peak of the radial mode structure is within the continuum gap.
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Figure 24. Real part (a), imaginary part (b), and amplitude (c) of the poloidal harmonics of a n = 1 EAE mode as a function of the
radial coordinate. The poloidal harmonics with m=2 and m=4 are dominant. f = 130kHz. The equilibrium is for EAST shot 38300 at
3.9s (G-file name: g038300.03900). (D)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1

ω
/(

2π
)/

kH
z

normalized poloidal flux

130kHz
m=2
m=4

Figure 25. n=1 Alfvén continua (D)

An example of non-circularity-induced Alfven Eigenmode (NAE) is plotted in Fig. 26.
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Figure 26. Real part (a), imaginary part (b), and amplitude (c) of the poloidal harmonics of a n = 1 NAE mode as a function of the
radial coordinate. The poloidal harmonics with m= 1 and m= 4 are dominant. The frequency of the mode is f = 216kHz. The equilib-
rium is for EAST shot 38300 at 3.9s (G-file name: g038300.03900). (D)
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Figure 28. Real part (a), imaginary part (b), and amplitude (c) of the poloidal harmonics of a n = 4 EAE mode as a function of the
radial coordinate. The frequency of the mode is f = 330kHz. The poloidal harmonics with m= 5 and m= 7 are dominant. The poloidal
harmonics are truncated into the range m = [−10, 10] in the numerical calculation. The equilibrium is for EAST shot 38300 at 3.9s (G-
file name: g038300.03900). (H)
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9.4 Magnetic curvature

In this section, we derive formulas for calculating the geodesic curvature and normal curvature in magnetic surface
coordinate system (ψ, θ, φ). The derivation looks tedious but the final results are compact (especially for the geo-
desic curvature κs). The magnetic curvature is defined by κ=b · ∇b, which can be further written as

κ =
1

B0
B0 · ∇B0

B0

=
1

B0
(∇Ψ×∇φ+ g∇φ) · ∇B0

B0
(261)

In magnetic surface coordinate system (ψ, θ, φ), equation (261) is written as

κ =
1

B0
(Ψ′

▽ψ×▽φ+ g▽φ) · ∇B0

B0

=
Ψ′

B0
(▽ψ×▽φ) · ∇B0

B0
+

g

B0
▽φ · ∇B0

B0

= −Ψ′

B0
J −1 ∂

∂θ

(
B0

B0

)

+
g

B0

1

R2

∂

∂φ

(
B0

B0

)

= −Ψ′

B0
J −1 ∂

∂θ

(
Ψ′

▽ψ×▽φ+ g▽φ

B0

)

+
g

B0

1

R2

∂

∂φ

(
Ψ′

▽ψ×▽φ+ g▽φ

B0

)

= −Ψ′2

B0
J −1 ∂

∂θ

(
▽ψ×▽φ

B0

)

− gΨ′

B0
J −1 ∂

∂θ

(
▽φ

B0

)

+
gΨ′

B0
2R2

∂

∂φ
(▽ψ×▽φ)− g2

B0
2

1

R3
R̂ (262)

Using ∇ψ = −R

J

(
ZθR̂ − RθẐ

)
, we obtain ∇ψ × ▽φ = − 1

J

(
ZθẐ + RθR̂

)
. Using this, the three partial derivatives in

the above equation are written respectively as

∂

∂θ

(
▽ψ×▽φ

B0

)

= −
(
ZθẐ+RθR̂

) ∂

∂θ

(
J −1

B0

)

− J −1

B0

(
ZθθẐ+RθθR̂

)

= −
[
∂

∂θ

(
J −1

B0

)

Rθ+
J −1

B0
Rθθ

]

R̂−
[
∂

∂θ

(
J −1

B0

)

Zθ+
J −1

B0
Zθθ

]

Ẑ, (263)

∂

∂θ

(
▽φ

B0

)

=
∂

∂θ

(
1

RB0

)

φ̂, (264)

∂

∂φ
(▽ψ×▽φ)=− 1

JRθφ̂. (265)

Using these, κ is written as

κ =
Ψ′2

B0
J −1

{[
∂

∂θ

(
J −1

B0

)

Rθ+
J −1

B0
Rθθ

]

R̂+

[
∂

∂θ

(
J −1

B0

)

Zθ+
J −1

B0
Zθθ

]

Ẑ

}

−gΨ
′

B0
J −1 ∂

∂θ

(
1

RB0

)

φ̂− gΨ′

B0
2R2

1

JRθφ̂− g2

B0
2

1

R3
R̂

9.4.1 Expression of normal curvature κψ

The component κψ is defined by κψ=κ · ∇Ψ. Using Eq. (262), κψ is written as

κψ = −Ψ′3

B0
J −1 ∂

∂θ

(
▽ψ×▽φ

B0

)

· ∇ψ+0+0− Ψ′g2

B0
2

1

R3
R̂ · ∇ψ

= −Ψ′3

B0
J −1

{[
∂

∂θ

(
J −1

B0

)

Rθ +
J −1

B0
Rθθ

]

R̂ +

[
∂

∂θ

(
J −1

B0

)

Zθ +
J −1

B0
Zθθ

]

Ẑ

}

·
[
R

J
(
ZθR̂ −RθẐ

)
]

− Ψ′g2

B0
2

1

R3
R̂ ·

[

−RJ
(
ZθR̂−RθẐ

)
]

= −Ψ′3

B0
J −1R

J

{[
∂

∂θ

(
J −1

B0

)

Rθ+
J −1

B0
Rθθ

]

Zθ−
[
∂

∂θ

(
J −1

B0

)

Zθ+
J −1

B0
Zθθ

]

Rθ

}

+
Ψ′g2

B0
2

1

R2

1

JZθ

= −Ψ′3

B0
J −1R

J
J −1

B0
(RθθZθ−RθZθθ)+

Ψ′g2

B0
2

1

R2

1

JZθ

= −Ψ′3R
J −3

B0
2 (RθθZθ−RθZθθ)+

Ψ′g2

B0
2

1

R2

1

JZθ (266)

= −Ψ′3R
J −3

B0
2
Zθ

2 ∂

∂θ

(
Rθ
Zθ

)

+
Ψ′g2

B0
2

1

R2

1

JZθ. (267)
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Equation (266) is used in GTAW code to calculate κψ. Equation (267) is not suitable for numerical calculation
because Zθ, which appears both in numerator and denominator, can be very small, leading to significant errors in
the numerical results. [My notes: the bad results calculated by Eq. (267) in my code reminded me that Eq. (266)
may be better. I switch back to adopt Eq. (266) and the results clearly show that the results given by Eq. (266)
are indeed better than those of Eq. (267), as shown in Fig. 30.]
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Figure 30. The normal curvature κψ calculated by Eq. (267) (left) and Eq. (266) (right) as a function of the poloidal angle.
The different lines corresponds to different magnetic surfaces. The stars correspond to the values of κψ on the boundary mag-
netic surface while the plus signs correspond to the value on the innermost magnetic surface (the magnetic surface adjacent to
the magnetic axis). The equilibrium is a Solovev equilibrium.

9.4.2 Expression of geodesic curvature κs

Next, consider the calculation of the surface component of κ, the geodesic curvature κs, which is defined by

κs≡κ · B0×∇Ψ

B0
2 . (268)

Using

B0×∇Ψ = [∇Ψ×∇φ+ g∇φ]×∇Ψ

= Ψ′2|∇ψ |2∇φ− gΨ′∇ψ×∇φ
= Ψ′2|∇ψ |2 1

R
φ̂+

gΨ′

J ZθẐ+
gΨ′

J RθR̂ (269)

and Eq. (263), we obtain

∂

∂θ

(
▽ψ×▽φ

B0

)

· B0×∇Ψ

B0
2 =

{

−
[
∂

∂θ

(
J −1

B0

)

Rθ+
J −1

B0
Rθθ

]

R̂−
[
∂

∂θ

(
J −1

B0

)

Zθ+
J −1

B0
Zθθ

]

Ẑ

}

· gΨ
′

B0
2J
(
ZθẐ+RθR̂

)

= − gΨ′

B0
2J

{[
∂

∂θ

(
J −1

B0

)

Zθ+
J −1

B0
Zθθ

]

Zθ+

[
∂

∂θ

(
J −1

B0

)

Rθ+
J −1

B0
Rθθ

]

Rθ

}

(270)

∂

∂θ

(
▽φ

B0

)

· B0×∇Ψ

B0
2 =

∂

∂θ

(
1

RB0

)
Ψ′2|∇ψ |2
B0

2R
. (271)

∂

∂φ
(▽ψ×▽φ) · B0×∇Ψ

B0
2 = − 1

JRθ
Ψ′2|∇ψ |2
B0

2R
. (272)

Using Eqs. (270), (271), and (272), equation (268) is written as

κs = −Ψ′2

B0
J −1

(

− gΨ′

B0
2J

){[
∂

∂θ

(
J −1

B0

)

Zθ+
J −1

B0
Zθθ

]

Zθ+

[
∂

∂θ

(
J −1

B0

)

Rθ+
J −1

B0
Rθθ

]

Rθ

}

−gΨ
′

B0
J −1 ∂

∂θ

(
1

RB0

)
Ψ′2|∇ψ |2
B0

2R
− gΨ′

B0
2

1

R2

1

JRθ
Ψ′2|∇ψ |2
B0

2R
− g2

B0
2

1

R3

gΨ′

B0
2JRθ (273)

The terms in the first line of Eq. (273) is written as

gΨ′3

B0
3 J −2

[
∂

∂θ

(
J −1

B0

)

Zθ
2+

J −1

B0
ZθθZθ+

∂

∂θ

(
J −1

B0

)

Rθ
2+

J −1

B0
RθθRθ

]

=
gΨ′3

B0
3 J −2

[
∂

∂θ

(
J −1

B0

)

(Zθ
2+Rθ

2) +
J −1

B0
(ZθθZθ+RθθRθ)

]

(274)

Noting that

|∇ψ |2= R2

J 2
(Zθ

2+Rθ
2), (275)
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and

∂

∂θ

(
J 2|∇ψ |2

R2

)

=2ZθZθθ+2RθRθθ (276)

expression (274) is written as

gΨ′3

B0
3 J −2

[
∂

∂θ

(
J −1

B0

)
J 2|∇ψ |2

R2
+

J −1

B0

1

2

∂

∂θ

(
J 2|∇ψ |2

R2

)]

=
gΨ′3

B0
3

|∇ψ |2
R2

∂

∂θ

(
J −1

B0

)

+
gΨ′3

B0
4 J −3 1

2

∂

∂θ

(
J 2|∇ψ |2

R2

)

(277)

The first two terms on the second line of Eq. (273) can be written as

− gΨ′3

B0
3 |∇ψ |2J −1

[
∂

∂θ

(
1

RB0

)
1

R
+

1

B0R3
Rθ

]

(278)

The sum of the expression (278) and the first term of expression (277) is written as

gΨ′3

B0
3

|∇ψ |2
R2

∂

∂θ

(
J −1

B0

)

− gΨ′3

B0
3 |∇ψ |2J −1

[
∂

∂θ

(
1

RB0

)
1

R
+

1

B0R3
Rθ

]

=
gΨ′3

B0
3 |∇ψ |2

[
∂

∂θ

(
J −1

B0

)
1

R2
−J −1 ∂

∂θ

(
1

RB0

)
1

R
− J −1

B0R3
Rθ

]

=
gΨ′3

B0
3 |∇ψ |2

[
∂

∂θ

(
J −1

B0R2

)

− J −1

B0

∂

∂θ

(
1

R2

)

−J −1 ∂

∂θ

(
1

RB0

)
1

R
− J −1

B0R3
Rθ

]

=
gΨ′3

B0
3 |∇ψ |2

[
∂

∂θ

(
J −1

B0R2

)

+
2J −1

B0R3
Rθ−J −1 ∂

∂θ

(
1

RB0

)
1

R
− J −1

B0R3
Rθ

]

=
gΨ′3

B0
3 |∇ψ |2

[
∂

∂θ

(
J −1

B0R2

)

+
J −1

B0R3
Rθ−J −1 ∂

∂θ

(
1

RB0

)
1

R

]

=
gΨ′3

B0
3
|∇ψ |2

{
∂

∂θ

(
J −1

B0R2

)

−J −1

[

− 1

B0R3
Rθ+

∂

∂θ

(
1

RB0

)
1

R

]}

=
gΨ′3

B0
3
|∇ψ |2

{
∂

∂θ

(
J −1

B0R2

)

−J −1 ∂

∂θ

(
1

R2B0

)}

=
gΨ′3

B0
3 |∇ψ |2

{
1

B0R2

∂

∂θ
(J −1)

}

(279)

Using the above results, κs is written as

κs =
gΨ′3

B0
4 J −31

2

∂

∂θ

(
J 2|∇ψ |2

R2

)

− Ψ′g3

R3B0
4 J −1Rθ+

gΨ′3

B0
4R2

|∇ψ |2 ∂

∂θ
(J −1)

=
gΨ′3

B0
4

1

J 2

[
1

2
J −1 ∂

∂θ

(
J 2|∇ψ |2

R2

)

+
J 2|∇ψ |2

R2

∂

∂θ
(J −1)

]

− Ψ′g3

R3B0
4 J −1Rθ (280)

=
gΨ′3

B0
4

1

J 2

[
1

2
J −1 ∂

∂θ

(
J 2|∇ψ |2

R2

)

+
J 2|∇ψ |2

R2

∂

∂θ
(J −1)

]

− Ψ′g3

R3B0
4
J −1Rθ

=
gΨ′

B0
4

1

J 2

[
1

2
J −1 ∂

∂θ

(
J 2|∇Ψ|2

R2

)

+
J 2|∇Ψ|2

R2

∂

∂θ
(J −1)

]

− Ψ′g3

R3B0
4 J −1Rθ

=
gJ −1Ψ′

B0
3

[
1

B0J
1

2
J −1 ∂

∂θ

(
J 2|∇Ψ|2

R2

)

+
1

B0J
J 2|∇Ψ|2

R2

∂

∂θ
(J −1)− g2

R3B0
Rθ

]

(281)

Using

∂B0

∂θ
=

∂

∂θ

(
|∇Ψ|
R

)
2

+
(
g

R

)
2

√

=
∇Ψ

B0R

∂

∂θ

(
|∇Ψ|
R

)

− g2

R3B0
Rθ,

equation (281) is written

κs=
gJ −1Ψ′

B0
3

[
1

B0J
1

2
J −1 ∂

∂θ

(
J 2|∇Ψ|2

R2

)

+
1

B0J
J 2|∇Ψ|2

R2

∂

∂θ
(J −1) +

∂B0

∂θ
− ∇Ψ

B0R

∂

∂θ

(
|∇Ψ|
R

)]

Excluding the ∂B0/∂θ term, the other terms on the r.h.s of the above equation are written

1

2
J −2 ∂

∂θ

(
J 2|∇Ψ|2

R2

)

+
J |∇Ψ|2
R2

∂

∂θ
(J −1)− 1

2

∂

∂θ

(
|∇Ψ|2
R2

)

=−1

2

J 2|∇Ψ|2
R2

∂

∂θ
(J −2) +

J |∇Ψ|2
R2

∂

∂θ
(J −1)

=
|∇Ψ|2
JR2

∂

∂θ
(J ) +

J |∇Ψ|2
R2

∂

∂θ
(J −1)

=0
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Therefore equation (281) is written

κs=
gJ −1Ψ′

B0
3

(
∂B0

∂θ

)

, (282)

which agrees with the formula given in Ref. [6]. Equation (282) takes a very simple form, and provides a clear
physical meaning for the geodesic curvature: κs is proportional to the poloidal derivative of the magnetic field
strength. Equation (284) indicates that the geodesic curvature is zero for an equilibrium configuration that is uni-
form in poloidal direction. Note that this formula for κs is valid for arbitrary Jacobian. (Remarks: When I derived
the formula of κs for the first time, I found that κs can be written in the simple form given by Eq. (282) for the
equa-arc length Jacobian. Later I found that κs can also be written in the simple form given by Eq. (282) for the
Boozer Jacobian. This makes me realize that the simple form given by Eq. (282) may be universally valid for arbi-
trary Jacobian. However, I did not verify this then. About two years later, I reviewed this notes and succeeded in
providing the derivation given above. The derivation given above seems to be tedious and may be greatly simplified
in some aspects. But, at present, the above derivation is the only one that I can provide.)

If we choose the equal-arc Jacobian, then Eq. (280) becomes relatively simple:

κs=
gΨ′3

B0
4

1

J 2

[ ( ∮
dℓ

2π

)
2 ∂

∂θ
(J −1)

]

− Ψ′g3

R3B0
4 J −1Rθ. (283)

This form is implemented in GTAW code. Figure 31 gives the results for κs calculated by using Eq. (283). I have
verified numerically that the results given by Eqs. (282) and (283) agree with each other.
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Figure 31. The geodesic magnetic curvature κs (calculated by Eq. (283)) as a function of the poloidal angle. The different
lines corresponds to different magnetic surfaces. The stars correspond to the values of κs on the boundary magnetic surface
while the plus signs correspond to the value on the innermost magnetic surface (the magnetic surface adjacent to the magnetic
axis). The equilibrium is a Solovev equilibrium.

9.5 Local magnetic shear

The negative local magnetic shear is defined by

S=

(

∇× B0×∇Ψ

|∇Ψ|2
)

· (B0×∇Ψ)

|∇Ψ|2 . (284)

There are two ways of calculating S. The first way is to calculate S in cylindrical coordinate system; the second one
is in flux coordinate system. Next, consider the first way. We have

B0×∇Ψ

|∇Ψ|2 =
(∇Ψ×∇φ+ g∇φ)×∇Ψ

|∇Ψ|2

=
|∇Ψ|2∇φ+ g∇φ×∇Ψ

|∇Ψ|2

= ∇φ+ g
∇φ×∇Ψ

|∇Ψ|2 . (285)

Using this, Eq. (284) is written as

S =

[

∇×
(

∇φ+ g
∇φ×∇Ψ

|∇Ψ|2
)]

·
[

∇φ+ g
∇φ×∇Ψ

|∇Ψ|2
]

=

[

∇×
(

g
∇φ×∇Ψ

|∇Ψ|2
)]

·
[

∇φ+ g
∇φ×∇Ψ

|∇Ψ|2
]

. (286)

Next, we work in cylindrical coordinates and obtain

g
∇φ×∇Ψ

|∇Ψ|2 =
1

|∇Ψ|2
g

R
ΨZR̂− 1

|∇Ψ|2
g

R
ΨRẐ (287)
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and

∇×
[

g
∇φ×∇Ψ

|∇Ψ|2
]

=

[
∂

∂Z

(
1

|∇Ψ|2
g

R
ΨZ

)

+
∂

∂R

(
1

|∇Ψ|2
g

R
ΨR

)]

φ̂. (288)

Using Eq. (288), Eq. (286) is written as

S=

[
∂

∂Z

(
1

|∇Ψ|2
g

R
ΨZ

)

+
∂

∂R

(
1

|∇Ψ|2
g

R
ΨR

)]
1

R
. (289)

The two partial derivatives appearing in the above equation can be calculated to give

∂

∂Z

(
1

|∇Ψ|2
g

R
ΨZ

)

=
1

ΨR
2 +ΨZ

2

1

R
(gΨZ)Z − 2ΨRΨRZ+2ΨZΨZZ

[ΨR
2 +ΨZ

2 ]2
g

R
ΨZ

=
1

ΨR
2 +ΨZ

2

gΨZZ+ g ′ΨZ
2

R
− 2ΨRΨRZ+2ΨZΨZZ

[ΨR
2 +ΨZ

2 ]2
g

R
ΨZ. (290)

∂

∂R

(
1

|∇Ψ|2
g

R
ΨR

)

=
1

ΨR
2 +ΨZ

2

(
g

R
ΨR

)

R
− 2ΨRΨRR+2ΨZΨZR

[ΨR
2 +ΨZ

2 ]2
g

R
ΨR

=
1

ΨR
2 +ΨZ

2

(
g

R
ΨRR+ΨR

g ′ΨRR− g

R2

)

− 2ΨRΨRR+2ΨZΨZR
[ΨR

2 +ΨZ
2 ]2

g

R
ΨR. (291)

Using these, we obtain

S =
1

ΨR
2 +ΨZ

2

1

R2

(

gΨZZ + g ′ΨZ
2 + gΨRR + ΨR

g ′ΨRR− g

R

)

− 1

[ΨR
2 +ΨZ

2 ]2
g

R2
(4ΨRΨRZΨZ + 2ΨZ

2ΨZZ +

2ΨR
2ΨRR). (292)

(The above results for S has been verified by using Mathematica Software.) The results calculated by using Eq.
(292) are plotted in Fig. 32.
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Figure 32. The local magnetic shear S as a function of the poloidal angle. The different lines corresponds to the shear on dif-
ferent magnetic surfaces. The stars correspond to the values of the shear on the boundary magnetic surface while the plus signs
correspond to the value on the innermost magnetic surface (the magnetic surface adjacent to the magnetic axis). The equilib-
rium is a Solovev equilibrium.

Next, we consider the calculation of S in the flux coordinates system (ψ, θ, φ). The B0 × ∇Ψ term can be
written as

B0×∇Ψ = [∇Ψ×∇φ+ g∇φ]×∇Ψ

= Ψ′2|∇ψ |2∇φ+ gΨ′∇φ×∇ψ

= Ψ′2|∇ψ |2∇φ+ gΨ′J −1

(

−J 2∇ψ · ∇θ
R2

∇ψ+
J 2|∇ψ |2

R2
∇θ
)

= −Ψ′gJ∇ψ · ∇θ
R2

∇ψ+Ψ′gJ |∇ψ |2
R2

∇θ+Ψ′2|∇ψ |2∇φ (293)

⇒ B0×∇Ψ

|∇Ψ|2 =− gJ
Ψ′R2

∇ψ · ∇θ
|∇ψ |2 ∇ψ+

gJ
Ψ′R2

∇θ+∇φ. (294)

By using the curl formula in generalized coordinates (ψ, θ, φ), we obtain

∇× B0×∇Ψ

|∇Ψ|2 = ∇×
(

− gJ
Ψ′R2

∇ψ · ∇θ
|∇ψ |2 ∇ψ+

gJ
Ψ′R2

∇θ+∇φ
)

=

[
∂

∂ψ

(
gJ

Ψ′R2

)

+
∂

∂θ

(
gJ

Ψ′R2

∇ψ · ∇θ
|∇ψ |2

)]

∇ψ×∇θ (295)

36 Section 9



Using Eqs. (294) and (295), the negative local magnetic shear [Eq. (284)] is written as

S =

{[
∂

∂ψ

(
gJ

Ψ′R2

)

+
∂

∂θ

(
gJ

Ψ′R2

∇ψ · ∇θ
|∇ψ |2

)]

∇ψ×∇θ
}

·
(

− gJ
Ψ′R2

∇ψ · ∇θ
|∇ψ |2 ∇ψ+

gJ
Ψ′R2

∇θ+∇φ
)

=

[
∂

∂ψ

(
gJ

Ψ′R2

)

+
∂

∂θ

(
gJ

Ψ′R2

∇ψ · ∇θ
|∇ψ |2

)]

∇ψ×∇θ · ∇φ

=

[
∂

∂ψ

(
gJ

Ψ′R2

)

+
∂

∂θ

(
gJ

Ψ′R2

∇ψ · ∇θ
|∇ψ |2

)]

J −1. (296)

Note that the partial derivatives ∂ / ∂ψ and ∂ / ∂θ in Eq. (296) is taken in the (ψ, θ, φ) coordinates and they are
usually different from their counterparts in (ψ, θ, ζ) coordinates. In Eq. (296), the partial derivatives are operating
on equilibrium quantity, which is independent of φ and ζ. In this case, the partial derivatives in the two sets of
coordinates are equal to each other. Figure 33 plots the poloidal dependence of local magnetic shear S and |∇Ψ|2S.
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Figure 33. The local magnetic shear S (left) and |∇Ψ|2S (right) as a function of the poloidal angle. The different lines corre-
sponds to the shear on different magnetic surfaces. The stars correspond to the values of the shear on the boundary magnetic
surface while the plus signs correspond to the value on the innermost magnetic surface (the magnetic surface adjacent to the
magnetic axis). The equilibrium is a Solovev equilibrium.

Next, let us examine the flux surface average of S, which is written as

〈S 〉 =

∫

0

2π
SJdθ

∫

0

2π Jdθ

=
1

∫

0

2π Jdθ

∫

0

2π
[
∂

∂ψ

(
gJ

Ψ′R2

)

+
∂

∂θ

(
gJ

Ψ′R2

∇ψ · ∇θ
|∇ψ |2

)]

dθ

=
1

∫

0

2π Jdθ

∫

0

2π
[
∂

∂ψ

(
gJ

Ψ′R2

)]

dθ

=
1

∫

0

2π Jdθ
∂

∂ψ

∫

0

2π gJ
Ψ′R2

dθ (297)

Note that the global safety factor is given by

q(ψ)=− 1

2π

∫

0

2π gJ
Ψ′R2

dθ. (298)

Using this, equation (297) is written as

〈S 〉=− 2π
∫

0

2π Jdθ
dq(ψ)

dψ
, (299)

Equation (299) provides a way to verify the correctness of the numerical implementation of S. Figure 34 compares

dq/dψ with −〈S 〉
(
∫

0

2π Jdθ
)

/(2π), which shows that the two results agree with each other well.
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9.6 Formula for matrix elements C22

Next, consider the calculation of matrix elements C22. In cylindrical coordinates, we have

∇ ·
(

∇Ψ

|∇Ψ|2
)

= ∇ ·
(

ΨR
|∇Ψ|2eR+

ΨZ
|∇Ψ|2eZ

)

=
1

R

∂

∂R

(

R
ΨR

|∇Ψ|2
)

+
∂

∂Z

(
ΨZ

|∇Ψ|2
)

=
ΨR

R |∇Ψ|2 +
∂

∂R

(
ΨR

|∇Ψ|2
)

+ΨZZ
1

|∇Ψ|2 +ΨZ

[

− 1

|∇Ψ|4(2ΨRΨRZ+2ΨZΨZZ)

]

=
ΨR

R |∇Ψ|2 + ΨRR

(
1

|∇Ψ|2
)

+ ΨR

[

− 1

|∇Ψ|4 (2ΨRΨRR + 2ΨZΨZR)

]

+ ΨZZ
1

|∇Ψ|2 + ΨZ

[

−

1

|∇Ψ|4(2ΨRΨRZ+2ΨZΨZZ)

]

=
ΨR

R|∇Ψ|2 +
ΨRR+ΨZZ

|∇Ψ|2 − 1

|∇Ψ|4(2ΨRΨRΨRR+4ΨRΨZΨZR+2ΨZΨZΨZZ) (300)

Using this, C22 is written

C22 = −|∇Ψ|2∇ ·
(

∇Ψ

|∇Ψ|2
)

= −ΨR
R

− (ΨRR+ΨZZ)+
1

|∇Ψ|2(2ΨRΨRΨRR+4ΨRΨZΨZR+2ΨZΨZΨZZ). (301)

Equation (301) is used in GTAW to calculate C22.
C22 can also be calculated in the magnetic surface coordinates.

C22

Ψ′|∇ψ |2 =−Ψ′∇ ·
(

∇Ψ

|∇Ψ|2
)

, (302)

the term on the r.h.s of the above equation is written as

∇ ·
(

∇Ψ

|∇Ψ|2
)

= ∇ ·
(
∇Ψ

R2

R2

|∇Ψ|2
)

=
R2

|∇Ψ|2∇ ·
(
∇Ψ

R2

)

+
∇Ψ

R2
· ∇
(

R2

|∇Ψ|2
)

. (303)

The first term on the r.h.s of Eq. (303) is written as

R2

|∇Ψ|2∇ ·
(
∇Ψ

R2

)

=
1

|∇Ψ|2△
∗Ψ

=
1

|∇Ψ|2
[

−µ0R
2dp0
dΨ

− dg

dΨ
g(Ψ)

]

. (304)

The second term on the r.h.s of Eq. (303) is written as

∇Ψ

R2
· ∇
(

R2

|∇Ψ|2
)

=
Ψ′

R2

[

|∇ψ |2 ∂
∂ψ

(
R2

|∇Ψ|2
)

+(∇θ · ∇ψ) ∂
∂θ

(
R2

|∇Ψ|2
)]

(305)

Using these, Eq. (302) is finally written as

C22

Ψ′|∇ψ |2 = Ψ′

[

µ0
dp0
dΨ

R2

|∇Ψ|2 +
dg

dΨ
g(Ψ)

1

|∇Ψ|2
]

−Ψ′2

[
|∇ψ |2
R2

∂

∂ψ

(
R2

|∇Ψ|2
)

+
∇θ · ∇ψ
R2

∂

∂θ

(
R2

|∇Ψ|2
)]

(306)

10 misc contents

10.1 Relation of plasma displacement with experimental measurements

In experiments, the beam emission spectroscopy (BES) and microwave reflectometer can measure electron density
fluctuation. The electron cyclotron emission (ECE) radiometer can measure electron temperature fluctuation. In
the ideal MHD theory, we assume that ne0 = ni0, ne1 = ni1, and the mass density is given approximately by ρm =
nimi. Then the linearized continuity equation, ρ1=−ξ1 · ∇ρ0− ρ0∇ · ξ1, is written as

ne1=−ξ · ∇ne0−ne0∇ · ξ, (307)

which gives relationship between the density fluctuation and plasma displacement. Similarly, in the ideal MHD
theory, we assume that Te0= Ti0, Te1= Ti1, and p=neTe+ niTi=2neTe. Then the linearized equation of state, p1=
−ξ · ∇p0− γp0∇ · ξ, is written as

n0T1+n1T0=−ξ · (T0∇n0+n0∇T0)− γn0T0∇ · ξ, (308)
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Using Eq. () to eliminate n1, Eq. () is written as

=⇒n0T1− ξ ·T0∇n0−n0T0∇ · ξ=−ξ ·T0∇n0− ξ ·n0∇T0− γn0T0∇ · ξ, (309)

=⇒T1=−ξ · ∇T0− (γ − 1)T0∇ · ξ, (310)

=⇒T1
T0

=−ξ · ∇T0
T0

− (γ − 1)∇ · ξ, (311)

The continuity equation is written as

ρ1=−ρ0′ ξψ− p0∇ · ξ, (312)

Neglecting the compressible term, the above equation is written as

ρ1=−ρ0′ ξψ. (313)

Using ρ≈nimi and ni=ne, the above equation is written as

ne1=−ne0′ ξψ. (314)

Equation (314) relates the radial displacement obtained from a eigenvalue code with the density perturbation ne1,
which can be measured by the reflectometer in experiments.

We know that the radial plasma displacement ξψ is related to the perturbed thermal pressure through the rela-
tion:

p1=−p0′ ξψ− γp0∇ · ξ, (315)

Neglecting the compressible term, the above equation is written as

p1=−p0′ ξψ (316)

10.2 Expression of k‖ and kθ

Next, we derive the expression for the parallel and poloidal wave-number of a perturbation of the form

δA= δA0(ψ)exp[i(mθ−nζ −ωt)], (317)

where (ψ, θ, ζ) are the flux coordinators, with θ and ζ being the generalized poloidal and toroidal angles. The par-
allel (to the local equilibrium magnetic field) wave vector, k‖, is defined by

k‖=
∆ph

∆l
, (318)

where ∆ph is the phase angle change of the perturbation when moving a distance of ∆l along the local equilibrium
magnetic field. According to Eq. (317), the phase change can be written as

∆ph=m∆θ−n∆ζ , (319)

where ∆ζ and ∆θ are the change in the toroidal and poloidal angles when we move a distance of ∆l along the mag-
netic field. Use Eq. (319) in Eq. (318), giving

k‖=
m∆θ−n∆ζ

∆l
. (320)

Noting that the safety factor is given by

q=
∆ζ

∆θ
(321)

(which is exact since we are using flux coordinator, in which magnetic field lines are straight on (θ, ζ) plane), Eq.
(320) is written as

k‖=
m/ q−n

∆l/∆ζ
. (322)

In the approximation of large aspect ratio, ∆l can be approximated by ∆l≈R0∆ζ, where R0 is the major radius of
the magnetic axis. Using this, the above equation is written as

k‖≈
m−nq

qR0
. (323)

(Remarks: I should use the exact expression for ∆l to derive an exact expression for k‖, I will do this later.) Equa-
tion (323) indicates that k‖ is zero on the resonant surface.

Similarly, the component of the wave vector along the θ direction is written as

kθ =
∆ph

∆lp

=
m∆θ−n · 0

∆lp
, (324)

misc contents 39



where ∆lp is the poloidal arc length when the poloidal angle changes by ∆θ. If the equal-arc poloidal angle is used,
then ∆lp = Lp / (2π)∆θ, where Lp is the poloidal circumference of the magnetic surface. Using this, Eq. (324) is
written as

kθ=
m

Lp/2π
. (325)

If a circular flux surface is assumed, then the above equation is written as

kθ=
m

r
,

where r is the radius of the flux surface.

10.3 Two-dimensional mode structures on poloidal plane

Consider a harmonic with poloidal mode number m and toroidal mode number n,

δφ(r, θ, ϕ, t)=A(r)sin[mθ+nϕ+ωt+α(r)]. (326)

Choose a radial profile of the amplitude

A(r)= exp

(

−(r− rs)2

∆2

)

. (327)

Figure 35 plots the two-dimensional mode structures on the poloidal plane for two profiles of the radial phase varia-
tion given by

α=0, (328)

and

α=(r− rs)
2π

8
, (329)

respectively. Note that, compared with the case of α = 0 (no radial phase variation), the radial phase variation
given by Eq. (329) influence the mode structure on the poloidal plane, generating the so-called mode twist or
shear[11], as shown by the left figure of Fig. 35.
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Figure 35. Two dimensional structure (on ϕ= 0 plane) given by Eqs. (326) and (327) with m = 4, rs= 0.5, ∆= 0.02
√

, t = 0.
Left figure is for α=0 and right figure is for α given by Eq. (334). The mode propagates (rotates) in the clockwise direction on
the poloidal plane (the zero point of θ coordinate is at the low-field-side of the midplane and the positive direction is in the
anti-clockwise direction). A GIF animation of the time evolution of the mode can be found at http://theory.ipp.ac.cn/~yj/fig-
ures/mode_rotation3.gif

Consider a mode composed of two poloidal harmonics

δφ(r, θ, ϕ, t)=A1(r)sin(m1θ+nϕ+ωt+α)+A2(r)sin(m2θ+nϕ+ωt+α), (330)

where m1 and m2 are the poloidal mode number of the two poloidal harmonics. Consider the case m2=m1+ 1= 5.
Then at the high field side of the midplane (θ= π) of ϕ=0 poloidal plane, equation (330) is written

δφ(r, θ, ϕ, t) =A1sin(ωt+α)+A1sin(π+ωt+α) = (A1−A2)sin(ωt+α). (331)

At the low field side of the midplane (θ=0) of ϕ=0 poloidal plane, equation (330) is written

δφ(r, θ, ϕ, t)=A1sin(ωt+α) +A1sin(ωt+α)= (A1+A2)sin(ωt+α). (332)

Equations (331) and (332) indicates the amplitude of the mode at the low field side is larger than that at the strong
field side, i.e., the mode exhibits a ballooning structure.

For a radial profile given by

A1(r) = 2A2(r)= exp

(

−(r− rs)2

∆2

)

. (333)
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and an initial phase α = 0, Figure 36 plots the two-dimensional structure of the mode on the poloidal plane. The
inital phase α can have radial varation and this has effects on the 2D structure of the mode. For instance, α is
chosen to be of the form

α=α(r) = (r− rs)
2π

8
. (334)

The resulting 2D mode structure is given in the right figure of Fig. 36, where the so-called mode shear can be
seen[11].
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Figure 36. Two dimensional structure (on ϕ = 0 plane) given by Eqs. (330) and (333) with m1 = m2 − 1 = 4, rs = 0.5, ∆ =

0.02
√

, t= 0. Left figure is for α= 0 and right figure is for α given by Eq. (334). Note that the mode amplitude at the low field
side is larger than that at the high field side. The mode propagates (rotates) in the clockwise direction on the poloidal plane. A
GIF animation of the time evolution of the mode can be found at http://theory.ipp.ac.cn/~yj/figures/ballooning_animation.gif

10.4 Magnetic islands

to be done.

10.5 proof: The derivation of Eq. (107)

Using Eq. (65), we obtain

∇×B1 = ∇×
(

Qψ

|∇ψ |2∇ψ+
Qs

|∇ψ |2(B0×∇ψ)+ Qb
B2

B0

)

= ∇ Qψ
|∇ψ |2 ×∇ψ+0+∇ Qs

|∇ψ |2 × (B0×∇ψ)+ Qs
|∇ψ |2∇× (B0×∇ψ)+∇Qb

B0
2 ×B0+

Qb
B0

2µ0J0

= ∇ Qψ
|∇ψ |2 × ∇ψ −

(

B0 · ∇ Qs
|∇ψ |2

)

∇ψ +

(

∇ Qs
|∇ψ |2 · ∇ψ

)

B0 +
Qs

|∇ψ |2∇ × (B0 × ∇ψ) + ∇Qb
B0

2 × B0 +

Qb
B0

2
µ0J0 (335)

Using this, the second term on the right-hand side of Eq. (106) is written

∇ψ · µ0
−1(∇×B1)×B0 = µ0

−1
B0 · ∇ψ× (∇×B1)

= µ0
−1

B0 · ∇ψ×
(

∇ Qψ

|∇ψ |2 ×∇ψ+
Qs

|∇ψ |2∇× (B0×∇ψ)+∇Qb
B0

2 ×B0+
Qb
B0

2µ0J0

)

. (336)

The first term of Eq. (336) is written

µ0
−1

B0 · ∇ψ×
(

∇ Qψ

|∇ψ |2 ×∇ψ
)

= µ0
−1

B0 ·
[

|∇ψ |2∇ Qψ

|∇ψ |2 −
(

∇ψ · ∇ Qψ

|∇ψ |2
)

∇ψ
]

= µ0
−1|∇ψ |2B0 · ∇

Qψ

|∇ψ |2 (337)

The last equality is due to B0 · ∇ψ=0. The second term of Eq. (336) is written

µ0
−1

B0 · ∇ψ× Qs
|∇ψ |2∇× (B0×∇ψ) = µ0

−1 Qs
|∇ψ |2B0 · [∇× (∇ψ×B0)]×∇ψ

= µ0
−1 Qs

|∇ψ |2B0 · [−B0(∇ ·∇ψ) + (B0 · ∇)∇ψ− (∇ψ · ∇)B0]×∇ψ

= µ0
−1Qs

1

|∇ψ |2B0 · [(B0 · ∇)∇ψ− (∇ψ · ∇)B0]×∇ψ

= µ0
−1Qs|∇ψ |2S (338)
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The last equality is due to that the coefficients before Qs, i.e.,

1

|∇ψ |2B0 · [(B0 · ∇)∇ψ− (∇ψ · ∇)B0]×∇ψ

is equal to |∇ψ |2S (refer to Sec. 10.7 for the proof). The third term of Eq. (336) is written

µ0
−1

B0 · ∇ψ×
(

∇Qb
B0

2
×B0

)

= µ0
−1

B0 ·
[

0−
(

∇ψ · ∇Qb
B0

2

)

B0

]

= −µ0
−1

(

∇Qb
B0

2 · ∇ψ
)

B0
2. (339)

Using Eqs. (337)-(339) in Eq. (336) yields

∇ψ · µ0
−1(∇×B1)×B0= µ0

−1|∇ψ |2B0 · ∇
Qψ

|∇ψ |2 + µ0
−1Qs|∇ψ |2S − µ0

−1

(

∇Qb
B0

2 · ∇ψ
)

B0
2+

Qb
B0

2B0 · (∇ψ×J0) (340)

Now we calculate the ∇ψ · µ0
−1(∇×B0)×B1 term appearing in Eq. (106), which can be written as

∇ψ · µ0
−1(∇×B0)×B1 = −J0 · ∇ψ×B1

= −J0 · ∇ψ×
(

Qs
|∇ψ |2(B0×∇ψ) + Qb

B0
2
B0

)

= −J0 ·
(

Qs
|∇ψ |2∇ψ× (B0×∇ψ) + Qb

B0
2∇ψ×B0

)

= −J0 ·
(

Qs
|∇ψ |2 |∇ψ |

2
B0+

Qb
B0

2∇ψ×B0

)

= −J0 ·B0Qs−J0 ·
(
Qb
B0

2
∇ψ×B0

)

. (341)

Gathering the terms involving Qb in Eqs. (340) and (341), we obtain

−µ0
−1

(

∇Qb
B0

2 · ∇ψ
)

B0
2+

Qb
B0

2B0 · (∇ψ×J0) +
Qb
B0

2B0 · (∇ψ×J0)

=−
[(

1

B2
∇Qb+Qb∇ 1

B2

)

· ∇ψ
]

µ0
−1B0

2+2
Qb
B2

B0 · [∇ψ×J0]

=−µ0
−1∇Qb · ∇ψ− µ0

−1QbB0
2∇ 1

B0
2 · ∇ψ+2

Qb
B0

2B0 · [∇ψ× µ0
−1(∇×B0)]

=µ0
−1

{

−∇Qb · ∇ψ−QbB0
2∇ 1

B0
2
· ∇ψ+2

Qb
B0

2
B0 · [−(B0 · ∇)∇ψ− (∇ψ · ∇)B0]

}

(342)

The second term of Eq. (342) is written

−QbB0
2(∇ψ · ∇)

1

B0
2 = −

(

0−Qb
1

B0
2(∇ψ · ∇)B0

2

)

= Qb
1

B0
2(∇ψ · ∇)B0

2 (343)

The last term of Eq. (342) is written

−2
Qb
B0

2
B0 · (∇ψ · ∇)B0 = −Qb

B0
2
(∇ψ · ∇)(B0 ·B0)

= −Qb
B0

2
(∇ψ · ∇)B0

2 (344)

The terms in Eqs. (343) and (344) exactly cancel each other. Thus the expression in (342) now reduces to

µ0
−1

{

−∇Qb · ∇ψ+2
Qb
B0

2B0 · [−(B0 · ∇)∇ψ]
}

(345)

Noting that

B0 · [−(B0 · ∇)∇ψ] = −(B0 · ∇)[B0 · ∇ψ] + [(B0 · ∇)B0] · ∇ψ
= [(B0 · ∇)B0] · ∇ψ, (346)

the expression (345) is further written as

µ0
−1

{

−∇Qb · ∇ψ+2
Qb
B2

[B0 · ∇B0] · ∇ψ
}

=µ0
−1

{

−∇Qb · ∇ψ+2Qb
1

B0

[
B0

B0
· ∇
(
B0

B0
B0

)]

· ∇ψ
}

=µ0
−1

{

−∇Qb · ∇ψ+2Qb
1

B0
[b · ∇(bB0)] · ∇ψ

}

=µ0
−1{−∇Qb · ∇ψ+2Qb[b · ∇(b)] · ∇ψ+0}

=µ0
−1{−∇Qb · ∇ψ+2Qbκ · ∇ψ},
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where b=B0/B is the unit vector along the direction of equilibrium magnetic field, and κ=b · ∇b is the magnetic
field curvature. Using these results, we obtain

∇ψ · µ0
−1(∇×B1)×B0+∇ψ · µ0

−1(∇×B0)×B1

=µ0
−1|∇ψ |2B0 · ∇

Qψ

|∇ψ |2 + µ0
−1Qs|∇ψ |2S −J0 ·B0Qs+ µ0

−1(−∇Qb · ∇ψ+2Qbκ · ∇ψ). (347)

Using the above results, the radial component equation

−ω2ρm0ξψ=−∇ψ · ∇p1+∇ψ · µ0
−1(∇×B1)×B0+∇ψ · µ0

−1(∇×B0)×B1, (348)

is written as

−ω2ρm0ξψ = −∇ψ · ∇p1 − J0 · B0Qs + µ0
−1|∇ψ |2B0 · ∇ Qψ

|∇ψ |2 + µ0
−1Qs|∇ψ |2S + µ0

−1(−∇Qb · ∇ψ + 2Qbκ ·

∇ψ) (349)

which can be arranged in the form

−ω2ρm0ξψ = −∇ψ · ∇(p1+ µ0
−1

B1 ·B0)+ µ0
−1|∇ψ |2B0 · ∇

(
Qψ

|∇ψ |2
)

+(µ0
−1|∇ψ |2S −B0 ·J0)Qs+2µ0

−1κ · ∇ψQb. (350)

Define P1= p1+ µ0
−1

B1 ·B0, the above equation is written as

−ω2ρm0ξψ = −∇ψ · ∇P1+ µ0
−1|∇ψ |2B0 · ∇

(
Qψ

|∇ψ |2
)

+(µ0
−1|∇ψ |2S −B0 ·J0)Qs+2µ0

−1κ · ∇ψQb, (351)

which is identical with Eq. (107).

10.6 proof

In this subsection, we prove that

Π≡ (B×∇ψ) ·
[

Qs

(

B · ∇ 1

|∇ψ |2
)

B×∇ψ+
Qs

|∇ψ |2 [−(B · ∇∇ψ)×B+(∇ψ · ∇B)×B]

]

,

is zero.

Π=Qs

(

B · ∇ 1

|∇ψ |2
)

B2|∇ψ |2+ Qs
|∇ψ |2 [−(B · ∇∇ψ)×B · (B×∇ψ)+ (∇ψ · ∇B)×B · (B×∇ψ)]

=Qs

(

B · ∇ 1

|∇ψ |2
)

B2|∇ψ |2+ Qs
|∇ψ |2 [(B×∇ψ)×B · (B · ∇∇ψ)− (B×∇ψ)×B · (∇ψ · ∇B)]

=Qs

(

B · ∇ 1

|∇ψ |2
)

B2|∇ψ |2+ Qs
|∇ψ |2 [(B

2∇ψ) · (B · ∇∇ψ)−B2∇ψ · (∇ψ · ∇B)] (352)

=Qs

(

B · ∇ 1

|∇ψ |2
)

B2|∇ψ |2+Qs
B2

|∇ψ |2 [(∇ψ) · (B · ∇∇ψ)− (∇ψ) · (∇ψ · ∇B)]

=Qs

(

B · ∇(|∇ψ |2)
(

− 1

|∇ψ |4
))

B2|∇ψ |2+Qs
B2

|∇ψ |2 [(∇ψ) · (B · ∇∇ψ)− (∇ψ) · (∇ψ · ∇B)]

=2Qs∇ψ ·B · ∇∇ψ
(

− B2

|∇ψ |2
)

+Qs
B2

|∇ψ |2 [(∇ψ) · (B · ∇∇ψ)− (∇ψ) · (∇ψ · ∇B)]

=−Qs B2

|∇ψ |2∇ψ ·B · ∇∇ψ−Qs B2

|∇ψ |2(∇ψ) · (∇ψ · ∇B)

]

=−Qs B2

|∇ψ |2∇ψ · [B · ∇∇ψ+(∇ψ · ∇B)]

=−Qs B2

|∇ψ |2∇ψ · [B · ∇∇ψ+(∇ψ · ∇B) +∇ψ×∇×B+B×∇×∇ψ]

=−Qs B2

|∇ψ |2∇ψ · ∇(B · ∇ψ)
=0

where the last second equality is due to the fact that

∇(A ·B) = B · ∇A+A · ∇B+A×∇×B+B×∇×A (353)

10.7 proof 2

We want to prove that

B0 · [(B0 · ∇)∇ψ− (∇ψ · ∇)B0]× ∇ψ
|∇ψ |2 = |∇ψ |2S, (354)
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where S=
(

B0× ∇ψ

|∇ψ |2

)

· ∇×
(

B0× ∇ψ

|∇ψ |2

)

. The right-hand side of Eq. (354) is written as

|∇ψ |2
(

B0× ∇ψ
|∇ψ |2

)

· ∇×
(

B0× ∇ψ
|∇ψ |2

)

= (B0×∇ψ) ·
[

−(B0 · ∇)
∇ψ

|∇ψ |2 +
(

∇ψ
|∇ψ |2 · ∇

)

B0

]

= −(B0×∇ψ) · (B0 · ∇)
∇ψ

|∇ψ |2 +
(

B0× ∇ψ
|∇ψ |2

)

· (∇ψ · ∇)B0

=

[

(B0 · ∇)
∇ψ

|∇ψ |2 ×∇ψ
]

·B0−
[

(∇ψ · ∇)B0× ∇ψ
|∇ψ |2

]

·B0 (355)

=

[
1

|∇ψ |2(B0 · ∇)∇ψ×∇ψ
]

·B0−
[

(∇ψ · ∇)B0× ∇ψ
|∇ψ |2

]

·B0

= B0 · [(B0 · ∇)∇ψ− (∇ψ · ∇)B0]× ∇ψ
|∇ψ |2 , (356)

which is exactly the left-hand side of Eq. (354). Thus Eq. (354) is proved.

10.8 proof

Try to prove that

∇ · (B0×∇ψ)
B0

2 = −2κ ·
(
B0×∇ψ

B0
2

)

. (357)

Proof:

∇ · (B0×∇ψ)
B0

2 =
1

B0
2∇ · (B0×∇ψ)+ (B0×∇ψ) · ∇ 1

B0
2

=
1

B0
2∇ψ · ∇×B0+(B0×∇ψ) · ∇ 1

B0
2

=
1

B0
2∇ψ · µ0J0+(B0×∇ψ) · ∇ 1

B0
2

= 0+(B0×∇ψ) · ∇ 1

B0
2 . (358)

Using

(B0×∇ψ) · ∇ 1

B0
2 =− 2

B0
2(B0×∇ψ) ·κ (359)

(proof of this is given in Sec. 10.9), Eq. (358) is written as

∇ · (B0×∇ψ)
B0

2 =− 2

B0
2(B0×∇ψ) ·κ (360)

10.9 proof of (B ×∇ψ) · ∇
(

1

B2

)
=−2κ · (B ×∇ψ)/B2

The left-hand side of the equation is written as

(B0×∇ψ) · ∇ 1

B0
2 = − 2

B0
3(B0×∇ψ) · ∇B0

= − 2

B0
3(B0×∇ψ) · ∇(B0 ·b) (361)

Using κ=b · ∇b=−b×∇×b, the above equation is reduced to

(B0×∇ψ) · ∇ 1

B0
2 = − 2

B0
3(B0×∇ψ) · [B0×∇×b+b×∇×B0+b · ∇B0+B0 · ∇b]

= − 2

B0
3
(B0×∇ψ) · [b×∇×B0+b · ∇B0]

= − 2

B0
3(B0×∇ψ) · [b× µ0J0+b · ∇B0]

= − 2

B0
3
(B0×∇ψ) · [b · ∇B0]

= − 2

B0
3(B0×∇ψ) · [b · ∇B0b]

= − 2

B0
3
(B0×∇ψ) · [(b · ∇B0)b+B0b · ∇b]

= − 2

B0
3(B0×∇ψ) · [B0b · ∇b]

= − 2

B0
2(B0×∇ψ) ·κ
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Another way to prove that (B×∇ψ) ·B2∇ 1

B2
is equal to −2κ · (B×∇ψ): The difference of these two terms is

−(B×∇ψ) ·B2∇ 1

B2
− 2K · (B×∇ψ)

=−(B×∇ψ) ·
(

B2∇ 1

B2
+2K

)

=−(B×∇ψ) ·
(

B2∇ 1

B2
+2

B

B
· ∇B

B

)

=−(B×∇ψ) ·
(

B2∇ 1

B2
+

(

2
B

B
· ∇
)
1

B
B+

(

2
B

B
· ∇
)

B
1

B

)

=−(B×∇ψ) ·
(

B2∇ 1

B2
+

(

2
B

B
· ∇
)

B
1

B

)

=−(B×∇ψ) ·
(

B2∇B2

(

− 1

B4

)

+

(

2
B

B
· ∇
)

B
1

B

)

=−(B×∇ψ) ·
(

− 1

B2
∇B2+

(

2
B

B
· ∇
)

B
1

B

)

=−(B×∇ψ) ·
(

− 1

B2
∇B ·B+

(

2
B

B
· ∇
)

B
1

B

)

=−(B×∇ψ) ·
[

− 1

B2
(2B×∇×B+2B · ∇B) +

(

2
B

B2
· ∇
)

B

]

=−(B×∇ψ) ·
[

− 1

B2
2B×∇×B

]

=−(B×∇ψ) ·
[

− 1

B2
2B×J

]

=−(B×∇ψ) ·
[

− 1

B2
2∇P

]

=(B×∇ψ) ·
[

− 1

B2
2P ′∇ψ

]

=0

Thus we prove that

−Qb(B×∇ψ) ·B2∇ 1

B2
=2κ · (B×∇ψ)Qb (362)

10.10 proof
Try to prove that

B0 ·
(

B0 · ∇ ∇Ψ

|∇Ψ|2 −
∇Ψ

|∇Ψ|2 · ∇B0

)

=−2κ · ∇Ψ
B2

|∇Ψ|2 + µ0
dp0
dΨ

. (363)

Proof: We have

∇p0= dp0
dΨ

∇Ψ (364)

Thus

µ0
dp0
dΨ

= µ0
∇Ψ · ∇p0
|∇Ψ|2

= µ0
∇Ψ · (J0×B0)

|∇Ψ|2

=
∇Ψ · ((∇×B0)×B0))

|∇Ψ|2

= −(∇×B0) ·
(

∇Ψ

|∇Ψ|2 ×B0

)

= ∇ ·
[(

∇Ψ

|∇Ψ|2 ×B0

)

×B0

]

−B0 · ∇×
(

∇Ψ

|∇Ψ|2 ×B0

)

= −∇ ·
(

B0
2 ∇Ψ

|∇Ψ|2
)

−B0 · ∇×
(

∇Ψ

|∇Ψ|2 ×B0

)

= −∇ ·
(

B0
2 ∇Ψ

|∇Ψ|2
)

−B0 ·
(

−B0∇ · ∇Ψ

|∇Ψ|2 +B0 · ∇ ∇Ψ

|∇Ψ|2 −
∇Ψ

|∇Ψ|2 · ∇B0

)

= −∇ ·
(

B0
2 ∇Ψ

|∇Ψ|2
)

+B0
2∇ · ∇Ψ

|∇Ψ|2 −B0 ·
(

B0 · ∇ ∇Ψ

|∇Ψ|2 −
∇Ψ

|∇Ψ|2 · ∇B0

)

= − ∇Ψ

|∇Ψ|2 · ∇B0
2−B0 ·

(

B0 · ∇ ∇Ψ

|∇Ψ|2 −
∇Ψ

|∇Ψ|2 · ∇B0

)

= − ∇Ψ

|∇Ψ|2 · ∇B0 ·B0−B0 ·
(

B0 · ∇ ∇Ψ

|∇Ψ|2 −
∇Ψ

|∇Ψ|2 · ∇B0

)

= − ∇Ψ

|∇Ψ|2 · (2B0×∇×B0+2B0 · ∇B0)−B0 ·
(

B0 · ∇ ∇Ψ

|∇Ψ|2 −
∇Ψ

|∇Ψ|2 · ∇B0

)

= − ∇Ψ

|∇Ψ|2 · (2B0×∇×B0)−B0 ·
(

B0 · ∇ ∇Ψ

|∇Ψ|2 −
∇Ψ

|∇Ψ|2 · ∇B0

)

− 2∇Ψ

|∇Ψ|2 · (B0 · ∇B0b) (365)
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The last term on the right-hand side of Eq. (365) is written as

− 2∇Ψ

|∇Ψ|2 · (B0 · ∇B0b) = − 2∇Ψ

|∇Ψ|2 · (B0B0 · ∇b+(B0 · ∇B)b)

= − 2∇Ψ

|∇Ψ|2 · (B0B0 · ∇b)

= −2B2∇Ψ

|∇Ψ|2 ·κ.

Using this, Eq. (365) is written as

µ0
dp0
dΨ

=
2∇Ψ

|∇Ψ|2 · ((∇×B0)×B0)−B0 ·
(

B0 · ∇ ∇Ψ

|∇Ψ|2 −
∇Ψ

|∇Ψ|2 · ∇B0

)

− 2B2∇Ψ

|∇Ψ|2 ·κ

= 2µ0
dp0
dΨ

−B0 ·
(

B0 · ∇ ∇Ψ

|∇Ψ|2 −
∇Ψ

|∇Ψ|2 · ∇B0

)

− 2B2∇Ψ

|∇Ψ|2 ·κ, (366)

i.e.,

B0 ·
(

B0 · ∇ ∇Ψ

|∇Ψ|2 −
∇Ψ

|∇Ψ|2 · ∇B0

)

= µ0
dp0
dΨ

− 2B2∇Ψ

|∇Ψ|2 ·κ, (367)

thus Eq. (363) is proved.

10.11 Incompressible condition

The continuity equation can be written
∂ρ

∂t
+ ρ∇ ·u+u · ∇ρ=0, (368)

which can be further written

⇒dρ

dt
=−ρ∇ ·u. (369)

Then the incompressible condition dρ/dt=0 reduces to that

∇ ·u=0 (370)

On the other hand, equation (15) indicates that

dρ

dt
=

1

γ

ρ

p

dp

dt
, (371)

which indicates that for incompressible plasma dp/dt=0.

Bibliography

[1] T. J. M. Boyd and J. J. Sanderson. The Physics of Plasmas. Cambridge University Press, Cambridge, UK, 2003.
[2] D. A. Gurnett and A. Bhattacharjee. Introduction to plasma physics : with space and laboratory applications. Cambridge Univer-

sity Press, Cambridge, UK, 2004.
[3] C.Z Cheng and M.S Chance. Nova: A nonvariational code for solving the mhd stability of axisymmetric toroidal plasmas. J. of

Comput. Phys., 71(1):124 – 146, 1987.
[4] C. Z. Cheng. Kinetic extensions of magnetohydrodynamics for axisymmetric toroidal plasmas. Physics Reports, 211(1):1 – 51,

1992.
[5] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in Fortran 77. Cambridge University

Press, Cambridge, UK, 1992.
[6] W. Deng, Z. Lin, I. Holod, Z. Wang, Y. Xiao, and H. Zhang. Linear properties of reversed shear alfven eigenmodes in the diii-d

tokamak. Nucl. Fusion, 52(4):043006, 2012.
[7] M. S. Chu, J. M. Greene, L. L. Lao, A. D. Turnbull, and M. S. Chance. A numerical study of the high-n shear alfv[e-acute]n

spectrum gap and the high-n gap mode. Phys. Fluids B, 4(11):3713–3721, 1992.
[8] Youjun Hu, Guoqiang Li, N. N. Gorelenkov, Huishan Cai, Wenjun Yang, Deng Zhou, and Qilong Ren. Numerical study of alfvén

eigenmodes in the experimental advanced superconducting tokamak. Physics of Plasmas (1994-present), 21(5):052510, 2014.
[9] G Q Li, Q L Ren, J P Qian, L L Lao, S Y Ding, Y J Chen, Z X Liu, B Lu, and Q Zang. Kinetic equilibrium reconstruction on

east tokamak. Plasma Phys. Controlled Fusion, 55(12):125008, 2013.
[10] G. Y. Fu, C. Z. Cheng, R. Budny, Z. Chang, D. S. Darrow, E. Fredrickson, E. Mazzucato, R. Nazikian, K. L. Wong, and

S. Zweben. Analysis of alpha particle driven toroidal alfv |̈n eigenmodes in tokamak fusion test reactor deuterium tritium experi-
ments. Phys. Plasmas, 3(11):4036, 1996.

[11] B. J. Tobias, I. G. J. Classen, C. W. Domier, W. W. Heidbrink, N. C. Luhmann, R. Nazikian, H. K. Park, D. A. Spong, and
M. A. Van Zeeland. Fast ion induced shearing of 2d alfvén eigenmodes measured by electron cyclotron emission imaging. Phys.
Rev. Lett., 106:075003, Feb 2011.

46 Section


	1 MHD equations
	1.1 Self-consistency check
	1.2 Generalized Ohm's law
	1.3 Eliminating mass density ÏĄ from equation of state

	2 Summary of resistive MHD equations
	3 Linearized ideal MHD equation
	3.1 Plasma displacement vector Î¿
	3.2 Fourier transformation in time
	3.3 Discrete frequency perturbation
	3.4 Eigenmodes
	3.5 Linear force operator

	4 Components of MHD equations in toroidal geometry
	4.1 âĹĞÎĺ component of induction equation
	4.2 B_0ÃŮâĹĞÎĺ component of induction equation
	4.3 B_0 component of induction equation
	4.4 Component of the momentum equation parallel to B_0
	4.5 âĹĞÎĺ component of momentum equation
	4.6 B_0ÃŮâĹĞÎĺ component of momentum equation
	4.7 Summary of component equations
	4.8 Eigenmode equations using (P_1,Î¿_ÏĹ,Î¿_s,âĹĞâŃĚÎ¿) as variables
	4.9 Normalized form of eigenmodes equations

	5 Flux coordinate system
	5.1 Magnetic field expression in flux coordinate system
	5.2 Radial differential operator
	5.3 Surface differential operators
	5.4 Fourier expansion over Îÿ and Îű
	5.5 Surface operator acting on perturbation

	6 Discrete form of elements of matrix C, D, E, and F
	6.1 Weight functions used in Fourier integration
	6.2 Numerical methods for finding continua
	6.3 Analytical approximations to continuous spectrum
	6.3.1 Slow sound approximation
	6.3.2 Zero beta limit
	6.3.3 Cylindrical geometry limit
	6.3.4 Approximate central frequency and radial location of continua gap


	7 Shooting method for finding global eigenmodes
	8 Benchmark of GTAW code
	9 Numerical results for EAST tokamak
	9.1 EAST Tokamak equilibrium
	9.2 Numerical results of MHD continua
	9.3 Numerical results of global modes
	9.4 Magnetic curvature
	9.4.1 Expression of normal curvature Îž_ÏĹ
	9.4.2 Expression of geodesic curvature Îž_s

	9.5 Local magnetic shear
	9.6 Formula for matrix elements C_22

	10 misc contents
	10.1 Relation of plasma displacement with experimental measurements
	10.2 Expression of k_âĹě and k_Îÿ
	10.3 Two-dimensional mode structures on poloidal plane
	10.4 Magnetic islands
	10.5 proof: The derivation of Eq. ()
	10.6 proof
	10.7 proof 2
	10.8 proof
	10.9 proof of (BÃŮâĹĞÏĹ)âŃĚâĹĞ(1/(B^2))=-2ÎžâŃĚ(BÃŮâĹĞÏĹ)/B^2
	10.10 proof
	10.11 Incompressible condition

	Bibliography

