Magnetic field expression in flux coordinate system

Any axisymetrical magnetic field consistent with the equilibrium equation $ \nabla p_0 =\mathbf{J}_0 \times \mathbf{B}_0$ can be written in the form

$\displaystyle \mathbf{B}_0 = \triangledown \Psi \times \triangledown \phi + g (\Psi)
\triangledown \phi, $

where $ \Psi \equiv A_{\phi} R$. In the straight-line magnetic surface coordinates system $ (\psi, \theta, \zeta)$, the contra-variant form of the equilibrium magnetic field is expressed as

$\displaystyle \mathbf{B}_0 = - \Psi' [\nabla \zeta \times \nabla \psi + q (\psi) \nabla \psi \times \nabla \theta],$ (165)

where $ \Psi' = d \Psi / d \psi$. The covariant form of the equilibrium magnetic field is given by

$\displaystyle \mathbf{B}_0 = \left( \Psi' \frac{\mathcal{J}}{R^2} \nabla \psi \...
...- \frac{B_0^2}{\Psi'} \mathcal{J}- g q \right) \nabla \theta + g \nabla \zeta .$ (166)

where $ \mathcal {J}$ is the Jacobian of $ (\psi, \theta, \zeta)$ coordinate system.



yj 2015-09-04