Formula for matrix elements $ C_{22}$

Next, consider the calculation of matrix elements $ C_{22}$. In cylindrical coordinates, we have

$\displaystyle \nabla \cdot \left( \frac{\nabla \Psi}{\vert \nabla \Psi \vert^2} \right)$ $\displaystyle =$ $\displaystyle \nabla \cdot \left( \frac{\Psi_R}{\vert \nabla \Psi \vert^2} \mathbf{e}_R +
\frac{\Psi_Z}{\vert \nabla \Psi \vert^2} \mathbf{e}_Z \right)$  
  $\displaystyle =$ $\displaystyle \frac{1}{R} \frac{\partial}{\partial R} \left( R \frac{\Psi_R}{\v...
...c{\partial}{\partial Z} \left(
\frac{\Psi_Z}{\vert \nabla \Psi \vert^2} \right)$  
  $\displaystyle =$ $\displaystyle \frac{\Psi_R}{R \vert \nabla \Psi \vert^2} + \frac{\partial}{\par...
...{\vert \nabla \Psi \vert^4} (2 \Psi_R
\Psi_{R Z} + 2 \Psi_Z \Psi_{Z Z}) \right]$  
  $\displaystyle =$ $\displaystyle \frac{\Psi_R}{R \vert \nabla \Psi \vert^2} + \Psi_{R R} \left( \f...
...{\vert \nabla \Psi \vert^4} (2 \Psi_R
\Psi_{R Z} + 2 \Psi_Z \Psi_{Z Z}) \right]$  
  $\displaystyle =$ $\displaystyle \frac{\Psi_R}{R \vert \nabla \Psi \vert^2} + \frac{\Psi_{R R} + \...
..._R \Psi_R \Psi_{R R} +
4 \Psi_R \Psi_Z \Psi_{Z R} + 2 \Psi_Z \Psi_Z \Psi_{Z Z})$ (300)

Using this, $ C_{22}$ is written
$\displaystyle C_{22}$ $\displaystyle =$ $\displaystyle - \vert \nabla \Psi \vert^2 \nabla \cdot \left( \frac{\nabla \Psi}{\vert
\nabla \Psi \vert^2} \right)$  
  $\displaystyle =$ $\displaystyle - \frac{\Psi_R}{R} - (\Psi_{R R} + \Psi_{Z Z}) + \frac{1}{\vert \...
... \Psi_R \Psi_{R R} + 4 \Psi_R \Psi_Z \Psi_{Z R} + 2
\Psi_Z \Psi_Z \Psi_{Z Z}) .$ (301)

Equation (301) is used in GTAW to calculate $ C_{22}$.

$ C_{22}$ can also be calculated in the magnetic surface coordinates.

$\displaystyle \frac{C_{22}}{\Psi' \vert \nabla \psi \vert^2} = - \Psi' \nabla \cdot \left( \frac{\nabla \Psi}{\vert \nabla \Psi \vert^2} \right),$ (302)

the term on the r.h.s of the above equation is written as
$\displaystyle \nabla \cdot \left( \frac{\nabla \Psi}{\vert \nabla \Psi \vert^2} \right)$ $\displaystyle =$ $\displaystyle \nabla \cdot \left( \frac{\nabla \Psi}{R^2} \frac{R^2}{\vert \nabla \Psi \vert^2}
\right)$  
  $\displaystyle =$ $\displaystyle \frac{R^2}{\vert \nabla \Psi \vert^2} \nabla \cdot \left( \frac{\...
... \Psi}{R^2} \cdot \nabla \left(
\frac{R^2}{\vert \nabla \Psi \vert^2} \right) .$ (303)

The first term on the r.h.s of Eq. (303) is written as
$\displaystyle \frac{R^2}{\vert \nabla \Psi \vert^2} \nabla \cdot \left( \frac{\nabla \Psi}{R^2}
\right)$ $\displaystyle =$ $\displaystyle \frac{1}{\vert \nabla \Psi \vert^2} \triangle^{\ast} \Psi$  
  $\displaystyle =$ $\displaystyle \frac{1}{\vert \nabla \Psi \vert^2} \left[ -{\textmu}_0 R^2 \frac{d p_0}{d
\Psi} - \frac{d g}{d \Psi} g (\Psi) \right] .$ (304)

The second term on the r.h.s of Eq. (303) is written as
$\displaystyle \frac{\nabla \Psi}{R^2} \cdot \nabla \left( \frac{R^2}{\vert \nabla \Psi \vert^2}
\right)$ $\displaystyle =$ $\displaystyle \frac{\Psi'}{R^2} \left[ \vert \nabla \psi \vert^2
\frac{\partial...
...}{\partial \theta} \left(
\frac{R^2}{\vert \nabla \Psi \vert^2} \right) \right]$ (305)

Using these, Eq. (302) is finally written as
$\displaystyle \frac{C_{22}}{\Psi' \vert \nabla \psi \vert^2}$ $\displaystyle =$ $\displaystyle \Psi' \left[ {\textmu}_0
\frac{d p_0}{d \Psi} \frac{R^2}{\vert \n...
...}{\partial \theta} \left( \frac{R^2}{\vert \nabla \Psi \vert^2}
\right) \right]$ (306)

yj 2015-09-04