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Abstract

A numerical code modeling the deposition and collisional transport of neutral beam particles
in Tokamaks is being developed. These notes discusses the physical models used in the code.

1 Neutral particle source

A Neutral Beam Injector (NBI) consists of (1) an ion source, which produces high-energy ions,
(2) a neutralizing chamber, which neutralizes the high-energy ions, and (3) a bending magnetic
system to remove remained charged particles from the beam. The ion source itself consists of
an arc chamber, which produces low-energy ions, and a set of accelerating electrodes, which is
attached to the window of the arc chamber, to accelerate the ions to high energy. An example of
the con�guration of accelerating electrodes is shown in Fig. 1.
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Figure 1. Four groups of accelerating electrode grids of the ion source of EAST neutral beam injector,
which are called plasma grid, gradient grid, suppression grid, and exit grid, respectively. Every electrode
grid have four sub-electrode, indicated by A, B, C, and D on the �gure. Sub-electrodes A and D are rotated
to the right with respect to the centeral sub-electordes B and C by a small angle � =
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degree. This

angle is exaggerated on the �gure.
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1.1 Focal length of beam

The central beam from each of the four sub-electrodes is perpendicular to the corresponding grid
plane. As is shown in Fig. 1, two of the sub-electrodes A and D are rotated to the right with
respect to the centeral sub-electordes by a small angle �. This focuses the central beams from A
and D with a focal length given by

fb�
2y0

tan(2�/3)
; (1)

where y0 is the vertical half-width of the sub-electrode, as shown in Fig. 2. [Proof of Eq. (1):
Using the geometry given in Fig. 2, we have �1+�2= � and sin�1=2sin�2. Since � is small, both
�1 and �2 are small. Thus we have the approximation sin�1 � �1 and sin�2 = �2. Using these,
we obtain �1=2�/3. The focal length is then written as fb=2y0/tan(�1) = 2y0/tan(2�/3).] For
�=

¡
1
1

12

�
degree, Eq. (1) gives fb= 9.5194m.
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Figure 2. Geometry of exit electrode of the ion source of EAST neutral beam injector. The electrode has
four sub-electrodes, indicated by A, B, C, and D on the �gure. The width of each sub-electrode is 2y0 with
y0=0.06m. Sub-electrodes A and D are rotated to the right with respect to the centeral sub-electordes B and
C by a small angle �=

�
1
1

12

�
degree. The central axis of the two sub-beams (beams from electrode A and D)

intersect at F. The vertical focal length fb is de�ned as the distance from point F to the electrode BC plane.
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The above focal length is for the focus in the vertical direction. The horizontal focal length is
in�nity for EAST NBI because all the sub-electrodes are �at along the horizontal direction.

2 Beam attenuation in plasma

When a neutral beam goes through a tokamak plasma, along the trajectory of the beam, the beam
intensity is attenuated due to the ionization of neutral particles by the background plasma. The
attenuation of beam intensity can be modeled by the following di�erential equation:

dI

dl
=¡�(l)I ; (2)

where I(l) = nb(l)vb is the beam intensity, nb is the number of beam particles per unit length
along the beam trajectory (straight line) and vb their velocity (assumed to be constant along the
trajectory), and �(l) is given by

�(l)=ni�ch+ni�i+ne
h�evei
vb

(3)

where �ch is the cross-section for charge exchange with plasma ions, �i are the cross-section for
ionization by plasma ions, h�evei is the electron impact ionization rate coe�cient averaged over
the Maxwellian distribution (h�evei/vb is the e�ective cross-section of electron impact ionization).
The dependence of these cross-sections on the energy of beam particles was given in Fig. 5.3.1 of
Wesson's book �Tokamaks� (for reference ease, this �gure is included in Appendix A of this report
(Fig. 27 )). Next section presents the data for the cross-sections I obtain by reading relevant
references.

2.1 Ionization cross-sections

It took me some time to try to �nd up-to-date data for the various ionization cross-sections. I have
browsed the data in the ADAS data base, which is said to include the most comprehensive and
accurate data for the various atom processes in fusion plasmas. However, it seems to me that some
basic information is still lacking in ADAS and some information may be inaccurate or confusing
(at lest to me). One example is shown in Fig. 3, where I found the charge-exchange cross-section
given in ADAS is too big to be reasonable.
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Figure 3. Cross section of charge exchange between Hydrogen-Hydrogen (including the isotopes 1H, 2H,
and 3H) as a function of the kinetic energy per amu (atom mass unit). The data indicated by the blue line
and red line are from the ADAS data �les �qcx#h0_e2p#h1.dat� and �qcx#h0_e2s#h1.dat�, respectively.
The results labeled by �PMI� is from the data on Page 78 of Ref. [2]. The analytic �tting results (black
line) are from Eq. (28) of Ref. [1], which is given by �ex(m2)= 10¡18(1¡ 0.5(2E)0.06+4�10¡7E), where
E is the collision energy per amu in eV/amu. The values of the �tting cross section agrees with those given
in Fig. 5.3.1 of Wesson's book (Fig. 27 of this report) and these results are almost one order smaller than
the results given by ADAS (Presently I do not know the reason. Numerical teasing indicates neutral beams
will deposit at the pedestal of EAST if the ADAS cross section is used, which indicates that ADAS cross
section is too big to be reasonable).

I can not �nd the data of the ion impaction ionization cross section from the ADAS database.
It seems that there are very few papers discussing the ion impaction ionization cross section. One
of the papers I found useful is Kaganovich's paper[3], which gives the following �tting formula for
the impaction ionization cross section by a fully stripped ion, �i:

�i(v; Inl; Zp) =�a0
2 NnlZp

2

(Zp+1)

E0
2

Inl
2
Gnew

 
v

vnl Zp+1
p !

; (4)

where v is the relative velocity between the atom and the ion, Zp is the atomic number of the fully
stripped ion, Inl is the ionization potential of the atom, vnl= v0 2Inl/E0

p
with v0= 2.2� 106m/s

and E0=27.2eV, Nnl is the number of electrons in the nl orbital of the atom (Nnl=1 for hydrogen),
a0= 0.529� 10¡10m is the Bohr radius, and

Gnew=
1
x2

exp
�
¡ 1
x2

�
[1.26+ 0.283ln(2x2+ 25)]: (5)
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Figure 4. Left: Cross section of ion impact ionization of deuteriumas a function of the kinetic energy of deuteriumatom
(red line is calculated by using Eq.(4), data of blue line are from the data on Page 68 of Ref. [2]). Right: Normalized
cross section �i / �max as a function of the normalized velocity v / vmax, where �max = �a0

2Zp
2 / (Zp + 1)E0

2 / Inl
2 ,

vmax= vnl Zp+1
p

. These results agree with Fig. 3 of Kaganovich's paper[3].
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For neutral beam injection relevant to present tokamaks, the thermal velocity of plasma ions
are much smaller than the velocity of beam atoms, i.e., vti�vb, so that vti�0 can be assumed. As
a result, �ch and �i discussed above are independent of the temperature of the background plasma
ions. However, the electron impact ionization rate coe�cient h�evei usually depends on the tem-
perature of background electrons because the thermal velocity of electrons is usually comparable
to the beam velocity and an averaging over the electron Maxwellian distribution is needed. The
dependence of the electron ionization rate coe�cient h�evei on the electron temperature is plotted
in Fig. 5.
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Figure 5. The dependence of the electron impact ionization rate coe�cient h�evei on the electron tem-
perature Te. These data are obtained by using the open-ADAS reading program �xxdata_07� to acces the
ADAS data �le �szd93#h_h0.dat�, which stores the electron ionization rate coe�cient for hydrogen atom.

1e-21

1e-20

1e-19

10 100 1000

〈σ
e
v e
〉/
v b
(m

2
)

Energy of Deuterium (keV )

Te = 2keV
Te = 5keV

Te = 10keV

Figure 6. The dependence of the electron impact ionization cross section h�evei/vb on the kinetic energy
of the Deuterium atom for the three cases with Te=2keV, 5keV, and 10keV.

Presently, multi-step ionization processes are not incorporated in my code. Ionization cross
section due to the contribution of impurity ions are also not included.
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2.2 Monte-Carlo implementation of beam attenuation (fast ions genera-
tion)

The solution to Eq. (2) can be analytically obtained, which is given by

I = I0e
¡
R
0

l
�(l0)dl0; (6)

where I0 is the beam density at the starting point of the beam trajectory. The solution (6) indicates
an exponential attenuation of the beam intensity along the beam trajectory.

The Mote-Carlo method of implementing the beam attenuation due to ionization process is
as follows. First load assemble of neutral particles with each particle associated with a uniform
random number � in the range of [0;1]. Along the trajectory of each neutral particle (straight line),
the integration s=

R
0

l
�(l 0)dl 0 is calculated to examine whether s> ln(1/�) or not. If s> ln(1/�),

then the neutral particle is considered to be ionized. A simple numerical experiment can verify
that this implementation generate results in agreement with the analytic solution given by Eq. (6).

Those neutral particles that are not yet ionized when they reach the inner wall of the device are
usually lost to the wall and this loss of neutral particles are called shine-through loss. The shine-
through loss is usually very small on large machine like ITER but for a medium-size tokamak like
EAST, shine-through loss can be large, especially for the more perpendicular beam and lower-
density plasmas.

To represent the neutral particles source from the injector, an assemble of neutral particles are
loaded with desired distribution over energy and direction of velocity. In my present implementa-
tion of the source in the code, all the particles from the source has the same direction of velocity
(i.e., beam divergence is neglected) but with di�erent tangency radius. Due to the presence of
dual-atom and tri-atom molecules in the accelerator, single-atom neutral particles injected into
tokamaks have three possible energies E, E / 2 and E / 3. Energy distribution over these three
energies is implemented. The spatial distribution of neutral particles on the injector surface are also
implemented by assuming a bi-gaussian distribution along the vertical and horizontal directions
(check, density vs. intensity).
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Figure 7. Top view (left) and poloidal view (right) of neutral beam lines on EAST.
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The injector port on EAST is rectangular with heigh of 0.12m and width of 0.48m. The number
ratio between particles with full-energy, half-energy and third energy is nf /nf/2/nf/3= 80: 14: 6.

3 Numerical results

3.1 Equilibrium pro�les
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Figure 8. Pro�les of number density of electrons (left) and temperature of electrons and ions (right) of EAST
discharge #62585@2.8s.
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Figure 9. Pro�les of number density of electrons (left) and temperature of electrons and ions (right) of EAST
discharge #59954@3.2s
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3.2 Spatial distribution of fast ions generated by neutral beam injection

The shine-through time of a neutral particle (4 � 10¡7s for 50keV neutral beam on EAST) is
much shorter than the typical poloidal orbit period (�4�10¡5s). Therefore the time di�erence
between the birth of various fast ions is tiny and thus can be neglected, i.e., all the fast ions can
be considered to be born at the same time.

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8
1

1.5 2

Z
(m

)

R(m)

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8
1

1.5 2

Z
(m

)
R(m)

Figure 10. Poloidal view of the locations of fast ions at birth (left) and 0.078ms later (right) due to neutral
beam particles of 50keV injected to EAST tokamak from a rectangular source with heigh of 0.12m and width of
0.48m. The tangency radius of the central beam of the source is 0.73m. The central beam is on the midplane
and the divergence of the beams is neglected. Magnetic con�guration is from EAST discharge #62585@2.8s
(g�le provided by ZhengZheng). The electron density pro�le is plotted in Fig. 8.
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Figure 11. Top view of the locations of fast ions at birth (left) and 0.078ms later (right) due to neutral beam
particles of 50keV injected to EAST tokamak from a rectangular source with heigh of 0.12m and width of
0.48m. The tangency radius of the central beam of the source is 0.73m. The central beam is on the midplane
and the divergence of the beams is neglected. Magnetic con�guration is from EAST discharge #62585@2.8s
(g�le provided by ZhengZheng).

8 Section 3



0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 0.2 0.4 0.6 0.8 1
√

Ψp

nf/nf(0)

Figure 12. Density pro�les of initially deposited NBI fast ions.

3.3 Loss of fast ions to the wall
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Figure 13. Comparison of fast ions loss fraction due to counter-current NBI and co-current NBI in EAST discharge
#62585@2.8s. Maximal energy is 50keV. The central beam is on the midplane with the tangency radius being 0.73m (left
�gure) and 1.26m (right �gure).
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Figure 14. The same as Fig. 13 but with FLR e�ect included.in EAST discharge #62585@2.8s.
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Figure 16. Comparison of fast ions prompt loss fraction in EAST discharge #62585@2.8s. Maximal energy
is 50keV. The central beam is on the midplane with the tangency radius being 0.73m. LCFS is used as the
loss boundary
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Figure 17. Distribution of the lost fast ions on the �rst wall for the case B� < 0 (left) and B� > 0

(right). Neutral beam is injected in +�̂ direction, which is in the counter-current injection. The magnetic
con�guration is from EAST discharge #62585@2.8s (g�le provided by ZhengZheng).
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Figure 18. Rtan=1.26m
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4 E�ects of RMP on con�nement of NBI fast ions
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Figure 21. Location of the RMP coils on EAST tokamak in 3D view (left) and poloidal view (right).

12 Section 4



−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.5 2

Z
(m

)

R(m)

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.5 2

Z
(m

)

R(m)

−10000
−8000
−6000
−4000
−2000

0
2000
4000
6000
8000

10000

1 2 3 4 5 6 7 8

C
u
rr
en
t
(A

)

Coil No.

Figure 22. Poincare section of magnetic �eld lines of axisymmetricmagnetic �eld (left) and the superpostion of
the axisymmetric magnetic �eld and a magnetic perturbation generated by RMP coils (middle). Right: current
in each RMP coil. The axisymmetric magnetic �eld is from EAST discharge #59954@3.1s. These Poincare
sections are obtained by tracing 20 �eld lines starting from 20 points on the the low-�eld-side midplane, and
then then recording the intersecting points of these �eld lines with the � = 0 plane. The maximum number
of intersecting points for each �eld line is set to 700. In (a), i.e. axisymetrica �eld, the Poincare points form
nested surface, which inidcates the accuracy of the �eld line tracing is good. In (b), some �eld lines touch the
�rst wall of the machine before they �nish 700 toroidal turns.
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Figure 23. Left: Poincare section of magnetic �eld lines. Right: current in each upper-RMP coils (the
current in lower-RMP coils are identical with that of the corresponding upper coil).
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Figure 24. (1)Rtan=1.264m, (2) Rtan=0.731, co-Ip, in EAST discharge #59954@3.2s
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Figure 25. (1)Rtan=1.414m (2) Rtan=0.606, cntr-Ip, in EAST discharge #59954@3.2s
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Figure 26. Rtan=0.606, cntr-Ip , in EAST discharge #59954@3.2s
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4.1 Torque generated by beam

4.2 Current driven by beam

4.3 Collisions with Maxwellian background ions and electrons

4.3.1 Monte-Carlo implementation given in Z. Lin's paper[5]

Z. Lin's paper[5] provided a Monte-Carlo method of implementing the collision of a test particle
with a Maxwellian background species, which is given by (how to derive these formula from a
known collision operator?)

vk= vk0¡ �sk�t+ 12
p

(R1¡ 0.5) �k�t
p

; (7)

and

v?
2 = v?0

2 ¡ �s?�t+ 12
p

(R2¡ 0.5)

 
�?¡

�k?
2

�k

!
�t

vuut + 12
p

(R1¡ 0.5)
�k?
�k

�k�t
p

(8)

where R1 and R2 are two independent random numbers chosen from a uniform distribution from
0 to 1, �t is the time step, �sk, �s?, �k, �?, and �k? are given by

�sk= vk

�
1+

m�

m�

�
F�0; (9)

�s?=

�
2v?

2

�
1+

m�

m�

�
F ¡ v?2H ¡ (2vk2+ v?

2 )G

�
�0; (10)

�k= [vk
2H + v?

2G]�0; (11)

�?= [4v?
2 (v?

2H + vk
2G)]�0 (12)

�k?= [2v?
2 vk(H ¡G)]�0; (13)

with F , G, and H de�ned by

F = �(x); (14)

G=

�
1¡ 1

2x

�
�(x) +

d�(x)
dx

; (15)

H =
1
x
�(x); (16)

where x= v2/vth�
2 and �(x) is the Maxwellian integral de�ned by

�(x)=
2

�
p

Z
0

x

e¡t t
p

dt;

which can be written in terms of the error function as (using software maxima)

�(x) =
e¡x

�
p [ �

p
erf( x
p

)ex¡ 2 x
p

]: (17)
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The basic collision frequency �0 is de�ned by

�0=
¡�/�

v3
=
n�q�

2q�
2 ln��/�

4�"0
2m�

2v3
; (18)

which is di�erent from the formula given in Lin's paper[5] (it seems that Lin misused a formula of
Gauss-unit in the paper that uses S.I units elsewhere).

The above formula can be applied to model collisions of fast particles with both ions and
electrons.

4.3.2 Collision implemented in MEGA code [7]

A Monte-Carlo implementation of collision of fast ions with background electrons and ions are
given in Todo's paper [7], where the pitch-angle variable �= vk/v and velocity v are altered at the
end of each time step according to the following rules:

�new=�old(1¡ 2�d�t)� (1¡�old2 )2�d�t
p

; (19)

and

vnew= vold¡ �s�t
�
v+

vc
3

v2

�
+

�s�t
mfvold

�
Te¡

1
2
Ti

�
vc
vold

�
3
�
� �s�t

mf

�
Te+Ti

�
vc
vold

�
3
�s
; (20)

where � denotes a randomly chosen sign with equal probability for plus and minus, �t is the time
step, �s is the slowing down rate given by �s = 1/ ts with the slowing down time ts given by Eq.
(36), �d is the pitch-angle scattering rate, which is given by

�d=(1+Ze�)�0=(1+Ze�)
¡�/e

v3
=

�
1+Ze�

v3

�
neZ�

2e4ln��/e

4�"0
2mf

2 ; (21)

where Ze� is the e�ective charge number of background ions, Z� is the charge number of fast ions.

4.4 Derivation of the critical velocity of fast ions

The velocity of the fast ions from NBI is much larger than the thermal velocity of ions but still
much smaller than the electron thermal velocity, i.e,

vti� vf� vte: (22)

[For the 3.5MeV � particles created by D-T reaction in ITER plasmas, the relation in Eq. (22)
also applies. The ratio of � particle's velocity to vte is given by

v�
vte

=
T�
Te

me

m�

r
: (23)

For an electron temperature Te= 20keV, the above equation gives

v�
vte

=
3.5� 106eV
20� 103eV

1
1836

r
= 0.304; (24)

which indicates that the velocity of � particles are still smaller than the electron thermal velocity.]
The collision friction encountered by the fast ions is a function of their velocity. The critical velocity
of fast ions is the velocity for which the collision friction of the fast ions with electrons and ions
is equal. Next, we derive the critical velocity. The collision friction coe�cient due to an isotropic
background distribution is given by[4]

F a/b(v)=¡4�¡
a/b

3nb

ma

mb

1
v2

Z
0

v

3(v 0)2fb(v
0)dv 0; (25)
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where ¡a/b= nbqa
2qb
2

4��0
2ma

2 ln�
a/b. Consider the collision friction of fast ions with thermal ions. Assume

the distribution of the thermal ions are Maxwellian, then Eq. (25) is written

F f/i(v) =¡4�¡
f/i

3ni

mf

mi

1
v2

Z
0

v

3(v 0)2fMi(v
0)dv 0; (26)

where

fMi=ni

�
mi

2�Ti

�
3/2

exp
�
¡ v2

vti
2

�
; (27)

with vti= 2Ti/mi

p
. Since vf is much larger than the thermal velocity of ions, the collision friction

coe�cients can be approximated by the high-velocity-limit (i.e. setting the upper limit of the
integration to be +1), which gives

F f/i(v) = ¡4�¡f/i mf

mi

1
v2

�
mi

2�Ti

�
3/2

vti
3 �
p

4

= ¡¡f/i mf

mi

1
v2

(28)

For the collision friction of fast ions with thermal electrons, since vf� vte, Eq. (25) is written

F f/e = ¡4�¡
a/e

ne

ma

me

1
v2

Z
0

v

(v 0)2fMe(v
0)dv 0

= ¡4�¡
a/e

ne

ma

me

1
v2

Z
0

v

(v 0)2ne

�
me

2�Te

�
3/2

exp
�
¡v

2

vt
2

�
dv 0

= ¡4�¡a/e
�

me

2�Te

�
3/2ma

me

vt
3

v2

Z
0

x

x2exp(¡x2)dx; (29)

where x= v/vte. Since x� 1, we expand e¡x
2� 1. Using this, Eq. (29) is written

F f/e = ¡4�¡f/e
�

me

2�Te

�
3/2 mf

me

vte
3

v2

Z
0

x

(x2)dx

= ¡4�¡f/e
�

me

2�Te

�
3/2 mf

me

vte
3

v2

�
x3

3

�
= ¡4�¡f/e

�
me

2�Te

�
3/2 mf

me

v
3

(30)

The critical velocity vcrit is the velocity for which F f/i and F f/e are equal to each other, i.e.
F f/i=F f/e. Using this, along with Eqs. (28) and (30), we obtain

¡¡f/imf

mi

1

vcrit
2

=¡4�¡f/e
�

me

2�Te

�
3/2mf

me

vcrit
3
; (31)

Noting that ¡a/b= nbqa
2qb
2

4��0
2ma

2 ln�
a/b and ln�f/i� ln�f/e, and

¡f/i

¡f/e
=
niZi

2

ne
�Ze� (32)

equation (31) is written

vcrit=

�
Ze�

me

mi

3 �
p

4

�
1/3

vte;

which corresponds to the fast ions kinetic energy

Ecrit�
1
2
mfvcrit

2 =
mf

mi

�
mi

me

�
1/3
�
Ze�

3 �
p

4

�
2/3

Te; (33)

which agrees with the critical energy given in Ref. [6] (Ze�=1 is assumed in Ref. [6]). Recall that
the beam velocity is assumed to be in the range given by Eq. (22), i.e., vti� vf � vte. In this
range, F f/e/ vf while F f/i/1/vf2. Thus, if vf >vcrit, then the collision friction of the beam ions
with the background electrons will exceed the friction with the background ions, so that the beam
ions will mainly heat electrons.
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4.5 Slowing-down time of energetic particles
For energetic particles whose energy is larger than the critical energy, the collision friction is
dominated by the friction with the background electrons. The collision friction coe�cient with the
electrons is then given by Eq. (30), i.e.,

F f/e=¡4�¡f/e
�

me

2�Te

�
3/2mf

me

�
v

3

�
(34)

The slowing down time ts is de�ned by

ts=
v
jF j ; (35)

which, by using Eq. (34), is written

ts=
3 2�
p

Te
3/2

neZf
2e4

2��0
2mf

2 ln�
f/e

1
me

p
mf

: (36)

Equation (36) agrees with the slowing down time given in Ref. [6] ( the formula after Eq. (1) of
Ref. [6]). Note that the slowing down time ts increase with the increasing of Te, but decrease with
the increasing of ne. Also note that the slowing down time given by Eq. (36) is independent of the
velocity of fast ions. For EAST parameters Te=2keV, ne=4� 1019m¡3, the slowing down time of
a fast Deuterium ion calculated by Eq. (36) is ts= 565ms. However, the velocity of fast ions form
80keV NBI on EAST is in the vicinity of the critical velocity, for which the friction of fast ions
with the thermal ions should be taken into account. Therefore, the more accurate value of slowing
down time on EAST is much shorter than the 565ms given above, e.g. 100ms.

5 RMP �eld

The Biot-Savart law for an idealized zero-thinkness wrie is given by

B(r) =
�0
4�

Z
I(r0)� (r¡ r0)
jr¡ r0j3 dl (37)

=
�0
4�

Z
I(r0)

dl(r0)� (r¡ r0)
jr¡ r0j3 ; (38)

where I(r) is the current �owing in the wire, dl(r0) is an line element along the wire.

r¡ r0=(x¡x0)êx+(y¡ y 0)êy+(z¡ z 0)êz (39)

5.1 For wires on poloial plane
For a coil on a poloidal plane, dl is written as dl= dZêz+ dRêR(�). In Cartesian coordinates, dl
can be written as

dl= dR cos�êx+ dR sin�êy+ dZêz (40)

Using Eq. (40) and (39), we obtain

dl� (r¡ r0)=

������
êx êy êz

dR cos� dR sin� dZ
(x¡x0) (y¡ y 0) (z¡ z 0)

������
5.2 For wires along toroidal direction

dl=Rd�ê�=Rd�(¡sin�êx+ cos�êy) (41)

Using Eq. (41) and (39), we obtain
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dl� (r¡ r0)=

������
êx êy êz

¡Rd�sin� Rd� cos� 0
(x¡x0) (y¡ y 0) (z¡ z 0)

������ (42)

Appendix A Ionization cross section given in Wesson's book

Figure 27. Fig. 5.3.1 of Wesson's book �Tokamaks�, which shows the cross-sections for charge exchange
and ionization by plasma ions and the e�ective cross-section for ionization by electrons, as functions of the
energy of neutral beam atoms.
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