Nonlinear gyrokinetic equation

by Youjun Hu
Institute of Plasma Physics, Chinese Academy of Sciences
Email: yjhu@ipp.cas.cn

Abstract

The nonlinear δf gyrokinetic equation in Frieman-Chen's paper[3] is re-derived in this note, giving more details. Numerical implementation of the gyrokinetic model using the PIC method is also discussed.

1 Introduction

1.1 Gyrokinetic?

Electromagnetic perturbations of frequency lower than the ion cyclotron frequency are widely believed to be more important than high-frequency ones in transporting plasma in tokamaks.

If we assume that only low-frequency perturbations are present, the Vlasov equation can be simplified. Specifically, symmetry of the particle distribution function in the phase space can be established if we choose suitable phase-space coordinates and split the distribution function in a proper way. The symmetry is along the so-called gyro-angle α in the guiding-center coordinates (\mathbf{X}, $\mu, \varepsilon, \alpha)$. In obtaining the equation for the gyro-angle independent part of the distribution function, we need to average the equation over the gyro-angle α and thus this model is called "gyrokinetic".

In deriving the gyrokinetic equation, the perturbed electromagnetic field is assumed to be known and of low-frequency. To do a kinetic simulation, we need to solve the field equation to obtain the perturbed electromagnetic field. It is still possible that high frequency modes (e.g., compressional Alfven waves and Ω_{H} modes) appear in a gyrokinetic simulation. If the amplitude of high frequency modes is large, then the simulation is invalid since the gyrokinetic model is invalid in this case.

Our starting point is the Vlasov equation in terms of particle coordinates (\mathbf{x}, \mathbf{v}):

$$
\begin{equation*}
\frac{\partial f}{\partial t}+\mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{x}}+\frac{q}{m}(\mathbf{E}+\mathbf{v} \times \mathbf{B}) \cdot \frac{\partial f}{\partial \mathbf{v}}=0 \tag{1}
\end{equation*}
$$

where $f=f(t, \mathbf{x}, \mathbf{v})$ is the particle distribution function, \mathbf{x} and \mathbf{v} are the location and velocity of particles. The distribution function f depends on 6 phase-space variables (\mathbf{x}, \mathbf{v}), besides the time t.

1.2 Guiding-center coordinates: a simple example

Choose Cartesian coordinates (x, y, z) for the configuration space \mathbf{x}. Consider a simple case where the electromagnetic field is a time-independent field given by $\mathbf{B}=B_{0}(x, y, z) \hat{\mathbf{z}}$ and $\mathbf{E}=0$. Let us examine the Vlasov equation in this case and look whether there is any coordinate system that can simplify the Vlasov equation.

Describe the velocity space using a right-handed cylindrical coordinates $\left(v_{\perp}, \alpha, v_{\|}\right)$, where $v_{\|}=\mathbf{v} \cdot \mathbf{e}_{\|}, \mathbf{e}_{\|}=\mathbf{e}_{z}$ is the unit vector along the magnetic field, α is the azimuthal angle of the perpendicular velocity $\left(\mathbf{v}_{\perp}=\mathbf{v}-v_{\|} \mathbf{e}_{z}\right)$ relative to \mathbf{e}_{x}. Note that these coordinates are defined relative to the local magnetic field, which may vary in space.

Next, let us express the spatial gradient of f in terms of partial derivatives:

$$
\begin{equation*}
\left.\frac{\partial f}{\partial \mathbf{x}}\right|_{\mathbf{v}}=\left.\frac{\partial f}{\partial x}\right|_{\mathbf{v}} \mathbf{e}_{x}+\left.\frac{\partial f}{\partial y}\right|_{\mathbf{v}} \mathbf{e}_{y}+\left.\frac{\partial f}{\partial z}\right|_{\mathbf{v}} \mathbf{e}_{z} \tag{2}
\end{equation*}
$$

Note that this gradient is taking by holding \mathbf{v} constant (i.e., $\left(v_{x}, v_{y}, v_{z}\right)$ constant rather than $\left(v_{\perp}, \alpha, v_{\|}\right)$constant). So, we need do the following coordinate transform:

$$
\begin{equation*}
\left(x, y, z, v_{x}, v_{y}, v_{z}\right) \Rightarrow\left(x^{\prime}=x, y^{\prime}=y, z^{\prime}=z, v_{\perp}=\sqrt{v_{x}^{2}+v_{y}^{2}}, \alpha=\operatorname{atan} 2\left(v_{y}, v_{x}\right), v_{\|}=v_{z}\right) \tag{3}
\end{equation*}
$$

Using chain rule, expression (2) is written as

$$
\begin{align*}
\left.\frac{\partial f}{\partial x}\right|_{\mathbf{v}} & =\frac{\partial f}{\partial x^{\prime}} \frac{\partial x^{\prime}}{\partial x}+\left.\frac{\partial f}{\partial v_{\perp}} \frac{\partial v_{\perp}}{\partial x}\right|_{\mathbf{v}}+\left.\frac{\partial f}{\partial \alpha} \frac{\partial \alpha}{\partial x}\right|_{\mathbf{v}}+\left.\frac{\partial f}{\partial v_{\|}} \frac{\partial v_{\|}}{\partial x}\right|_{\mathbf{v}} \tag{4}\\
& \approx \frac{\partial f}{\partial x^{\prime}} \tag{5}
\end{align*}
$$

Note that the partial derivatives

$$
\begin{equation*}
\left.\frac{\partial v_{\perp}}{\partial x}\right|_{\mathbf{v}},\left.\frac{\partial \alpha}{\partial x}\right|_{\mathbf{v}},\left.\frac{\partial v_{\|}}{\partial x}\right|_{\mathbf{v}} \tag{6}
\end{equation*}
$$

are generally nonzero since the defintion of $\left(v_{\perp}, \alpha, v_{\|}\right)$depends on the local magnetic field direction. In our simple case, they are zero since the magnetic field direction is uniform. Similarly, we obtain

$$
\begin{align*}
& \left.\frac{\partial f}{\partial y}\right|_{\mathbf{v}} \approx \frac{\partial f}{\partial y^{\prime}} \tag{7}\\
& \left.\frac{\partial f}{\partial z}\right|_{\mathbf{v}}=\frac{\partial f}{\partial z^{\prime}} \tag{8}
\end{align*}
$$

Then, in $\left(x^{\prime}, y^{\prime}, z^{\prime}, v_{\perp}, \alpha, v_{\|}\right)$coordinates, the spatial gradient of f is written as

$$
\begin{equation*}
\left.\frac{\partial f}{\partial \mathbf{x}}\right|_{\mathbf{v}} \approx \frac{\partial f}{\partial x^{\prime}} \mathbf{e}_{x}+\frac{\partial f}{\partial y^{\prime}} \mathbf{e}_{y}+\frac{\partial f}{\partial z^{\prime}} \mathbf{e}_{z} \tag{9}
\end{equation*}
$$

Next, consider the gradient in velocity space

$$
\begin{align*}
\frac{\partial f}{\partial \mathbf{v}} & =\frac{\partial f}{\partial v_{x}} \mathbf{e}_{x}+\frac{\partial f}{\partial v_{y}} \mathbf{e}_{y}+\frac{\partial f}{\partial v_{z}} \mathbf{e}_{z} \\
& =\frac{\partial f}{\partial v_{\perp}} \mathbf{e}_{1}+\frac{\partial f}{\partial v_{\|}} \mathbf{e}_{z}+\frac{1}{v_{\perp}} \frac{\partial f}{\partial \alpha} \mathbf{e}_{\alpha} \tag{10}
\end{align*}
$$

where $\mathbf{e}_{1}=\mathbf{v}_{\perp} /\left|\mathbf{v}_{\perp}\right|, \mathbf{v}_{\perp}=\mathbf{v}-\left(\mathbf{v} \cdot \mathbf{e}_{z}\right) \mathbf{e}_{z}$, and $\mathbf{e}_{\alpha}=\mathbf{e}_{z} \times \mathbf{e}_{1}$. Using Eq. (10), $\frac{q}{m}(\mathbf{v} \times \mathbf{B}) \cdot \frac{\partial f}{\partial \mathbf{v}}$ is written as

$$
\begin{align*}
\frac{q}{m}(\mathbf{v} \times \mathbf{B}) \cdot \frac{\partial f}{\partial \mathbf{v}} & =\frac{q}{m}\left(v_{\perp} \mathbf{e}_{1} \times \mathbf{B}\right) \cdot\left(\frac{\partial f}{\partial v_{\perp}} \mathbf{e}_{1}+\frac{\partial f}{\partial v_{\|}} \mathbf{e}_{z}+\frac{1}{v_{\perp}} \frac{\partial f}{\partial \alpha} \mathbf{e}_{\alpha}\right) \\
& =\frac{q}{m}\left(v_{\perp} \mathbf{e}_{1} \times \mathbf{B}\right) \cdot\left(\frac{1}{v_{\perp}} \frac{\partial f}{\partial \alpha} \mathbf{e}_{\alpha}\right) \\
& =\frac{B q}{m} \frac{\partial f}{\partial \alpha}\left(\mathbf{e}_{1} \times \mathbf{e}_{z}\right) \cdot \mathbf{e}_{\alpha} \\
& =-\Omega\left(\frac{\partial f}{\partial \alpha}\right) \tag{11}
\end{align*}
$$

where $\Omega=B q / m$ is the gyro-frequency. Then the Vlasov equation (1) is written as

$$
\begin{equation*}
\frac{\partial f}{\partial t}+\mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{x}}-\Omega \frac{\partial f}{\partial \alpha}=0 \tag{12}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\frac{\partial f}{\partial t}+v_{\|} \frac{\partial f}{\partial z^{\prime}}+v_{\perp} \cos \alpha \frac{\partial f}{\partial x^{\prime}}+v_{\perp} \sin \alpha \frac{\partial f}{\partial y^{\prime}}-\Omega \frac{\partial f}{\partial \alpha}=0 \tag{13}
\end{equation*}
$$

Define the following coordinates transform (guiding-center transform):

$$
\left\{\begin{array}{l}
X=x^{\prime}+\frac{v_{\perp} \sin \alpha}{\Omega} \tag{14}\\
Y=y^{\prime}-\frac{v_{\perp} \cos \alpha}{\Omega} \\
Z=z^{\prime} \\
\alpha^{\prime}=\alpha \\
v_{\|}^{\prime}=v_{\|} \\
v_{\perp}^{\prime}=v_{\perp} \\
t^{\prime}=t
\end{array}\right.
$$

Next, we express the partial derivatives of f appearing in Eq. (13) in terms of the guiding-center coordinates. Using the chain rule, we obtain

$$
\begin{align*}
\frac{\partial f}{\partial \alpha} & =\frac{\partial f}{\partial X} \frac{\partial X}{\partial \alpha}+\frac{\partial f}{\partial Y} \frac{\partial Y}{\partial \alpha}+\frac{\partial f}{\partial Z} \frac{\partial Z}{\partial \alpha}+\frac{\partial f}{\partial \alpha^{\prime}} \frac{\partial \alpha^{\prime}}{\partial \alpha}+\frac{\partial f}{\partial v_{\|}^{\prime}} \frac{\partial v_{\|}^{\prime}}{\partial \alpha}+\frac{\partial f}{\partial v_{\perp}^{\prime}} \frac{\partial v_{\perp}^{\prime}}{\partial \alpha}+\frac{\partial f}{\partial t^{\prime}} \frac{\partial t^{\prime}}{\partial \alpha} \\
& =\frac{\partial f}{\partial X} \frac{\partial X}{\partial \alpha}+\frac{\partial f}{\partial Y} \frac{\partial Y}{\partial \alpha}+\frac{\partial f}{\partial \alpha^{\prime}} \\
& =\frac{\partial f}{\partial x^{\prime}} \frac{v_{\perp} \cos \alpha}{\Omega}+\frac{\partial f}{\partial y^{\prime}} \frac{v_{\perp} \sin \alpha}{\Omega}+\frac{\partial f}{\partial \alpha^{\prime}} \tag{15}
\end{align*}
$$

Similarly, for other derivatives, we obtain

$$
\begin{equation*}
\frac{\partial f}{\partial t}=\frac{\partial f}{\partial t^{\prime}} \tag{16}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{\partial f}{\partial z^{\prime}} & =\frac{\partial f}{\partial X} \frac{\partial X}{\partial z^{\prime}}+\frac{\partial f}{\partial Y} \frac{\partial Y}{\partial z^{\prime}}+\frac{\partial f}{\partial Z} \frac{\partial Z}{\partial z^{\prime}}+\frac{\partial f}{\partial \alpha^{\prime}} \frac{\partial \alpha^{\prime}}{\partial z^{\prime}}+\frac{\partial f}{\partial v_{\|}^{\prime}} \frac{\partial v_{\|}^{\prime}}{\partial z^{\prime}}+\frac{\partial f}{\partial v_{\perp}^{\prime}} \frac{\partial v_{\perp}^{\prime}}{\partial z^{\prime}}+\frac{\partial f}{\partial t^{\prime}} \frac{\partial t^{\prime}}{\partial z^{\prime}} \\
& \approx \frac{\partial f}{\partial X} \times 0+\frac{\partial f}{\partial Y} \times 0+\frac{\partial f}{\partial Z} \tag{17}
\end{align*}
$$

where we have assumed that the dependence of X and Y on z^{\prime} (via Ω) is weak enough to be neglected. And also

$$
\begin{align*}
\frac{\partial f}{\partial x^{\prime}} & =\frac{\partial f}{\partial X} \frac{\partial X}{\partial x^{\prime}}+\frac{\partial f}{\partial Y} \frac{\partial Y}{\partial x^{\prime}}+\frac{\partial f}{\partial Z} \frac{\partial Z}{\partial x^{\prime}}+\frac{\partial f}{\partial \alpha^{\prime}} \frac{\partial \alpha^{\prime}}{\partial x^{\prime}}+\frac{\partial f}{\partial v_{\|}^{\prime}} \frac{\partial v_{\|}^{\prime}}{\partial x^{\prime}}+\frac{\partial f}{\partial v_{\perp}^{\prime}} \frac{\partial v_{\perp}^{\prime}}{\partial x^{\prime}}+\frac{\partial f}{\partial t^{\prime}} \frac{\partial t^{\prime}}{\partial x^{\prime}} \\
& =\frac{\partial f}{\partial X} \frac{\partial X}{\partial x^{\prime}}+\frac{\partial f}{\partial Y} \frac{\partial Y}{\partial x^{\prime}} \\
& \approx \frac{\partial f}{\partial X} \times 1+\frac{\partial f}{\partial Y} \times 0, \tag{18}\\
& \frac{\partial f}{\partial y^{\prime}} \approx \frac{\partial f}{\partial Y} \tag{19}
\end{align*}
$$

Using the above results, equation (13) in the guiding-center coordinates is written as

$$
\begin{equation*}
\frac{\partial f}{\partial t^{\prime}}+v_{\|}^{\prime} \frac{\partial f}{\partial Z}+v_{\perp}^{\prime} \cos \alpha^{\prime} \frac{\partial f}{\partial X}+v_{\perp}^{\prime} \sin \alpha^{\prime} \frac{\partial f}{\partial Y}-\Omega\left(\frac{\partial f}{\partial X} \frac{v_{\perp} \cos \alpha}{\Omega}+\frac{\partial f}{\partial Y} \frac{v_{\perp} \sin \alpha}{\Omega}+\frac{\partial f}{\partial \alpha^{\prime}}\right)=0 \tag{20}
\end{equation*}
$$

Here we find some terms cancel each other, giving

$$
\begin{equation*}
\frac{\partial f}{\partial t^{\prime}}+v_{\|}^{\prime} \frac{\partial f}{\partial Z}-\Omega\left(\frac{\partial f}{\partial \alpha^{\prime}}\right)=0 \tag{21}
\end{equation*}
$$

Equation (21) is the equation for f in the guiding-center coordinates $\left(X, Y, Z, v_{\perp}^{\prime}, \alpha^{\prime}, v_{\|}^{\prime}\right)$.

1.2.1 Gyro-averaging

Define gyro-phase averaging operator

$$
\begin{equation*}
\langle\ldots\rangle \equiv(2 \pi)^{-1} \int_{0}^{2 \pi}(\ldots) d \alpha^{\prime} \tag{22}
\end{equation*}
$$

Then averaging Eq. (21) over α^{\prime}, we get

$$
\begin{equation*}
\frac{\partial\langle f\rangle}{\partial t^{\prime}}+v_{\|}^{\prime} \frac{\partial\langle f\rangle}{\partial Z}-(2 \pi)^{-1} \int_{0}^{2 \pi} \Omega\left(\frac{\partial f}{\partial \alpha^{\prime}}\right) d \alpha^{\prime}=0 \tag{23}
\end{equation*}
$$

As is assumed above, Ω is approximately independent of α^{\prime} and thus Ω in Eq. (23) can be moved outside of the gyro-angle integration, giving

$$
\begin{equation*}
\frac{\partial\langle f\rangle}{\partial t^{\prime}}+v_{\|}^{\prime} \frac{\partial\langle f\rangle}{\partial Z}-\Omega(2 \pi)^{-1} \int_{0}^{2 \pi}\left(\frac{\partial f}{\partial \alpha^{\prime}}\right) d \alpha^{\prime}=0 \tag{24}
\end{equation*}
$$

Peforming the integration, we get

$$
\begin{equation*}
\frac{\partial\langle f\rangle}{\partial t^{\prime}}+v_{\|}^{\prime} \frac{\partial\langle f\rangle}{\partial Z}-\Omega(2 \pi)^{-1}\left[f\left(\alpha^{\prime}=2 \pi\right)-f\left(\alpha^{\prime}=0\right)\right]=0 . \tag{25}
\end{equation*}
$$

Since $\alpha^{\prime}=2 \pi$ and $\alpha^{\prime}=0$ correspond to the same phase space location, the corresponding values of the distribution function must be equal. Then the above equation reduces to

$$
\begin{equation*}
\frac{\partial\langle f\rangle}{\partial t^{\prime}}+v_{\|}^{\prime} \frac{\partial\langle f\rangle}{\partial Z}=0 \tag{26}
\end{equation*}
$$

which is an equation for the gyro-angle independent part of the distribution function.
Next let us investigate whether the guiding-center transform can be made use of to simplify the kinetic equation for more general cases where we have a (weakly) non-uniform static magnetic field, plus electromagnetic perturbations of low frequency (and of small amplitude and $k_{\|} \rho_{i} \ll 1$). And we will include the effect that \mathbf{B}_{0} depends on α^{\prime}, i.e., grad-B and curvature drift.

2 Transform Vlasov equation from particle coordinates to guiding-center coordinates

Next, we define the guiding-center transform and then transform the Vlasov equation from the particle coordinates (\mathbf{x}, \mathbf{v}) to the guiding-center coordinates, i.e., express the gradient operators $\partial / \partial \mathbf{x}$ and $\partial / \partial \mathbf{v}$ in terms of the guiding-center coordinates.

2.1 Guiding-center transformation

In a magnetic field, given a particle location and velocity (\mathbf{x}, \mathbf{v}), we know how to calculate its guiding-center location \mathbf{X}, i.e.,

$$
\begin{equation*}
\mathbf{X}=\mathbf{x}+\mathbf{v} \times \frac{e_{\|}(\mathbf{x})}{\Omega(\mathbf{x})} \tag{27}
\end{equation*}
$$

where $\boldsymbol{e}_{\|}=\mathbf{B}_{0} / B_{0}, \Omega=q B_{0} / m, \mathbf{B}_{0}=\mathbf{B}_{0}(\mathbf{x})$ is the equilibrium (macroscopic) magnetic field at the particle position. We will consider Eq. (27) as a transform and call it guiding-center transform[1]. Note that the transform (27) involves both position and velocity of particles.

Given (\mathbf{x}, \mathbf{v}), it is straightforward to obtain \mathbf{X} by using Eq. (27). On the other hand, the inverse transform (i.e., given (\mathbf{X}, \mathbf{v}), to find \mathbf{x}) is in principle not easy because Ω and $\mathbf{e}_{\|}$depend on \mathbf{x}, which usually requires solving a nonlinear equation for the root. Numerically, one can use

$$
\begin{equation*}
\mathbf{x}_{n+1}=\mathbf{X}-\mathbf{v} \times \frac{\boldsymbol{e}_{\|}\left(\mathbf{x}_{n}\right)}{\Omega\left(\mathbf{x}_{n}\right)} \tag{28}
\end{equation*}
$$

as an iteration scheme to compute \mathbf{x}, with the initial guess chosen as $\mathbf{x}_{0}=\mathbf{X}$. If we stop at the first iteration, then

$$
\begin{equation*}
\mathbf{x} \approx \mathbf{X}-\mathbf{v} \times \frac{e_{\|}(\mathbf{X})}{\Omega(\mathbf{X})} \tag{29}
\end{equation*}
$$

In gyrokinetic PIC simulation, Eq. (29) is used as the inverse guiding-center transformation. This transformation needs to be performed numerically when we deposit markers to grids or when we calculate the gyro-averaged field to be used in pushing guiding-centers.

For later use, define $\rho \equiv-\mathbf{v} \times \mathbf{e}_{\|} / \Omega$, which is the vector gyro-radius pointing from the the guiding-center to the particle position.
[The equilibrium magnetic field we will consider has spatial scale length much larger than the thermal gyro radius ρ. In this case the difference between the values of $\mathbf{e}_{\|}(\mathbf{x}) / \Omega(\mathbf{x})$ and $\mathbf{e}_{\|}(\mathbf{X}) / \Omega(\mathbf{X})$ is negligible. The difference between equilibrium field values evaluated at \mathbf{X} and \mathbf{x} is usually neglected in gyrokinetic theory (except in deriving the gradient/curvature drift). Therefore it does not matter whether the above $\mathbf{e}_{\|} / \Omega$ is evaluated at \mathbf{x} or \mathbf{X}. What matters is where the perturbed fields are evaluated: at \mathbf{x} or at \mathbf{X}. The values of perturbed fields at \mathbf{x} or at \mathbf{X} are different and this is called the finite Larmor radius (FLR) effect.]

2.2 Choosing velocity coordinates

The guiding-center transformations (27) and (29) involve the particle velocity \mathbf{v}. It is the cross product between \mathbf{v} and $\boldsymbol{e}_{\|}(\mathbf{x})$ or $\boldsymbol{e}_{\|}(\mathbf{X})$ that is actually used. Therefore, only the perpendicular velocity (which is defined by $\mathbf{v}_{\perp}=\mathbf{v}-\mathbf{v} \cdot \mathbf{e}_{\|}$) enters the transform. A natural choice of coordinates for the perpendicular velocity is $\left(v_{\perp}, \alpha\right)$, where $v_{\perp}=\left|\mathbf{v}_{\perp}\right|$ and α is the azimuthal angle of the perpendicular velocity in the local perpendicular plane.

The parallel direction is fully determined by $\mathbf{B}_{0}(\mathbf{x})$, but there are degrees of freedom in choosing one of the two perpendicular basis vectors. In order to make the azimuthal angle α fully defined, we need to choose a way to define one of the two perpendicular directions. In GEM simulations, one of the perpendicular direction is chosen as the direction perpendicular to the magnetic surface, which is fully determined at each spatial point. (We need to define the perpendicular direction at each spatial location to make $\partial \alpha /\left.\partial \mathbf{x}\right|_{\mathbf{v}}$ defined, which is needed in the Vlasov differential operators. However, it seems that terms related to $\partial \alpha /\left.\partial \mathbf{x}\right|_{\mathbf{v}}$ are finally dropped due to that they are of higher order**check.)

In the following, α will be called the "gyro-angle" . [Note that, in the guiding-center coordinates $\left(\mathbf{X}, v_{\|}, v_{\perp}, \alpha\right), \alpha$ is a velocity coordinate rather than a spatial coordinate. When transformed back to particle coordinates, α affects both the velocity coordinate and the spatial coordinate. Consider a series of points in terms of guiding-center coordinates ($\left.\mathbf{X}, v_{\|}, v_{\perp}, \alpha\right)$ with ($\mathbf{X}, v_{\|}, v_{\perp}$) fixed but with α changing. Using the inverse guiding-center transform (29), we know that the above points form a gyro-ring in space, i.e., α influences spatial location, in addtion to velocity.]

The gyro-angle is an important variable we will stick to because we need to directly perform averaging over this variable (with \mathbf{X} fixed) in deriving the gyrokinetic equation. We have multiple options for the remaining velocity coordinates, such as $\left(v, v_{\|}\right)$, or $\left(v, v_{\perp}\right)$, or $\left(v_{\|}, v_{\perp}\right)$. In FriemanChen's paper, the velocity coordinates other than α are chosen to be (ε, μ) defined by

$$
\begin{equation*}
\varepsilon=\varepsilon(v, \mathbf{x}) \equiv \frac{v^{2}}{2}+\frac{q \Phi_{0}(\mathbf{x})}{m} \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu=\mu\left(v_{\perp}, \mathbf{x}\right) \equiv \frac{v_{\perp}^{2}}{2 B_{0}(\mathbf{x})} \tag{31}
\end{equation*}
$$

where $\Phi_{0}(\mathbf{x})$ is the equilibrium (macroscopic) electrical potential. Choosing μ as one of the phase space coordinates is nontrivial because it turns out a constant of motion. And this choice seems to be important in sucessfully getting the final gyrokinetic equation (I need to check this).

Note that $(\varepsilon, \mu, \alpha)$ is not sufficient in uniquely determining a velocity vector. An additional parameter $\sigma=\operatorname{sign}\left(v_{\|}\right)$is needed to determine the sign of $v_{\|}=\mathbf{v} \cdot \mathbf{e}_{\|}$. In the following, the dependence of the distribution function on σ is often not explicitly shown in the variable list (i.e., σ is hidden/suppressed), which, however, does not mean that the distribution function is independent of σ.

Another frequently used velocity coordinates are ($\mu, v_{\|}, \alpha$). In the following, I will derive the gyrokinetic equation in $(\varepsilon, \mu, \alpha)$ coordinates. After that, I transform it to ($\mu, v_{\|}, \alpha$) coordinates.

One important thing to note about the above velocity coordinates is that they are defined relative to the local magnetic field. If the field itself is spatially varying (such as in tokamaks), the above velocity coordinates are also spatially varying for a fixed velocity v. Specifically, the following derivatives are nonzero:

$$
\begin{equation*}
\left.\frac{\partial \alpha}{\partial \mathbf{x}}\right|_{\mathbf{v}},\left.\frac{\partial v_{\perp}}{\partial \mathbf{x}}\right|_{\mathbf{v}},\left.\frac{\partial v_{\|}}{\partial \mathbf{x}}\right|_{\mathbf{v}},\left.\frac{\partial \mu}{\partial \mathbf{x}}\right|_{\mathbf{v}} \tag{32}
\end{equation*}
$$

2.3 Summary of the phase-space coordinate transform

The transform from particle variables (\mathbf{x}, \mathbf{v}) to guiding-center variables $(\mathbf{X}, \varepsilon, \mu, \alpha, \sigma)$ is given by

$$
\left\{\begin{array}{l}
\mathbf{X}=\mathbf{x}+\mathbf{v} \times \frac{e_{\|}(\mathbf{x})}{\Omega(\mathbf{x})} \tag{33}\\
\varepsilon=\frac{|\mathbf{v}|^{2}}{2}+\frac{q \Phi_{0}(\mathbf{x})}{m} \\
\mu=\frac{\left|\mathbf{v}-\mathbf{v} \cdot \mathbf{e}_{\|}(\mathbf{x})\right|^{2}}{2 B_{0}(\mathbf{x})} \\
\alpha=\left(\operatorname{angle} \text { between } \mathbf{v}_{\perp} \text { and local } \mathbf{e}_{\perp}\right) \\
\sigma=\operatorname{sign}\left(\mathbf{v} \cdot \mathbf{e}_{\|}(\mathbf{x})\right)
\end{array}\right.
$$

As mentioned above, the dependence of the distribution function on σ will not be explicitly indicated in the following.

2.4 Distribution function in terms of guiding-center variables

Denote the particle distribution function expressed in particle coordinates (\mathbf{x}, \mathbf{v}) by f_{p}, and the same distribution expressed in the guiding-center variables $(\mathbf{X}, \varepsilon, \mu, \alpha)$ by f_{g}. Then

$$
\begin{equation*}
f_{g}(\mathbf{X}, \varepsilon, \mu, \alpha)=f_{p}(\mathbf{x}, \mathbf{v}) \tag{34}
\end{equation*}
$$

where (\mathbf{x}, \mathbf{v}) and $(\mathbf{X}, \varepsilon, \mu, \alpha)$ are related to each other by the guiding-center transform (29). Equation (34) along the guiding-center transform can be considered as the definition of f_{g}.

As is conventionally adopted in multi-variables calculus, both f_{p} and f_{g} are often denoted by the same symbol, say f. Which set of independent variables are actually assumed is inferred from the context. This is one subtle thing for gyrokinetic theory in particular and for multi-variables calculus in general. (Sometimes, it may be better to use subscript notation on f to identify which coordinates are assumed. One example where this distinguishing is important is encountered when we try to express the diamagnetic flow in terms of f_{g}, which is discussed in Appendix G.)

In practice, f_{g} is often called the guiding-center distribution function whereas f_{p} is called the particle distribution function. However, they are actually the same distribution function expressed in different variables. The name "guiding-center distribution function" is misleading because it may imply that we can count the number of guiding-centers to obtain this distribution function but this implication is wrong.

2.5 Spatial gradient operator in guiding-center coordinates

Using the chain-rule, the spatial gradient $\partial f_{p} / \partial \mathbf{x}$ is written

$$
\begin{equation*}
\left.\frac{\partial f_{p}}{\partial \mathbf{x}}\right|_{\mathbf{v}}=\frac{\partial \mathbf{X}}{\partial \mathbf{x}} \cdot \frac{\partial f_{g}}{\partial \mathbf{X}}+\frac{\partial \varepsilon}{\partial \mathbf{x}} \frac{\partial f_{g}}{\partial \varepsilon}+\frac{\partial \mu}{\partial \mathbf{x}} \frac{\partial f_{g}}{\partial \mu}+\frac{\partial \alpha}{\partial \mathbf{x}} \frac{\partial f_{g}}{\partial \alpha} \tag{35}
\end{equation*}
$$

From the definition of \mathbf{X}, Eq. (27), we obtain

$$
\begin{equation*}
\frac{\partial \mathbf{X}}{\partial \mathbf{x}}=\mathbf{I}+\mathbf{v} \times \frac{\partial}{\partial \mathbf{x}}\left(\frac{\boldsymbol{e}_{\|}}{\Omega}\right) \tag{36}
\end{equation*}
$$

where \mathbf{I} is the unit dyad. From the definition of ε, we obtain

$$
\begin{equation*}
\frac{\partial \varepsilon}{\partial \mathbf{x}}=-\frac{q}{m} \mathbf{E}_{0} \tag{37}
\end{equation*}
$$

where $\mathbf{E}_{0}=-\partial \Phi_{0} / \partial \mathbf{x}$. Using the above results, equation (35) is written as

$$
\begin{equation*}
\left.\frac{\partial f_{p}}{\partial \mathbf{x}}\right|_{\mathbf{v}}=\frac{\partial f_{g}}{\partial \mathbf{X}}+\left[\mathbf{v} \times \frac{\partial}{\partial \mathbf{x}}\left(\frac{\boldsymbol{e}_{\|}}{\Omega}\right)\right] \cdot \frac{\partial f_{g}}{\partial \mathbf{X}}-\frac{q}{m} \mathbf{E}_{0} \frac{\partial f_{g}}{\partial \varepsilon}+\frac{\partial \mu}{\partial \mathbf{x}} \frac{\partial f_{g}}{\partial \mu}+\frac{\partial \alpha}{\partial \mathbf{x}} \frac{\partial f_{g}}{\partial \alpha} . \tag{38}
\end{equation*}
$$

As mentioned above, the partial derivative $\partial / \partial \mathbf{x}$ is taken by holding \mathbf{v} constant. Since \mathbf{B}_{0} is spatially varying, \mathbf{v}_{\perp} is spatially varying when holding \mathbf{v} constant. Therefore $\frac{\partial \mu}{\partial \mathbf{x}}$ and $\frac{\partial \alpha}{\partial \mathbf{x}}$ are generally nonzero. The explicit expressions of these two derivatives are needed later in the derivation of the gyrokinetic equation and is discussed in Appendix J. For notation ease, define

$$
\begin{equation*}
\boldsymbol{\lambda}_{B 1}=\left[\mathbf{v} \times \frac{\partial}{\partial \mathbf{x}}\left(\frac{\boldsymbol{e}_{\|}}{\Omega}\right)\right] \cdot \frac{\partial}{\partial \mathbf{X}} \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{\lambda}_{B 2}=\frac{\partial \mu}{\partial \mathbf{x}} \frac{\partial}{\partial \mu}+\frac{\partial \alpha}{\partial \mathbf{x}} \frac{\partial}{\partial \alpha}, \tag{40}
\end{equation*}
$$

then expression (38) is written as

$$
\begin{equation*}
\left.\frac{\partial f_{p}}{\partial \mathbf{x}}\right|_{\mathbf{v}}=\frac{\partial f_{g}}{\partial \mathbf{X}}+\left[\boldsymbol{\lambda}_{B 1}+\boldsymbol{\lambda}_{B 2}\right] f_{g}-\frac{q}{m} \mathbf{E}_{0} \frac{\partial f_{g}}{\partial \varepsilon} . \tag{41}
\end{equation*}
$$

Note that $\partial / \partial \mathbf{X}$ is a shorthand for

$$
\left.\frac{\partial}{\partial \mathbf{X}}\right|_{\varepsilon, \mu, \alpha}
$$

i.e., it is taken by holding $(\varepsilon, \mu, \alpha)$ constant (rather than holding \mathbf{v} constant). For notation ease, $\partial / \partial \mathbf{X}$ is sometimes denoted by ∇_{X} or simply ∇.

2.6 Velocity gradient operator in guiding-center coordinates

Next, let us express the velocity gradient $\partial f / \partial \mathbf{v}$ in terms of the guiding-center variables. Using the chain rule, $\partial f / \partial \mathbf{v}$ is written

$$
\begin{equation*}
\left.\frac{\partial f_{p}}{\partial \mathbf{v}}\right|_{\mathbf{x}}=\frac{\partial \mathbf{X}}{\partial \mathbf{v}} \cdot \frac{\partial f_{g}}{\partial \mathbf{X}}+\frac{\partial \varepsilon}{\partial \mathbf{v}} \frac{\partial f_{g}}{\partial \varepsilon}+\frac{\partial \mu}{\partial \mathbf{v}} \frac{\partial f_{g}}{\partial \mu}+\frac{\partial \alpha}{\partial \mathbf{v}} \frac{\partial f_{g}}{\partial \alpha} \tag{42}
\end{equation*}
$$

From the definition of \mathbf{X}, we obtain

$$
\begin{align*}
\frac{\partial \mathbf{X}}{\partial \mathbf{v}} & =\frac{\partial}{\partial \mathbf{v}}\left(\frac{\boldsymbol{v} \times \boldsymbol{e}_{\|}}{\Omega}\right) \\
& =\frac{\partial \mathbf{v}}{\partial \mathbf{v}} \times \frac{\boldsymbol{e}_{\|}}{\Omega} \\
& =\mathbf{I} \times \frac{\boldsymbol{e}_{\|}}{\Omega} \tag{43}
\end{align*}
$$

From the definition of ε, we obtain

$$
\begin{equation*}
\frac{\partial \varepsilon}{\partial \mathbf{v}}=\mathbf{v} \tag{44}
\end{equation*}
$$

From the definition of μ, we obtain

$$
\begin{equation*}
\frac{\partial \mu}{\partial \mathbf{v}}=\frac{\mathbf{v}_{\perp}}{B_{0}} \tag{45}
\end{equation*}
$$

From the definition of α, we obtain

$$
\begin{equation*}
\frac{\partial \alpha}{\partial \mathbf{v}}=\frac{1}{v_{\perp}}\left(\boldsymbol{e}_{\|} \times \frac{\mathbf{v}_{\perp}}{v_{\perp}}\right)=\frac{\boldsymbol{e}_{\alpha}}{v_{\perp}} \tag{46}
\end{equation*}
$$

where \mathbf{e}_{α} is defined by

$$
\begin{equation*}
e_{\alpha}=e_{\|} \times \frac{\mathbf{v}_{\perp}}{v_{\perp}} \tag{47}
\end{equation*}
$$

Using the above results, expression (42) is written

$$
\begin{equation*}
\left.\frac{\partial f_{p}}{\partial \mathbf{v}}\right|_{\mathbf{x}}=\frac{\mathbf{I} \times \boldsymbol{e}_{\|}}{\Omega} \cdot \frac{\partial f_{g}}{\partial \mathbf{X}}+\mathbf{v} \frac{\partial f_{g}}{\partial \varepsilon}+\frac{\mathbf{v}_{\perp}}{B_{0}} \frac{\partial f_{g}}{\partial \mu}+\frac{\boldsymbol{e}_{\alpha}}{v_{\perp}} \frac{\partial f_{g}}{\partial \alpha} . \tag{48}
\end{equation*}
$$

2.7 Time derivatives in guiding-center coordinates

In terms of the guiding-center variables, the time partial derivative $\partial f_{p} / \partial t$ appearing in Vlasov equation is written as

$$
\begin{equation*}
\left.\frac{\partial f_{p}}{\partial t}\right|_{\mathbf{x}, \mathbf{v}}=\left.\frac{\partial f_{g}}{\partial t}\right|_{\mathbf{x}, \mathbf{v}}+\frac{\partial \mathbf{X}}{\partial t} \cdot \frac{\partial f_{g}}{\partial \mathbf{X}}+\frac{\partial \mathbf{V}}{\partial t} \cdot \frac{\partial f_{g}}{\partial \mathbf{V}} \tag{49}
\end{equation*}
$$

where $\mathbf{V}=(\varepsilon, \mu, \alpha)$. Here $\partial \mathbf{X} / \partial t$ and $\partial \mathbf{V} / \partial t$ are not necessarily zero because the equilibrium quantities involved in the definition of the guiding-center transformation are in general time dependent. This time dependence is assumed to be very slow in the gyrokinetic ordering discussed later. In the following, $\partial \mathbf{X} / \partial t$ and $\partial \mathbf{V} / \partial t$ will be dropped, i.e.,

$$
\begin{equation*}
\frac{\partial f_{p}}{\partial t} \approx \frac{\partial f_{g}}{\partial t} \tag{50}
\end{equation*}
$$

2.8 Final form of Vlasov equation in guiding-center coordinates

Using the above results, the Vlasov equation in guiding-center coordinates is written

$$
\begin{align*}
& \frac{\partial f_{g}}{\partial t}+\mathbf{v} \cdot\left[\frac{\partial f_{g}}{\partial \mathbf{X}}+\left[\boldsymbol{\lambda}_{B 1}+\boldsymbol{\lambda}_{B 2}\right] f_{g}-\frac{q}{m} \mathbf{E}_{0} \frac{\partial f_{g}}{\partial \varepsilon}\right] \\
+ & \frac{q}{m}(\mathbf{E}+\mathbf{v} \times \mathbf{B}) \cdot\left(\frac{\mathbf{I} \times \boldsymbol{e}_{\|}}{\Omega} \cdot \frac{\partial f_{g}}{\partial \mathbf{X}}+\mathbf{v} \frac{\partial f_{g}}{\partial \varepsilon}+\frac{\mathbf{v}_{\perp}}{B_{0}} \frac{\partial f_{g}}{\partial \mu}+\frac{\boldsymbol{e}_{\alpha}}{v_{\perp}} \frac{\partial f_{g}}{\partial \alpha}\right) \\
= & 0 \tag{51}
\end{align*}
$$

Using tensor identity $\mathbf{a} \cdot \mathbf{I} \times \mathbf{b}=\mathbf{a} \times \mathbf{b}$, equation (51) is written as

$$
\begin{align*}
& \frac{\partial f_{g}}{\partial t}+\mathbf{v} \cdot\left[\frac{\partial f_{g}}{\partial \mathbf{X}}+\left[\boldsymbol{\lambda}_{B 1}+\boldsymbol{\lambda}_{B 2}\right] f_{g}-\frac{q}{m} \mathbf{E}_{0} \frac{\partial f_{g}}{\partial \varepsilon}\right] \\
+ & \frac{q}{m}(\mathbf{E}+\mathbf{v} \times \mathbf{B}) \times\left(\frac{\boldsymbol{e}_{\|}}{\Omega}\right) \cdot \frac{\partial f_{g}}{\partial \mathbf{X}}+\frac{q}{m}(\mathbf{v} \times \mathbf{B}) \cdot\left(\frac{\boldsymbol{e}_{\alpha}}{v_{\perp}} \frac{\partial f_{g}}{\partial \alpha}\right) \\
+ & \frac{q}{m} \mathbf{E} \cdot\left(\mathbf{v} \frac{\partial f_{g}}{\partial \varepsilon}+\frac{\mathbf{v}_{\perp}}{B_{0}} \frac{\partial f_{g}}{\partial \mu}+\frac{\boldsymbol{e}_{\alpha}}{v_{\perp}} \frac{\partial f_{g}}{\partial \alpha}\right) \\
= & 0 \tag{52}
\end{align*}
$$

This is the Vlasov equation in guiding-center coordinates.

$3 \delta f$ form of Vlasov equation in guiding-center variables

3.1 Electromagnetic field perturbation

Since the definition of the guiding-center variables $(\mathbf{X}, \varepsilon, \mu, \alpha)$ involves the equilibrium fields \mathbf{B}_{0} and \mathbf{E}_{0}, to further simplify Eq. (52), we need to separate electromagnetic field into equilibrium and perturbation parts. Writing the electromagnetic field as

$$
\begin{equation*}
\mathbf{E}=\mathbf{E}_{0}+\delta \mathbf{E} \tag{53}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{B}=\mathbf{B}_{0}+\delta \mathbf{B} \tag{54}
\end{equation*}
$$

then substituting these expressions into equation (52) and moving all terms involving the field perturbations to the right-hand side, we obtain

$$
\begin{align*}
& \frac{\partial f_{g}}{\partial t}+\mathbf{v} \cdot \frac{\partial f_{g}}{\partial \mathbf{X}}+\mathbf{v} \cdot\left[\left[\boldsymbol{\lambda}_{B 1}+\boldsymbol{\lambda}_{B 2}\right] f_{g}-\frac{q}{m} \mathbf{E}_{0} \frac{\partial f_{g}}{\partial \varepsilon}\right] \\
+ & \frac{q}{m}\left(\mathbf{E}_{0}+\mathbf{v} \times \mathbf{B}_{0}\right) \times\left(\frac{\boldsymbol{e}_{\|}}{\Omega}\right) \cdot \frac{\partial f_{g}}{\partial \mathbf{X}}+\frac{q}{m}\left(\mathbf{v} \times \mathbf{B}_{0}\right) \cdot\left(\frac{\boldsymbol{e}_{\alpha}}{v_{\perp}} \frac{\partial f_{g}}{\partial \alpha}\right) \\
+ & \frac{q}{m} \mathbf{E}_{0} \cdot\left(\mathbf{v} \frac{\partial f_{g}}{\partial \varepsilon}+\frac{\mathbf{v}_{\perp}}{B_{0}} \frac{\partial f_{g}}{\partial \mu}+\frac{\boldsymbol{e}_{\alpha}}{v_{\perp}} \frac{\partial f_{g}}{\partial \alpha}\right) \\
= & \delta R f_{g}, \tag{55}
\end{align*}
$$

where δR is defined by

$$
\begin{align*}
\delta R= & -\frac{q}{m}(\delta \mathbf{E}+\mathbf{v} \times \delta \mathbf{B}) \times\left(\frac{\boldsymbol{e}_{\|}}{\Omega}\right) \cdot \frac{\partial}{\partial \mathbf{X}}-\frac{q}{m}(\mathbf{v} \times \delta \mathbf{B}) \cdot\left(\frac{\boldsymbol{e}_{\alpha}}{v_{\perp}} \frac{\partial}{\partial \alpha}\right) \\
& -\frac{q}{m} \delta \mathbf{E} \cdot\left(\mathbf{v} \frac{\partial}{\partial \varepsilon}+\frac{\mathbf{v}_{\perp}}{B_{0}} \frac{\partial}{\partial \mu}+\frac{\boldsymbol{e}_{\alpha}}{v_{\perp}} \frac{\partial}{\partial \alpha}\right) . \tag{56}
\end{align*}
$$

Next, let us simplify the left-hand side of Eq. (55). Note that

$$
\begin{align*}
& \frac{q}{m}\left(\mathbf{v} \times \mathbf{B}_{0}\right) \cdot\left(\frac{\mathbf{e}_{\alpha}}{v_{\perp}} \frac{\partial f_{g}}{\partial \alpha}\right) \\
& =\frac{q}{m}\left(\mathbf{v} \times \mathbf{B}_{0}\right) \cdot \frac{\boldsymbol{e}_{\|} \times \mathbf{v}_{\perp}}{v_{\perp}^{2}} \frac{\partial f_{g}}{\partial \alpha} \\
& =-\Omega \frac{\partial f_{g}}{\partial \alpha} \tag{57}
\end{align*}
$$

Note that

$$
\begin{equation*}
\frac{q}{m} \mathbf{E}_{0} \times\left(\frac{\boldsymbol{e}_{\|}}{\Omega}\right) \cdot \frac{\partial f_{g}}{\partial \mathbf{X}}=c\left(\frac{\mathbf{E}_{0} \times \boldsymbol{e}_{\|}}{B_{0}}\right) \cdot \frac{\partial f_{g}}{\partial \mathbf{X}}=\mathbf{v}_{\mathbf{E} 0} \cdot \frac{\partial f_{g}}{\partial \mathbf{X}} \tag{58}
\end{equation*}
$$

where $\mathbf{v}_{\mathbf{E} 0}$ is defined by $\mathbf{v}_{\mathbf{E} 0}=c \mathbf{E}_{0} \times \mathbf{e}_{\|} / B_{0}$, which is the $\mathbf{E}_{0} \times \mathbf{B}_{0}$ drift. Further note that

$$
\begin{align*}
\frac{q}{m} \frac{\mathbf{v} \times \mathbf{B}_{0}}{c} \times\left(\frac{\boldsymbol{e}_{\|}}{\Omega}\right) \cdot \frac{\partial f_{g}}{\partial \mathbf{X}} & =\left[\left(\mathbf{v} \times \mathbf{e}_{\|}\right) \times \boldsymbol{e}_{\|}\right] \cdot \frac{\partial f_{g}}{\partial \mathbf{X}} \\
& =\left[v_{\|} \mathbf{e}_{\|}-\mathbf{v}\right] \cdot \frac{\partial f_{g}}{\partial \mathbf{X}} \tag{59}
\end{align*}
$$

which can be combined with $\mathbf{v} \cdot \partial f_{g} / \partial \mathbf{X}$ term, yielding $v_{\|} \mathbf{e}_{\|} \cdot \partial f_{g} / \partial \mathbf{X}$.
Using Eqs. (58), (59), and (57), the left-hand side of equation (55) is written as

$$
\begin{align*}
& \frac{\partial f_{g}}{\partial t}+\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{\mathbf{E} 0}\right) \cdot \frac{\partial f_{g}}{\partial \mathbf{X}}+\mathbf{v} \cdot\left[\boldsymbol{\lambda}_{B 1}+\boldsymbol{\lambda}_{B 2}\right] f_{g}-\Omega \frac{\partial f_{g}}{\partial \alpha} \\
+ & \frac{q}{m} \mathbf{E}_{0} \cdot\left(\frac{\mathbf{v}_{\perp}}{B_{0}} \frac{\partial f_{g}}{\partial \mu}+\frac{\boldsymbol{e}_{\alpha}}{v_{\perp}} \frac{\partial f_{g}}{\partial \alpha}\right) \equiv L_{g} f_{g} \tag{60}
\end{align*}
$$

where L_{g} is often called the unperturbed Vlasov propagator in guiding-center coordinates $(\mathbf{X}, \varepsilon$, $\mu, \alpha)$.
[Equation (60), corresponds to Eq. (7) in Frieman-Chen's paper[3]. In Frieman-Chen's equation (7), there is a term

$$
\frac{q}{m}\left(\mathbf{E}_{\mathrm{mac}}-\mathbf{E}_{0}\right) \cdot \mathbf{v} \frac{\partial}{\partial \varepsilon}
$$

where $\mathbf{E}_{\text {mac }}$ is a given macroscopic electric field introduced when defining the guiding-center transformation. In my derivation $\mathbf{E}_{\text {mac }}$ is chosen to be equal to the equilibrium electric field, and thus the above term is zero.]

Using the above results, Eq. (55) is written as

$$
\begin{equation*}
L_{g} f_{g}=\delta R f_{g} \tag{61}
\end{equation*}
$$

i.e.

$$
\begin{align*}
& \frac{\partial f_{g}}{\partial t}+\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{\mathbf{E} 0}\right) \cdot \frac{\partial f_{g}}{\partial \mathbf{X}}-\Omega \frac{\partial f_{g}}{\partial \alpha} \\
& +\mathbf{v} \cdot\left[\mathbf{v} \times \frac{\partial}{\partial \mathbf{x}}\left(\frac{\boldsymbol{e}_{\|}}{\Omega}\right) \cdot \frac{\partial f_{g}}{\partial \mathbf{X}}+\frac{\partial \mu}{\partial \mathbf{x}} \frac{\partial f_{g}}{\partial \mu}+\frac{\partial \alpha}{\partial \mathbf{x}} \frac{\partial f_{g}}{\partial \alpha}\right] \\
& +\frac{q}{m} \mathbf{E}_{0} \cdot\left(\frac{\mathbf{v}_{\perp}}{B_{0}} \frac{\partial f_{g}}{\partial \mu}+\frac{\boldsymbol{e}_{\alpha}}{v_{\perp}} \frac{\partial f_{g}}{\partial \alpha}\right) \\
& =-\frac{q}{m}(\delta \mathbf{E}+\mathbf{v} \times \delta \mathbf{B}) \times\left(\frac{\boldsymbol{e}_{\|}}{\Omega}\right) \cdot \frac{\partial f_{g}}{\partial \mathbf{X}}-\frac{q}{m}(\mathbf{v} \times \delta \mathbf{B}) \cdot\left(\frac{\boldsymbol{e}_{\alpha}}{v_{\perp}} \frac{\partial f_{g}}{\partial \alpha}\right) \\
& -\frac{q}{m} \delta \mathbf{E} \cdot\left(\mathbf{v} \frac{\partial f_{g}}{\partial \varepsilon}+\frac{\mathbf{v}_{\perp}}{B_{0}} \frac{\partial f_{g}}{\partial \mu}+\frac{\boldsymbol{e}_{\alpha}}{v_{\perp}} \frac{\partial f_{g}}{\partial \alpha}\right) \tag{62}
\end{align*}
$$

It is instructive to consider some special cases of the above complicated equation. Consider the case that the equilibrium magnetic field \mathbf{B}_{0} is uniform and time-independent, $\mathbf{E}_{0}=0$, and the electrostatic limit $\delta \mathbf{B}=0$, then equation (62) is simplified as

$$
\begin{align*}
& \frac{\partial f_{g}}{\partial t}+v_{\|} \mathbf{e}_{\|} \cdot \frac{\partial f_{g}}{\partial \mathbf{X}}-\Omega \frac{\partial f_{g}}{\partial \alpha} \\
& =-\frac{q}{m}(\delta \mathbf{E}) \times\left(\frac{\boldsymbol{e}_{\|}}{\Omega}\right) \cdot \frac{\partial f_{g}}{\partial \mathbf{X}} \tag{63}\\
& -\frac{q}{m} \delta \mathbf{E} \cdot\left(\mathbf{v} \frac{\partial f_{g}}{\partial \varepsilon}+\frac{\mathbf{v}_{\perp}}{B_{0}} \frac{\partial f_{g}}{\partial \mu}+\frac{\boldsymbol{e}_{\alpha}}{v_{\perp}} \frac{\partial f_{g}}{\partial \alpha}\right) \tag{64}
\end{align*}
$$

If neglecting the $\delta \mathbf{E}$ perturbation, the above equation reduces to

$$
\begin{equation*}
\frac{\partial f_{g}}{\partial t}+v_{\|} \mathbf{e}_{\|} \cdot \frac{\partial f_{g}}{\partial \mathbf{X}}-\Omega \frac{\partial f_{g}}{\partial \alpha}=0 \tag{65}
\end{equation*}
$$

which agrees with Eq. (21) discussed in Sec. 1.2.

3.2 Distribution function perturbation

Expand the distribution function f_{g} as

$$
\begin{equation*}
f_{g}=F_{g}+\delta F_{g}, \tag{66}
\end{equation*}
$$

where F_{g} is assumed to be an equilibrium distribution function, i.e.,

$$
\begin{equation*}
L_{g} F_{g}=0 \tag{67}
\end{equation*}
$$

Using Eqs. (66) and (67) in Eq. (61), we obtain an equation for δF_{g} :

$$
\begin{equation*}
L_{g} \delta F_{g}=\delta R F_{g}+\delta R \delta F_{g} . \tag{68}
\end{equation*}
$$

3.3 Gyrokinetic ordering

To facilitate the simplification of the Vlasov equation in the low-frequency regime, we assume the following orderings (some of which are roughly based on experiment measure of fluctuations responsible for tokamak plasma transport, some of which can be invalid in some interesting cases.) These ordering are often called the standard gyrokinetic orderings.

3.3.1 Assumptions for equilibrium quantities

Define the spatial scale length L_{0} of equilibrium quantities by $L_{0} \approx F_{g} /\left|\nabla_{X} F_{g}\right|$. Assume that L_{0} is much larger than the thermal gyro-radius $\rho_{i} \equiv v_{t} / \Omega$, i.e., $\lambda \equiv \rho_{i} / L_{0}$ is a small parameter, where $v_{t}=\sqrt{2 T / m}$ is the thermal velocity. That is

$$
\begin{equation*}
\frac{1}{F_{g}} \rho_{i}\left|\nabla_{X} F_{g}\right| \sim O\left(\lambda^{1}\right) \tag{69}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{B_{0}} \rho_{i}\left|\nabla_{X} B_{0}\right| \sim O\left(\lambda^{1}\right) . \tag{70}
\end{equation*}
$$

The equilibrium $\mathbf{E}_{0} \times \mathbf{B}_{0}$ flow, i.e.,

$$
\begin{equation*}
\mathbf{v}_{\mathbf{E} 0}=\mathbf{E}_{0} \times \mathbf{e}_{\|} / B_{0}=-\nabla \Phi_{0} \times \mathbf{e}_{\|} / B_{0}, \tag{71}
\end{equation*}
$$

is assumed to be weak with

$$
\begin{equation*}
\frac{\left|\mathbf{v}_{E 0}\right|}{v_{t}} \sim O\left(\lambda^{1}\right) \tag{72}
\end{equation*}
$$

3.3.2 Assumptions for perturbations

We assume that the amplitudes of perturbations are small. Specifically, we assume

$$
\begin{equation*}
\frac{\delta F_{g}}{F_{0}} \sim \frac{q \delta \Phi}{T} \sim \frac{|\delta \mathbf{B}|}{B_{0}} \sim O\left(\lambda^{1}\right) \tag{73}
\end{equation*}
$$

where $\delta \Phi$ is the perturbed scalar potential defined later in Eq. (79).
We consider low frequency perturbations with $\omega / \Omega \sim O\left(\lambda^{1}\right)$, then

$$
\begin{equation*}
\frac{1}{\delta F_{g}} \frac{1}{\Omega} \frac{\partial \delta F_{g}}{\partial t} \sim O\left(\lambda^{1}\right) \tag{74}
\end{equation*}
$$

The perturbation is assumed to have a long wavelength (much longer than ρ_{i}) in the parallel direction

$$
\begin{equation*}
\frac{1}{\delta F_{g}}\left|\rho_{i} \mathbf{e}_{\|} \cdot \nabla_{X} \delta F_{g}\right| \sim O\left(\lambda^{1}\right) \tag{75}
\end{equation*}
$$

and have a short wavelength comparable to the thermal gyro-radius in the perpendicular direction

$$
\begin{equation*}
\frac{1}{\delta F_{g}}\left|\rho_{i} \nabla_{X \perp} \delta F_{g}\right| \sim O\left(\lambda^{0}\right) . \tag{76}
\end{equation*}
$$

[Combining Eq. (75) and (76), we obtain

$$
\begin{equation*}
\frac{k_{\|}}{k_{\perp}} \approx \frac{\mathbf{e}_{\|} \cdot \nabla_{X}}{\nabla_{X \perp}} \sim O(\lambda) \tag{77}
\end{equation*}
$$

i.e., the parallel wave number is one order smaller than the perpendicular wave-number.]

In terms of the scalar and vector potentials $\delta \Phi$ and $\delta \mathbf{A}$, the perturbed electromagnetic field is written as

$$
\begin{equation*}
\delta \mathbf{B}=\nabla_{x} \times \delta \mathbf{A} \tag{78}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta \mathbf{E}=-\nabla_{x} \delta \Phi-\frac{\partial \delta \mathbf{A}}{\partial t} \tag{79}
\end{equation*}
$$

Then

$$
\begin{align*}
\delta \mathbf{E}_{\|} & =-\nabla_{\|} \delta \Phi-\left(\frac{\partial \delta \mathbf{A}}{\partial t}\right)_{\|} \tag{80}\\
\delta \mathbf{E}_{\perp} & =-\nabla_{\perp} \delta \Phi-\left(\frac{\partial \delta \mathbf{A}}{\partial t}\right)_{\perp} \tag{81}
\end{align*}
$$

Using the above orderings, it is ready see that $\delta E_{\|}$is one order smaller than δE_{\perp}, i.e.,

$$
\begin{equation*}
\frac{\delta E_{\|}}{\delta E_{\perp}}=O\left(\lambda^{1}\right) \tag{82}
\end{equation*}
$$

Most gyrokinetic simulations approximate the vector potential as $\delta \mathbf{A} \approx \delta A_{\|} \mathbf{e}_{\|}$.

$$
\begin{equation*}
\delta \mathbf{B}=\nabla_{x} \times\left(\delta A_{\|} \mathbf{e}_{\|}\right) \approx \nabla_{x} \delta A_{\|} \times \mathbf{e}_{\|} \tag{83}
\end{equation*}
$$

We will assume $v_{t} \delta A_{\|} \sim \delta \Phi$.

3.4 Equation for macroscopic distribution function $\boldsymbol{F}_{\boldsymbol{g}}$

The evolution of the macroscopic quantity F_{g} is governed by Eq. (67), i.e.,

$$
\begin{equation*}
L_{g} F_{g}=0 \tag{84}
\end{equation*}
$$

where the left-hand side is written as

$$
\begin{aligned}
L_{g} F_{g} & =\frac{\partial F_{g}}{\partial t}+\frac{\partial \mathbf{X}}{\partial t} \cdot \frac{\partial F_{g}}{\partial \mathbf{X}}+\frac{\partial \mathbf{V}}{\partial t} \cdot \frac{\partial F_{g}}{\partial \mathbf{V}} \\
& +\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{\mathbf{E} 0}\right) \cdot \frac{\partial F_{g}}{\partial \mathbf{X}}+\mathbf{v} \cdot\left[\left(\boldsymbol{\lambda}_{B 1}+\boldsymbol{\lambda}_{B 2}\right) F_{g}\right]-\Omega \frac{\partial F_{g}}{\partial \alpha} \\
& +\frac{q}{m} \mathbf{E}_{0} \cdot\left(\frac{\mathbf{v}_{\perp}}{B_{0}} \frac{\partial F_{g}}{\partial \mu}+\frac{\boldsymbol{e}_{\alpha}}{v_{\perp}} \frac{\partial F_{g}}{\partial \alpha}\right)
\end{aligned}
$$

Expand F_{g} as $F_{g}=F_{g 0}+F_{g 1}+\ldots$, where $F_{g i} \sim F_{g 0} O\left(\lambda^{i}\right)$. Then, the balance on order $O\left(\lambda^{0}\right)$ gives

$$
\begin{equation*}
\frac{\partial F_{g 0}}{\partial \alpha}=0 \tag{85}
\end{equation*}
$$

i.e., $F_{g 0}$ is independent of the gyro-angle α. The balance on $O\left(\lambda^{1}\right)$ gives

$$
\begin{equation*}
v_{\|} \mathbf{e}_{\|} \cdot \frac{\partial F_{g 0}}{\partial \mathbf{X}}+\frac{q}{m} \mathbf{E}_{0} \cdot\left(\frac{\mathbf{v}_{\perp}}{B_{0}} \frac{\partial F_{g 0}}{\partial \mu}\right)=\Omega \frac{\partial F_{g 1}}{\partial \alpha} \tag{86}
\end{equation*}
$$

Performing averaging over $\alpha, \int_{0}^{2 \pi}(\ldots) d \alpha$, on the above equation and noting that $F_{g 0}$ is independent of α, we obtain

$$
\begin{equation*}
\left(\int_{0}^{2 \pi} d \alpha v_{\|} \mathbf{e}_{\|}\right) \cdot \frac{\partial F_{g 0}}{\partial \mathbf{X}}+\frac{q}{m} \frac{\partial F_{g 0}}{\partial \mu} \int_{0}^{2 \pi} d \alpha \mathbf{E}_{0} \cdot\left(\frac{\mathbf{v}_{\perp}}{B_{0}}\right)=\int_{0}^{2 \pi} d \alpha \Omega \frac{\partial F_{g 1}}{\partial \alpha} \tag{87}
\end{equation*}
$$

Note that a quantity $A=A(\mathbf{x})$ that is independent of \mathbf{v} will depend on \mathbf{v} when transformed to guiding-center coordinates, i.e., $A(\mathbf{x})=A_{g}(\mathbf{X}, \mathbf{v})$. Therefore A_{g} depends on gyro-angle α. However, since $\rho_{i} / L \ll 1$ for equilibrium quantities, the gyro-angle dependence of the equilibrium quantities can be neglected. Specifically, $\mathbf{e}_{\|}, B_{0}$ and Ω can be considered to be independent of α. As to $v_{\|}$, we have $v_{\|}= \pm \sqrt{2\left(\varepsilon-B_{0} \mu\right)}$. Since B_{0} is considered independent of α, so does $v_{\|}$. Using these results, equation (87) is written

$$
\begin{equation*}
v_{\|} \mathbf{e}_{\|} \cdot \frac{\partial F_{g 0}}{\partial \mathbf{X}}+\frac{q}{m} \frac{\partial F_{g 0}}{\partial \mu} \int_{0}^{2 \pi} d \alpha \mathbf{E}_{0} \cdot\left(\frac{\mathbf{v}_{\perp}}{B_{0}}\right)=0 \tag{88}
\end{equation*}
$$

Using $\mathbf{E}_{0}=-\nabla \Phi_{0}$, the above equation is written as

Note that

$$
\begin{equation*}
v_{\|} \mathbf{e}_{\|} \cdot \frac{\partial F_{g 0}}{\partial \mathbf{X}}+\frac{q}{m} \frac{\partial F_{g 0}}{\partial \mu} \int_{0}^{2 \pi} d \alpha\left(\frac{-\mathbf{v}_{\perp} \cdot \nabla \Phi_{0}}{B_{0}}\right)=0 \tag{89}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{2 \pi} d \alpha \frac{1}{B_{0}} \mathbf{v}_{\perp} \cdot \nabla_{X} \Phi_{0} \approx 0 \tag{90}
\end{equation*}
$$

where the error is of $O\left(\lambda^{2}\right) \Phi_{0}$, and thus, accurate to $O(\lambda)$, the last term of equation (89) is zero. Then equation (89) is written as

$$
\begin{equation*}
v_{\|} \mathbf{e}_{\|} \cdot \frac{\partial F_{g 0}}{\partial \mathbf{X}}=0 \tag{91}
\end{equation*}
$$

which implies that $F_{g 0}$ is constant along a magnetic field line.

3.5 Equation for $\boldsymbol{\delta} \boldsymbol{F}_{g}$

Using $F_{g} \approx F_{g 0}$, equation (68) is written as

$$
\begin{equation*}
L_{g} \delta F_{g}=\delta R F_{g 0}+\underbrace{\delta R \delta F_{g}}_{\text {NonlinearTerm } \sim O\left(\lambda^{2}\right)}, \tag{92}
\end{equation*}
$$

where $\delta R \delta F_{g}$ is a nonlinear term which is of order $O\left(\lambda^{2}\right)$ or higher, $L_{g} \delta F_{g}$ and $\delta R F_{g 0}$ are linear terms which are of order $O\left(\lambda^{1}\right)$ or higher. The linear term $\delta R F_{g 0}$ is given by

$$
\begin{equation*}
\delta R F_{g 0}=\underbrace{-\frac{q}{m}\left(\delta \mathbf{E}+\frac{\mathbf{v} \times \delta \mathbf{B}}{c}\right) \times\left(\frac{\boldsymbol{e}_{\|}}{\Omega}\right) \cdot \frac{\partial F_{g 0}}{\partial \mathbf{X}}}_{O\left(\lambda^{2}\right)}-\underbrace{\frac{q}{m} \delta \mathbf{E} \cdot\left(\mathbf{v} \frac{\partial F_{g 0}}{\partial \varepsilon}+\frac{\mathbf{v}_{\perp}}{B_{0}} \frac{\partial F_{g 0}}{\partial \mu}\right)}_{O\left(\lambda^{1}\right)}, \tag{93}
\end{equation*}
$$

In obtaining (93), use has been made of $\partial F_{g 0} / \partial \alpha=0$. Another linear term $L_{g} \delta F_{g}$ is written as

$$
\begin{align*}
L_{g} \delta F_{g} & =\frac{\partial \delta F_{g}}{\partial t}+\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{\mathbf{E} 0}\right) \cdot \frac{\partial \delta F_{g}}{\partial \mathbf{X}}+\mathbf{v} \cdot\left[\boldsymbol{\lambda}_{B 1}+\boldsymbol{\lambda}_{B 2}\right] \delta F_{g}-\underbrace{\Omega \frac{\partial \delta F_{g}}{\partial \alpha}}_{O\left(\lambda^{1}\right)} \\
& +\frac{q}{m} \mathbf{E}_{0} \cdot\left(\frac{\mathbf{v}_{\perp}}{B_{0}} \frac{\partial \delta F_{g}}{\partial \mu}+\frac{\boldsymbol{e}_{\alpha}}{v_{\perp}} \frac{\partial \delta F_{g}}{\partial \alpha}\right), \tag{94}
\end{align*}
$$

where $\Omega \partial \delta F_{g} / \partial \alpha$ is of order $O\left(\lambda^{1}\right)$ and all the other terms are of order $O\left(\lambda^{2}\right)$.
Next, to reduce the complexity of algebra, we consider the easier case in which $\partial F_{g 0} / \partial \mu=0$.

3.5.1 Balance on order $O\left(\lambda^{1}\right)$: adiabatic response

The balance between the leading terms (terms of $O(\lambda)$) in Eq. (92) requires that

$$
\begin{equation*}
\Omega \frac{\partial \delta F_{a}}{\partial \alpha}=\frac{q}{m} \delta \mathbf{E} \cdot\left(\mathbf{v} \frac{\partial F_{g 0}}{\partial \varepsilon}\right) \tag{95}
\end{equation*}
$$

where δF_{a} is a unknown distribution function to be solved from the above equation. It is ready to verify that

$$
\begin{equation*}
\delta F_{a}=\frac{q}{m} \delta \Phi \frac{\partial F_{g 0}}{\partial \varepsilon} \tag{96}
\end{equation*}
$$

is a solution to the above equation, accurate to $O(\lambda)$. [Proof: Substitute expression (96) into the left-hand side of Eq. (95), we obtain

$$
\begin{align*}
\Omega \frac{\partial \delta F_{a}}{\partial \alpha} & =\Omega \frac{\partial}{\partial \alpha}\left(\frac{q}{m} \delta \Phi \frac{\partial F_{g 0}}{\partial \varepsilon}\right) \\
& =\frac{q}{m} \frac{\partial F_{g 0}}{\partial \varepsilon} \Omega \frac{\partial}{\partial \alpha}(\delta \Phi) \\
& =\frac{q}{m} \frac{\partial F_{g 0}}{\partial \varepsilon} \Omega\left(\nabla_{x} \delta \Phi\right) \cdot \frac{\partial \mathbf{x}}{\partial \alpha} \tag{97}
\end{align*}
$$

Using

$$
\begin{align*}
\frac{\partial \mathbf{x}}{\partial \alpha} & =\frac{\partial}{\partial \alpha}\left[-\mathbf{v} \times \frac{e_{\|}(\mathbf{X})}{\Omega(\mathbf{X})}\right] \\
& =\frac{\partial}{\partial \alpha}[-\mathbf{v}] \times \frac{e_{\|}(\mathbf{X})}{\Omega(\mathbf{X})} \\
& =-\frac{\mathbf{v}_{\perp}}{\Omega} \tag{98}
\end{align*}
$$

Eq. (97) is written as

$$
\begin{align*}
\Omega \frac{\partial \delta F_{a}}{\partial \alpha} & =-\frac{q}{m} \frac{\partial F_{g 0}}{\partial \varepsilon} \Omega\left(\nabla_{x} \delta \Phi\right) \cdot \frac{\mathbf{v}_{\perp}}{\Omega} \\
& =\frac{q}{m} \frac{\partial F_{g 0}}{\partial \varepsilon}\left(\delta \mathbf{E}+\frac{\partial \delta \mathbf{A}}{\partial t}\right) \cdot \mathbf{v}_{\perp} \tag{99}\\
& \approx \frac{q}{m} \frac{\partial F_{g 0}}{\partial \varepsilon}(\delta \mathbf{E}) \cdot \mathbf{v}_{\perp}, \tag{100}
\end{align*}
$$

where terms of $O\left(\lambda^{2}\right)$ have been dropped. Similarly, dropping the parallel electric field term (which is of $O\left(\lambda^{2}\right)$) on the right-hand side of Eq. (95), we find it is identical to the right-hand side of Eq. (100)]

3.5.2 Separate δF_{g} into adiabatic and non-adiabatic part

As is discussed above, the terms of $O(\lambda)$ can be eliminated by splitting a so-called adiabatic term form δF_{g}. Specifically, write δF_{g} as

$$
\begin{equation*}
\delta F_{g}=\delta F_{a}+\delta G \tag{101}
\end{equation*}
$$

where δF_{a} is given by (96), i.e.,

$$
\begin{equation*}
\delta F_{a}=\frac{q}{m} \delta \Phi \frac{\partial F_{g 0}}{\partial \varepsilon} \tag{102}
\end{equation*}
$$

which depends on the gyro-angle via $\delta \Phi$ and this term is often called adiabatic term. Plugging expression (101) into equation (92), we obtain

$$
\begin{equation*}
L_{g} \delta G=\underbrace{\delta R F_{g 0}-L_{g} \delta F_{a}}_{\text {LinearTerms }}+\underbrace{\delta R \delta F_{g}}_{\text {NonlinearTerms }} \tag{103}
\end{equation*}
$$

Next, let us simplify the linear term on the right-hand side, i.e, $\delta R F_{g 0}-L_{g f} \delta F_{a}$, (which should be of $O\left(\lambda^{2}\right)$ or higher because $\Omega \partial \delta F_{a} / \partial \alpha$ cancels all the $O\left(\lambda^{1}\right)$ terms in $\left.\delta R F_{g 0}\right)$.
$L_{g} \delta F_{a}$ is written

$$
\begin{align*}
L_{g} \delta F_{a} & =\frac{q}{m} \frac{\partial F_{g 0}}{\partial \varepsilon} L_{g} \delta \Phi+\frac{q}{m} \delta \Phi L_{g} \frac{\partial F_{g 0}}{\partial \varepsilon} \\
& \approx \frac{q}{m} \frac{\partial F_{g 0}}{\partial \varepsilon} L_{g} \delta \Phi \tag{104}
\end{align*}
$$

where the error is of order $O\left(\lambda^{3}\right)$. In obtaining the above expression, use has been made of $\mathbf{e}_{\|}$. $\partial F_{g 0} / \partial \mathbf{X}=0, \partial F_{g 0} / \partial \mathbf{X}=O\left(\lambda^{1}\right) F_{g 0}, \partial F_{g 0} / \partial \alpha=0, \partial F_{g 0} / \partial \mu=0$, and the definition of $\boldsymbol{\lambda}_{B 1}$ and $\boldsymbol{\lambda}_{B 2}$ given in expressions (39) and (40). The expression (104) involves $\delta \Phi$ operated by the Vlasov propagator L_{g}. Since $\delta \Phi$ takes the most simple form when expressed in particle coordinates (if in guiding-center coordinates, $\delta \Phi(\mathbf{x})=\delta \Phi\left(\mathbf{X}-\mathbf{v} \times \mathbf{e}_{\|} / \Omega\right)$, which depends on velocity coordinates and thus more complicated), it is convenient to use the Vlasov propagator L_{g} expressed in particle coordinates. Transforming L_{g} back to the particle coordinates, expression (104) is written

$$
\begin{align*}
L_{g} \delta F_{a} & =\frac{q}{m} \frac{\partial F_{g 0}}{\partial \varepsilon}\left[\left.\frac{\partial \delta \Phi}{\partial t}\right|_{\mathbf{x}, \mathbf{v}}+\mathbf{v} \cdot \nabla_{\mathbf{x}} \delta \Phi+\left.\frac{q}{m}\left(\mathbf{E}_{0}+\mathbf{v} \times \mathbf{B}_{0}\right) \cdot \frac{\partial \Phi}{\partial \mathbf{v}}\right|_{\mathbf{x}}\right] \\
& =\frac{q}{m} \frac{\partial F_{g 0}}{\partial \varepsilon}\left[\left.\frac{\partial \delta \Phi}{\partial t}\right|_{\mathbf{x}, \mathbf{v}}+\mathbf{v} \cdot \nabla_{\mathbf{x}} \delta \Phi\right] \tag{105}\\
& =\frac{q}{m} \frac{\partial F_{g 0}}{\partial \varepsilon}\left[\left.\frac{\partial \delta \Phi}{\partial t}\right|_{\mathbf{x}, \mathbf{v}}+\mathbf{v} \cdot\left(-\delta \mathbf{E}-\left.\frac{\partial \delta \mathbf{A}}{\partial t}\right|_{\mathbf{x}, \mathbf{v}}\right)\right] \\
& =\frac{q}{m} \frac{\partial F_{g 0}}{\partial \varepsilon}\left[\left.\frac{\partial \delta \Phi}{\partial t}\right|_{\mathbf{x}, \mathbf{v}}-\mathbf{v} \cdot \delta \mathbf{E}-\left.\frac{\partial \mathbf{v} \cdot \delta \mathbf{A}}{\partial t}\right|_{\mathbf{x}, \mathbf{v}}\right] \tag{106}\\
& =\frac{q}{m} \frac{\partial F_{g 0}}{\partial \varepsilon}\left[\frac{\partial \delta \Phi}{\partial t}-\mathbf{v} \cdot \delta \mathbf{E}-\frac{\partial \mathbf{v} \cdot \delta \mathbf{A}}{\partial t}\right] \tag{107}
\end{align*}
$$

Using this and expression (93), $\delta R F_{g 0}-L_{g} \delta F_{a}$ is written as

$$
\begin{align*}
\delta R F_{g 0}-L_{g} \delta F_{a} & =-\frac{q}{m}(\delta \mathbf{E}+\mathbf{v} \times \delta \mathbf{B}) \times\left(\frac{\boldsymbol{e}_{\|}}{\Omega}\right) \cdot \frac{\partial F_{g 0}}{\partial \mathbf{X}}-\frac{q}{m} \delta \mathbf{E} \cdot\left(\mathbf{v} \frac{\partial F_{g 0}}{\partial \varepsilon}\right) \\
& -\frac{q}{m} \frac{\partial F_{g 0}}{\partial \varepsilon}\left[\frac{\partial \delta \Phi}{\partial t}-\mathbf{v} \cdot \delta \mathbf{E}-\frac{\partial \mathbf{v} \cdot \delta \mathbf{A}}{\partial t}\right] \\
& =-\frac{q}{m}(\delta \mathbf{E}+\mathbf{v} \times \delta \mathbf{B}) \times\left(\frac{\boldsymbol{e}_{\|}}{\Omega}\right) \cdot \frac{\partial F_{g 0}}{\partial \mathbf{X}}-\frac{q}{m} \frac{\partial F_{g 0}}{\partial \varepsilon}\left[\frac{\partial \Phi}{\partial t}-\frac{\partial \mathbf{v} \cdot \delta \mathbf{A}}{\partial t}\right], \tag{108}
\end{align*}
$$

where the two terms of $O\left(\lambda^{1}\right)$ (the terms in blue and red) cancel each other, with the remain terms being all of $O\left(\lambda^{2}\right)$, i.e, the contribution of the adiabatic term cancels the leading order terms of $O\left(\lambda^{1}\right)$ on the RHS of Eq. (103).

The consequence of this is that, as we will see in Sec. 3.6.1, δG is independent of the gyroangle, accurate to order $O\left(\lambda^{1}\right)$. Therefore, separating δF into adiabatic and non-adiabatic parts also corresponds to separating δF into gyro-angle dependent and gyro-angle independent parts.

3.5.3 Linear term expressed in terms of $\delta \Phi$ and $\delta \mathrm{A}$

Let us rewrite the linear term (108) in terms of $\delta \Phi$ and $\delta \mathbf{A}$. The $\delta \mathbf{E}+\mathbf{v} \times \delta \mathbf{B}$ term in expression (108) is written as

$$
\begin{equation*}
\delta \mathbf{E}+\mathbf{v} \times \delta \mathbf{B}=-\nabla_{x} \delta \Phi-\frac{\partial \delta \mathbf{A}}{\partial t}+\mathbf{v} \times \nabla_{x} \times \delta \mathbf{A} \tag{109}
\end{equation*}
$$

Note that this term needs to be accurate to only $O(\lambda)$. Then

$$
\begin{equation*}
\delta \mathbf{E}+\mathbf{v} \times \delta \mathbf{B} \approx-\nabla_{x} \delta \Phi+\mathbf{v} \times \nabla_{x} \times \delta \mathbf{A}, \tag{110}
\end{equation*}
$$

where the error is of $O\left(\lambda^{2}\right)$. Using the vector identity $\mathbf{v} \times \nabla_{x} \times \delta \mathbf{A}=(\nabla \delta \mathbf{A}) \cdot \mathbf{v}-(\mathbf{v} \cdot \nabla) \delta \mathbf{A}$ and noting \mathbf{v} is constant for ∇_{x} operator, the above equation is written

$$
\begin{equation*}
\delta \mathbf{E}+\mathbf{v} \times \delta \mathbf{B}=-\nabla_{x} \delta \Phi+\nabla_{x}(\delta \mathbf{A} \cdot \mathbf{v})-\left(\mathbf{v} \cdot \nabla_{x}\right) \delta \mathbf{A} \tag{111}
\end{equation*}
$$

Note that Eq. (41) indicates that $\nabla_{x} \delta \Phi \approx \nabla_{X} \delta \Phi$, where the error is of $O\left(\lambda^{2}\right)$, then the above equation is written

$$
\begin{equation*}
\delta \mathbf{E}+\mathbf{v} \times \delta \mathbf{B}=-\nabla_{X} \delta \Phi+\nabla_{X}(\delta \mathbf{A} \cdot \mathbf{v})-\left(\mathbf{v} \cdot \nabla_{X}\right) \delta \mathbf{A} \tag{112}
\end{equation*}
$$

Further note that the parallel gradients in the above equation are of $O\left(\lambda^{2}\right)$ and thus can be dropped. Then expression (112) is written

$$
\begin{align*}
& \delta \mathbf{E}+\mathbf{v} \times \delta \mathbf{B} \\
& =-\nabla_{X} \perp \delta \Phi+\nabla_{X \perp}(\delta \mathbf{A} \cdot \mathbf{v})-\left(\mathbf{v}_{\perp} \cdot \nabla_{X \perp}\right) \delta \mathbf{A} . \\
& =-\nabla_{X \perp} \delta L-\mathbf{v}_{\perp} \cdot \nabla_{X \perp} \delta \mathbf{A} \tag{113}
\end{align*}
$$

where δL is defined by

$$
\begin{equation*}
\delta L=\delta \Phi-\mathbf{v} \cdot \delta \mathbf{A} \tag{114}
\end{equation*}
$$

Using expression (113), equation (108) is written

$$
\begin{equation*}
\delta R F_{0}-L_{g} \delta F_{a}=-\frac{q}{m}\left[\left(-\nabla_{X \perp} \delta L-\mathbf{v}_{\perp} \cdot \nabla_{X \perp} \delta \mathbf{A}\right) \times \frac{\boldsymbol{e}_{\|}}{\Omega}\right] \cdot \frac{\partial F_{g 0}}{\partial \mathbf{X}}-\frac{q}{m} \frac{\partial \delta L}{\partial t} \frac{\partial F_{g 0}}{\partial \varepsilon} \tag{115}
\end{equation*}
$$

where all terms are of $O\left(\lambda^{2}\right)$.

3.6 Equation for the non-adiabatic part δG

Plugging expression (115) into Eq. (103), we obtain

$$
\begin{equation*}
L_{g} \delta G=-\frac{q}{m}\left[\left(-\nabla_{X \perp} \delta L-\mathbf{v}_{\perp} \cdot \nabla_{X \perp} \delta \mathbf{A}\right) \times \frac{\boldsymbol{e}_{\|}}{\Omega}\right] \cdot \frac{\partial F_{g 0}}{\partial \mathbf{X}}-\frac{q}{m} \frac{\partial \delta L}{\partial t} \frac{\partial F_{g 0}}{\partial \varepsilon}+\delta R \delta F_{g} \tag{116}
\end{equation*}
$$

where L_{g} is given by Eq. (94), i.e.,

$$
\begin{align*}
L_{g} & =\frac{\partial}{\partial t}+\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{\mathbf{E} 0}\right) \cdot \frac{\partial}{\partial \mathbf{X}}+\mathbf{v} \cdot\left[\boldsymbol{\lambda}_{B 1}+\boldsymbol{\lambda}_{B 2}\right]-\Omega \frac{\partial}{\partial \alpha} \\
& +\frac{q}{m} \mathbf{E}_{0} \cdot\left(\frac{\mathbf{v}_{\perp}}{B_{0}} \frac{\partial}{\partial \mu}+\frac{\boldsymbol{e}_{\alpha}}{v_{\perp}} \frac{\partial}{\partial \alpha}\right), \tag{117}
\end{align*}
$$

3.6.1 Expansion of δG

Expand δG as

$$
\delta G=\delta G_{0}+\delta G_{1}+\ldots,
$$

where $\delta G_{i} \sim O\left(\lambda^{i+1}\right) F_{g 0}$, and note that the right-hand side of Eq. (116) is of $O\left(\lambda^{2}\right)$, then, the balance on order $O\left(\lambda^{1}\right)$ requires

$$
\begin{equation*}
\frac{\partial \delta G_{0}}{\partial \alpha}=0 \tag{118}
\end{equation*}
$$

i.e., δG_{0} is gyro-phase independent.

The balance on order $O\left(\lambda^{2}\right)$ requires (for the special case of $\mathbf{E}_{0}=0$):

$$
\begin{align*}
& \frac{\partial \delta G_{0}}{\partial t}+v_{\|} \mathbf{e}_{\|} \cdot \frac{\partial \delta G_{0}}{\partial \mathbf{X}}+\mathbf{v} \cdot\left[\boldsymbol{\lambda}_{B 1}+\boldsymbol{\lambda}_{B 2}\right] \delta G_{0} \\
= & -\frac{q}{m}\left[\left(-\nabla_{X \perp} \delta L-\mathbf{v}_{\perp} \cdot \nabla_{X} \delta \mathbf{A}\right) \times \frac{\boldsymbol{e}_{\|}}{\Omega}\right] \cdot \frac{\partial F_{g 0}}{\partial \mathbf{X}}-\frac{q}{m} \frac{\partial \delta L}{\partial t} \frac{\partial F_{g 0}}{\partial \varepsilon}+\delta R \delta F_{g} . \tag{119}
\end{align*}
$$

3.6.2 Gyro-averaging

Define the gyro-average operator $\langle\ldots\rangle_{\alpha}$ by

$$
\begin{equation*}
\langle h\rangle_{\alpha}=(2 \pi)^{-1} \int_{0}^{2 \pi} h d \alpha \tag{120}
\end{equation*}
$$

where $h=h(\mathbf{X}, \alpha, \varepsilon, \mu)$ is an arbitrary function of guiding-center variables. The gyro-averaging is an integration in the velocity space. [For a field quantity, which is independent of the velocity in particle coordinates, i.e., $h=h(\mathbf{x})$, it is ready to see that the above averaging is a spatial averaging over a gyro-ring.]

Gyro-averaging Eq. (119), we obtain

$$
\begin{align*}
& \frac{\partial \delta G_{0}}{\partial t}+\left\langle v_{\|} \mathbf{e}_{\|} \cdot \frac{\partial \delta G_{0}}{\partial \mathbf{X}}\right\rangle+\left\langle\mathbf{v} \cdot\left[\boldsymbol{\lambda}_{B 1}+\boldsymbol{\lambda}_{B 2}\right] \delta G_{0}\right\rangle_{\alpha} \\
& =-\frac{q}{m}\left[-\nabla_{X \perp}\langle\delta L\rangle_{\alpha} \times \frac{\boldsymbol{e}_{\|}}{\Omega}\right] \cdot \frac{\partial F_{g 0}}{\partial \mathbf{X}}-\frac{q}{m} \frac{\partial\langle\delta L\rangle_{\alpha}}{\partial t} \frac{\partial F_{g 0}}{\partial \varepsilon}+\left\langle\delta R \delta F_{g}\right\rangle_{\alpha} \tag{121}
\end{align*}
$$

where use has been made of $\left\langle\left(\mathbf{v}_{\perp} \cdot \nabla_{X}\right) \delta \mathbf{A}\right\rangle_{\alpha} \approx 0$, where the error is of order higher than $O\left(\lambda^{2}\right)$. Note that $v_{\|}= \pm \sqrt{2\left(\varepsilon-B_{0} \mu\right)}$. Since B_{0} is approximately independent of α, so does $v_{\|}$. Using this, the first gyro-averaging on the left-hand side of the above equation is written

$$
\begin{equation*}
\left\langle v_{\|} \mathbf{e}_{\|} \cdot \frac{\partial \delta G_{0}}{\partial \mathbf{X}}\right\rangle_{\alpha}=\left\langle v_{\|} \mathbf{e}_{\|}\right\rangle \cdot \frac{\partial \delta G_{0}}{\partial \mathbf{X}}=v_{\|} \mathbf{e}_{\|} \cdot \frac{\partial \delta G_{0}}{\partial \mathbf{X}} \tag{122}
\end{equation*}
$$

The second gyro-averaging on the left-hand side of Eq. (121) can be written as

$$
\begin{equation*}
\left\langle\mathbf{v} \cdot\left[\boldsymbol{\lambda}_{B 1}+\boldsymbol{\lambda}_{B 2}\right] \delta G_{0}\right\rangle_{\alpha}=\mathbf{V}_{D} \cdot \nabla_{X} \delta G_{0} \tag{123}
\end{equation*}
$$

where \mathbf{V}_{D} is the magnetic curvature and gradient drift (Eq. (123) is derived in Appendix xx , to do later). Then Eq. (121) is written

$$
\begin{align*}
& {\left[\frac{\partial}{\partial t}+\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}\right) \cdot \nabla_{X}\right] \delta G_{0}} \\
& =-\frac{q}{m}\left[-\nabla_{X \perp}\langle\delta L\rangle_{\alpha} \times \frac{\boldsymbol{e}_{\|}}{\Omega}\right] \cdot \frac{\partial F_{g 0}}{\partial \mathbf{X}}-\frac{q}{m} \frac{\partial\langle\delta L\rangle_{\alpha}}{\partial t} \frac{\partial F_{g 0}}{\partial \varepsilon}+\left\langle\delta R \delta F_{g}\right\rangle_{\alpha} \tag{124}
\end{align*}
$$

3.6.3 Simplification of the nonlinear term

Next, we try to simplify the nonlinear term $\left\langle\delta R \delta F_{g}\right\rangle_{\alpha}$ appearing in Eq. (124), which is written as

$$
\begin{align*}
\left\langle\delta R \delta F_{g}\right\rangle_{\alpha} & =\left\langle\delta R\left(\frac{q}{m} \delta \Phi \frac{\partial F_{g 0}}{\partial \varepsilon}+\delta G_{0}\right)\right\rangle_{\alpha} \\
& =\left\langle\frac{q}{m} \delta R\left(\delta \Phi \frac{\partial F_{g 0}}{\partial \varepsilon}\right)\right\rangle_{\alpha}+\left\langle\delta R \delta G_{0}\right\rangle_{\alpha} \tag{125}
\end{align*}
$$

First, let us focus on the first term, which can be written as

$$
\begin{align*}
\delta R\left(\delta \Phi \frac{\partial F_{g 0}}{\partial \varepsilon}\right) & \approx-\frac{q}{m} \frac{\partial F_{g 0}}{\partial \varepsilon}\left(\delta \mathbf{E}+\frac{\mathbf{v} \times \delta \mathbf{B}}{c}\right) \times\left(\frac{\boldsymbol{e}_{\|}}{\Omega}\right) \cdot \frac{\partial \delta \Phi}{\partial \mathbf{X}}-\frac{q}{m} \frac{\partial F_{g 0}}{\partial \varepsilon}\left(\frac{\mathbf{v} \times \delta \mathbf{B}}{c}\right) \cdot\left(\frac{\boldsymbol{e}_{\alpha}}{v_{\perp}} \frac{\partial \delta \Phi}{\partial \alpha}\right) \\
& -\frac{q}{m} \frac{\partial F_{g 0}}{\partial \varepsilon} \delta \mathbf{E} \cdot\left(\mathbf{v} \frac{\partial \delta \Phi}{\partial \varepsilon}+\frac{\mathbf{v}_{\perp}}{B_{0}} \frac{\partial \delta \Phi}{\partial \mu}+\frac{\boldsymbol{e}_{\alpha}}{v_{\perp}} \frac{\partial \delta \Phi}{\partial \alpha}\right)+\frac{q}{m} \delta \Phi \delta \mathbf{E} \cdot \mathbf{v} \frac{\partial^{2} F_{g 0}}{\partial \varepsilon^{2}} \\
& =-\frac{q}{m}\left(\delta \mathbf{E}+\frac{\mathbf{v} \times \delta \mathbf{B}}{c}\right) \cdot \nabla_{v} \delta \Phi+\frac{q}{m} \delta \Phi \delta \mathbf{E} \cdot \mathbf{v} \frac{\partial^{2} F_{g 0}}{\partial \varepsilon^{2}} \\
& =\frac{q}{m} \delta \Phi \delta \mathbf{E} \cdot \mathbf{v} \frac{\partial^{2} F_{g 0}}{\partial \varepsilon^{2}} \tag{126}
\end{align*}
$$

Using the above results, the nonlinear term $\langle\delta R \delta F\rangle_{\alpha}$ is written as

$$
\begin{equation*}
\langle\delta R \delta F\rangle_{\alpha}=\frac{q}{m}\left\langle\delta \Phi \delta \mathbf{E} \cdot \mathbf{v} \frac{\partial^{2} F_{g 0}}{\partial \varepsilon^{2}}\right\rangle_{\alpha}+\left\langle\delta R \delta G_{0}\right\rangle_{\alpha} \tag{127}
\end{equation*}
$$

Accurate to $O\left(\lambda^{2}\right)$, the first term on the right-hand side of the above is zero. [Proof:

$$
\begin{align*}
\left\langle\delta \Phi \delta \mathbf{E} \cdot \mathbf{v} \frac{\partial^{2} F_{g 0}}{\partial \varepsilon^{2}}\right\rangle_{\alpha} & =\left\langle\frac{\partial^{2} F_{g 0}}{\partial \varepsilon^{2}} \delta \Phi \nabla \delta \Phi \cdot \mathbf{v}\right\rangle_{\alpha} \\
& =\frac{\partial^{2} F_{g 0}}{\partial \varepsilon^{2}}\left\langle\mathbf{v} \cdot \nabla(\delta \Phi)^{2}\right\rangle_{\alpha} \\
& \approx \frac{\partial^{2} F_{g 0}}{\partial \varepsilon^{2}}\left\langle\mathbf{v}_{\perp} \cdot \nabla(\delta \Phi)^{2}\right\rangle_{\alpha} \\
& \approx 0 \tag{128}
\end{align*}
$$

where use has been made of $\left\langle\mathbf{v}_{\perp} \cdot \nabla_{X} \delta \Phi\right\rangle_{\alpha} \approx 0$, where the error is of $O\left(\lambda^{2}\right)$. Using the above results, expression (127) is written as

$$
\begin{equation*}
\left\langle\delta R \delta F_{g}\right\rangle_{\alpha}=\left\langle\delta R \delta G_{0}\right\rangle_{\alpha} \tag{129}
\end{equation*}
$$

Using the expression of δR given by Eq. (56), the above expression is written as

$$
\begin{align*}
\left\langle\delta R \delta G_{0}\right\rangle_{\alpha}= & -\frac{q}{m}\left\langle\left(\delta \mathbf{E}+\frac{\mathbf{v} \times \delta \mathbf{B}}{c}\right) \times\left(\frac{\boldsymbol{e}_{\|}}{\Omega}\right)\right\rangle_{\alpha} \cdot \frac{\partial \delta G_{0}}{\partial \mathbf{X}} \\
& -\frac{q}{m} \frac{\partial \delta G_{0}}{\partial \varepsilon}\langle\delta \mathbf{E} \cdot \mathbf{v}\rangle_{\alpha}-\frac{q}{m} \frac{\partial \delta G_{0}}{\partial \mu}\left\langle\delta \mathbf{E} \cdot \frac{\mathbf{v}_{\perp}}{B_{0}}\right\rangle_{\alpha} \tag{130}
\end{align*}
$$

where use has been made of $\partial \delta G_{0} / \partial \alpha=0$. Using Eq. (113), we obtain

$$
\begin{equation*}
-\frac{q}{m}\left\langle(\delta \mathbf{E}+\mathbf{v} \times \delta \mathbf{B}) \times\left(\frac{\boldsymbol{e}_{\|}}{\Omega}\right)\right\rangle_{\alpha}=\frac{q}{m} \nabla_{X \perp}\langle\delta L\rangle_{\alpha} \times \frac{\boldsymbol{e}_{\|}}{\Omega} \tag{131}
\end{equation*}
$$

The other two terms in Eq. (130) can be proved to be zero. [Proof:

$$
\begin{align*}
-\frac{q}{m} \frac{\partial \delta G_{0}}{\partial \varepsilon}\langle\delta \mathbf{E} \cdot \mathbf{v}\rangle_{\alpha} & =\frac{q}{m} \frac{\partial \delta G_{0}}{\partial \varepsilon}\left\langle\mathbf{v} \cdot \nabla_{x} \Phi\right\rangle_{\alpha} \\
& \approx \frac{q}{m} \frac{\partial \delta G_{0}}{\partial \varepsilon}\left\langle\mathbf{v}_{\perp} \cdot \nabla_{x} \Phi\right\rangle_{\alpha} \\
& \approx \frac{q}{m} \frac{\partial \delta G_{0}}{\partial \varepsilon}\left\langle\mathbf{v}_{\perp} \cdot \nabla_{X} \Phi\right\rangle_{\alpha} \\
& \approx 0 \tag{132}\\
-\frac{q}{m} \frac{\partial \delta G_{0}}{\partial \mu}\left\langle\delta \mathbf{E} \cdot \frac{\mathbf{v}_{\perp}}{B_{0}}\right\rangle_{\alpha} & =\frac{q}{m} \frac{\partial \delta G_{0}}{\partial \mu}\left\langle\frac{1}{B_{0}} \mathbf{v}_{\perp} \cdot \nabla_{x} \Phi\right\rangle_{\alpha} \\
& \approx \frac{q}{m} \frac{\partial \delta G_{0}}{\partial \mu}\left\langle\frac{1}{B_{0}} \mathbf{v}_{\perp} \cdot \nabla_{X} \Phi\right\rangle_{\alpha} \\
& \approx 0 \tag{133}
\end{align*}
$$

] Using the above results, the nonlinear term is finally written as

$$
\begin{equation*}
\left\langle\delta R \delta G_{0}\right\rangle_{\alpha}=\frac{q}{m}\left[\nabla_{X \perp}\langle\delta L\rangle_{\alpha} \times \frac{\boldsymbol{e}_{\|}}{\Omega}\right] \cdot \nabla_{X} \delta G_{0} \tag{134}
\end{equation*}
$$

Using this in Eq. (129), we obtain

$$
\begin{equation*}
\left\langle\delta R \delta F_{g}\right\rangle_{\alpha}=\frac{q}{m}\left[\nabla_{X \perp}\langle\delta L\rangle_{\alpha} \times \frac{e_{\|}}{\Omega}\right] \cdot \nabla_{X} \delta G_{0} \tag{135}
\end{equation*}
$$

which is of $O\left(\lambda^{2}\right)$.
3.6.4 Final equation for the non-adiabatic part of perturbed distribution function

Using the above results, the gyro-averaged kinetic equation for δG_{0} is finally written as

$$
\begin{align*}
& \frac{\partial \delta G_{0}}{\partial t}+(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}-\underbrace{\frac{q}{m} \nabla_{X}\langle\delta L\rangle_{\alpha} \times \frac{e_{\|}}{\Omega}}_{\text {nonlinear }}) \cdot \nabla_{X} \delta G_{0} \\
& =\underbrace{\left(\frac{q}{m} \nabla_{X}\langle\delta L\rangle_{\alpha} \times \frac{e_{\|}}{\Omega}\right) \cdot \nabla_{X} F_{g 0}}_{\text {spatial-drive }}-\underbrace{\frac{q}{m} \frac{\partial\langle\delta L\rangle_{\alpha}}{\partial t} \frac{\partial F_{g 0}}{\partial \varepsilon}}_{\text {velocit-space-damp }} \tag{136}
\end{align*}
$$

where \mathbf{V}_{D} is the equilibrium guiding-center drift velocity, $\langle\ldots\rangle_{\alpha}$ is the gyro-phase averaging operator, $\delta L=\delta \Phi-\mathbf{v} \cdot \delta \mathbf{A}$, and $\delta G_{0}=\delta G_{0}(\mathbf{X}, \varepsilon, \mu, t)$ is gyro-angle independent and is related to the perturbed distribution function δF_{g} by

$$
\begin{equation*}
\delta F_{g}=\frac{q}{m} \delta \Phi \frac{\partial F_{g 0}}{\partial \varepsilon}+\delta G_{0} \tag{137}
\end{equation*}
$$

where the first term is called "adiabatic term", which depends on the gyro-phase α via $\delta \Phi$. Equation (136) is the special case $\left(\partial F_{g 0} /\left.\partial \mu\right|_{\varepsilon}=0\right)$ of the Frieman-Chen nonlinear gyrokinetic equation given in Ref. [3]. Note that the nonlinear terms only appear on the left-hand side of Eq. (136) and all the terms on the right-hand side are linear. The term

$$
\begin{equation*}
-\frac{q}{m} \nabla_{X}\langle\delta L\rangle_{\alpha} \times \frac{e_{\|}}{\Omega} \equiv \delta \mathbf{V}_{D}, \tag{138}
\end{equation*}
$$

consists of the $\delta \mathbf{E} \times \mathbf{B}_{0}$ drift and magnetic fluttering term (refer to expression (328) in Sec. C.3). For notaiton ease, this term is denoted by $\delta \mathbf{V}_{D}$.

4 Gyrokinetic equation in forms amenable to numerical computation

4.1 Eliminate $\partial\langle\delta \phi\rangle_{\alpha} / \partial t$ term on the right-hand side of Eq. (136)

Note that the coefficient before $\partial F_{0} / \partial \varepsilon$ in Eq. (136) involves the time derivative of $\langle\delta \phi\rangle_{\alpha}$, which is problematic if treated by using explicit finite difference in particle simulations (I test the algorithm that treats this term by implicit scheme, the result roughly agrees with the standard method discussed in Sec. 6). It turns out that $\partial\langle\delta \Phi\rangle_{\alpha} / \partial t$ can be eliminated by defining another gyro-phase independent function δf by

$$
\begin{equation*}
\delta f=\frac{q}{m}\langle\delta \Phi\rangle_{\alpha} \frac{\partial F_{0}}{\partial \varepsilon}+\delta G_{0} . \tag{139}
\end{equation*}
$$

Substituting this into Eq. (136), we obtain the equation for δf :

$$
\begin{align*}
& {\left[\frac{\partial}{\partial t}+\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\delta \mathbf{V}_{D}\right) \cdot \nabla_{X}\right] \delta f} \\
& -\frac{q}{m} \frac{\partial F_{0}}{\partial \varepsilon}\left[\frac{\partial}{\partial t}+\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\delta \mathbf{V}_{D}\right) \cdot \nabla_{X}\right]\langle\delta \Phi\rangle_{\alpha} \\
& -\frac{q}{m}\langle\delta \Phi\rangle_{\alpha}\left[\frac{\partial}{\partial t}+\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\delta \mathbf{V}_{D}\right) \cdot \nabla_{X}\right] \frac{\partial F_{0}}{\partial \varepsilon} \\
& =-\delta \mathbf{V}_{D} \cdot \nabla_{X} F_{0}-\frac{q}{m} \frac{\partial\langle\delta L\rangle_{\alpha}}{\partial t} \frac{\partial F_{0}}{\partial \varepsilon} . \tag{140}
\end{align*}
$$

Noting that $\partial F_{0} / \partial t=0, \mathbf{e}_{\|} \cdot \nabla F_{0}=0, \partial F_{0} / \partial \varepsilon \approx-F_{0} m / T$, we find that the third line of the above equation is of order $O\left(\lambda^{3}\right)$ (after both sides being divided by $F_{0} \Omega$). Therefore the third line can be dropped. Moving the second line to the right-hand side and noting that $\langle\delta L\rangle_{\alpha}=\langle\delta \phi-\mathbf{v} \cdot \delta \mathbf{A}\rangle_{\alpha}$, the above equation is written as

$$
\begin{align*}
& {\left[\frac{\partial}{\partial t}+\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\delta \mathbf{V}_{D}\right) \cdot \nabla_{X}\right] \delta f} \\
& =-\delta \mathbf{V}_{D} \cdot \nabla_{X} F_{0} \\
& -\frac{q}{m}\left[-\frac{\partial\langle\mathbf{v} \cdot \delta \mathbf{A}\rangle_{\alpha}}{\partial t}-\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\delta \mathbf{V}_{D}\right) \cdot \nabla_{X}\langle\delta \Phi\rangle_{\alpha}\right] \frac{\partial F_{0}}{\partial \varepsilon} \tag{141}
\end{align*}
$$

where two $\partial\langle\phi\rangle_{\alpha} / \partial t$ terms cancel each other. Note that the right-hand side of Eq. (141) contains a nonlinear term $\delta \mathbf{V}_{D} \cdot \nabla_{X}\langle\delta \Phi\rangle_{\alpha}$. This is different from the original Frieman-Chen equation, where all nonlinear terms appear on the left-hand side. For the electrostatic limit, this term disappears because $\delta \mathbf{V}_{D}$ is perpendicular to $\nabla_{X}\langle\delta \Phi\rangle_{\alpha}$.
[Equation (141) corresponds to Eq. (A8) in Yang Chen's paper[2] (where the first minus on the right-hand side is wrong and should be replaced with q / m; one q is missing before $\partial(\mathbf{v} \cdot \delta \mathbf{A}) / \partial t$ in A9).]

4.2 Eliminate $\partial\langle\delta \mathrm{v} \cdot \delta \mathrm{A}\rangle_{\alpha} / \partial t$ term on the right-hand side of GK equation

Similar to the method of eliminating $\partial\langle\delta \phi\rangle_{\alpha} / \partial t$, we define another gyro-phase independent function by

$$
\begin{equation*}
\delta h=\delta f-\frac{q}{m}\langle\mathbf{v} \cdot \delta \mathbf{A}\rangle_{\alpha} \frac{\partial F_{0}}{\partial \varepsilon} . \tag{142}
\end{equation*}
$$

Most gyrokinetic simulations approximate the vector potential as $\delta \mathbf{A} \approx \delta A_{\|} \mathbf{e}_{\|}$. Let us simplify Eq. (147) for this case. Then $\langle\mathbf{v} \cdot \delta \mathbf{A}\rangle_{\alpha}$ is written as

$$
\begin{equation*}
\langle\mathbf{v} \cdot \delta \mathbf{A}\rangle_{\alpha} \approx\left\langle v_{\|} \delta A_{\|}\right\rangle_{\alpha} . \tag{143}
\end{equation*}
$$

Then expression (142) is written as

$$
\begin{equation*}
\delta h=\delta f-\frac{q}{m}\left\langle v_{\|} \delta A_{\|}\right\rangle_{\alpha} \frac{\partial F_{0}}{\partial \varepsilon} . \tag{144}
\end{equation*}
$$

Then Eq. (141) is written in terms of δh as

$$
\begin{align*}
& {\left[\frac{\partial}{\partial t}+\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\delta \mathbf{V}_{D}\right) \cdot \nabla_{X}\right] \delta h} \\
& +\frac{q}{m} \frac{\partial F_{0}}{\partial \varepsilon}\left[\left(\frac{\partial}{\partial t}+v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\delta \mathbf{V}_{D}\right) \cdot \nabla_{X}\right]\left\langle v_{\|} \delta A_{\|}\right\rangle_{\alpha} \\
& +\frac{q}{m}\left\langle v_{\|} \delta A_{\|}\right\rangle_{\alpha}\left[\left(\mathbf{V}_{D}+\delta \mathbf{V}_{D}\right) \cdot \nabla_{X}\right]\left(\frac{\partial F_{0}}{\partial \varepsilon}\right) \\
& =-\delta \mathbf{V}_{D} \cdot \nabla_{X} F_{0} \\
& -\frac{q}{m}\left[-\frac{\partial\left\langle v_{\|} \delta A_{\|}\right\rangle_{\alpha}}{\partial t}-\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\delta \mathbf{V}_{D}\right) \cdot \nabla_{X}\langle\delta \Phi\rangle_{\alpha}\right] \frac{\partial F_{0}}{\partial \varepsilon}, \tag{145}
\end{align*}
$$

where use has been made of that $\partial F_{0} / \partial t=0$ and $\mathbf{e}_{\|} \cdot \nabla F_{0}=0$. Further noting that $v_{\|} \delta A_{\|} \sim \delta \Phi$, $q \delta \Phi / T \sim O\left(\lambda^{1}\right), \partial F_{0} / \partial \varepsilon \sim-F_{0} m / T, \quad \mathbf{V}_{D} / v_{t} \sim O\left(\lambda^{1}\right), \delta \mathbf{V}_{D} / v_{t} \sim O\left(\lambda^{1}\right)$, and $\rho \nabla F_{0} \sim O\left(\lambda^{1}\right) F_{0}$, we find that the red term of the above equation (after divided by ΩF_{0}) is of $O\left(\lambda^{3}\right)$, hence can be dropped. Move the second line to the right-hand side, giving

$$
\begin{align*}
& {\left[\frac{\partial}{\partial t}+\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\delta \mathbf{V}_{D}\right) \cdot \nabla_{X}\right] \delta h} \\
& =-\delta \mathbf{V}_{D} \cdot \nabla_{X} F_{0} \\
& +\frac{q}{m}\left[\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\delta \mathbf{V}_{D}\right) \cdot \nabla_{X}\left(\left\langle\delta \Phi-v_{\|} \delta A_{\|}\right\rangle_{\alpha}\right)\right] \frac{\partial F_{0}}{\partial \varepsilon}, \tag{146}
\end{align*}
$$

where $\partial\left\langle v_{\|} \delta A_{\|}\right\rangle_{\alpha} / \partial t$ terms cancel each other. Further note that $\delta \mathbf{V}_{D}$ (given by Eq. (138)) is perpendicular to $\nabla_{X}\left\langle\delta \Phi-v_{\|} \delta A_{\|}\right\rangle_{\alpha}$. Therefore the blue term in Eq. (146) is zero, then Eq. (146) simplifies to

$$
\begin{align*}
& {\left[\frac{\partial}{\partial t}+\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\delta \mathbf{V}_{D}\right) \cdot \nabla_{X}\right] \delta h} \\
& =-\delta \mathbf{V}_{D} \cdot \nabla_{X} F_{0} \\
& +\frac{q}{m}\left[\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}\right) \cdot \nabla_{X}\left\langle\delta \Phi-v_{\|} \delta A_{\|}\right\rangle_{\alpha}\right] \frac{\partial F_{0}}{\partial \varepsilon} . \tag{147}
\end{align*}
$$

Note that in terms of $(\mathbf{X}, \varepsilon, \mu, \alpha, \sigma)$ coordinates, $v_{\|}$is written as

$$
\begin{equation*}
v_{\|}=\sigma \sqrt{2 \varepsilon-2 \mu B_{0}}, \tag{148}
\end{equation*}
$$

where $B_{0}(\mathbf{x})=B_{0}(\mathbf{X}+\boldsymbol{\rho})$ with $\boldsymbol{\rho}=\boldsymbol{\rho}(\mathbf{X}, \varepsilon, \mu, \alpha)$. Since the scale length of B_{0} is much larger than the thermal Larmor radius, $B_{0}(\mathbf{x}) \approx B_{0}(\mathbf{X})$ and hence $v_{\|}$can be approximated as a constant when gyro-angle α changes. Then $v_{\|}$can be taken out of the gyro-averaging in expression (143), yielding

$$
\begin{equation*}
\left\langle v_{\|} \delta A_{\|}\right\rangle_{\alpha} \approx v_{\|}\left\langle\delta A_{\|}\right\rangle_{\alpha} . \tag{149}
\end{equation*}
$$

Using this, the term related to $\delta A_{\|}$in (147) can be further written as

$$
\begin{align*}
\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}\right) \cdot \nabla_{X}\left\langle v_{\|} \delta A_{\|}\right\rangle_{\alpha} & =\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}\right) \cdot \nabla_{X}\left(v_{\|}\left\langle\delta A_{\|}\right\rangle_{\alpha}\right) \\
& =\left\langle\delta A_{\|}\right\rangle_{\alpha}\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}\right) \cdot \nabla_{X}\left(v_{\|}\right)+v_{\|}\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}\right) \cdot \nabla_{X}\left\langle\delta A_{\|}\right\rangle_{\alpha} . \tag{150}
\end{align*}
$$

Using expression (148), $\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}\right) \cdot \nabla_{X}\left(v_{\|}\right)$is written as

$$
\begin{align*}
\left\langle\delta A_{\|}\right\rangle_{\alpha}\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}\right) \cdot \nabla_{X}\left(v_{\|}\right) & \approx\left\langle\delta A_{\|}\right\rangle_{\alpha}\left(v_{\|} \mathbf{e}_{\|}\right) \cdot \nabla_{X}\left(v_{\|}\right) \\
& =\left\langle\delta A_{\|}\right\rangle_{\alpha}\left(v_{\|} \mathbf{e}_{\|}\right) \cdot \nabla_{X}\left(\sigma \sqrt{2 \varepsilon-2 \mu B_{0}}\right) \\
& =\left\langle\delta A_{\|}\right\rangle_{\alpha} \sigma\left(v_{\|} \mathbf{e}_{\|}\right) \cdot \nabla_{X}\left(\sqrt{2 \varepsilon-2 \mu B_{0}}\right) \\
& =\left\langle\delta A_{\|}\right\rangle_{\alpha} \sigma v_{\|} \frac{-2 \mu \mathbf{e}_{\|} \cdot \nabla_{X} B_{0}}{2 \sqrt{2 \varepsilon-2 \mu B_{0}}} \\
& =\left\langle\delta A_{\|}\right\rangle_{\alpha} v_{\|} \frac{-2 \mu \mathbf{e}_{\|} \cdot \nabla_{X} B_{0}}{2 v_{\|}} \\
& =-\left\langle\delta A_{\|}\right\rangle_{\alpha} \mu \mathbf{e}_{\|} \cdot \nabla_{X} B_{0} . \tag{151}
\end{align*}
$$

(We can also obtain $\nabla_{X}\left(v_{\|}\right)=-\mu\left(\nabla B_{0}\right) / v_{\|}$by using Eq. (370)). Using the above results, equation (147) is written as

$$
\begin{align*}
& {\left[\frac{\partial}{\partial t}+\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\delta \mathbf{V}_{D}\right) \cdot \nabla_{X}\right] \delta h } \\
= & -\delta \mathbf{V}_{D} \cdot \nabla_{X} F_{0}+\frac{q}{m}\left[\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}\right) \cdot \nabla_{X}\langle\delta \Phi\rangle_{\alpha}\right] \frac{\partial F_{0}}{\partial \varepsilon} \\
- & \frac{q}{m}\left[v_{\|}\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}\right) \cdot \nabla_{X}\left\langle\delta A_{\|}\right\rangle_{\alpha}-\left\langle\delta A_{\|}\right\rangle_{\alpha}\left(\mu \mathbf{e}_{\|} \cdot \nabla_{X} B_{0}\right)\right] \frac{\partial F_{0}}{\partial \varepsilon}, \tag{152}
\end{align*}
$$

which agrees with the so-called $p_{\|}$formulation given in the GEM manual (the first line of Eq. 28). (It is said that $p_{\|}$formulation uses $p_{\|}=v_{\|}+q\left\langle\delta A_{\|}\right\rangle_{\alpha} / m$ as an independent variable, but I can not relate this explanation to my derivation given above.)

4.3 Mixed-variable pullback method[4]

Define $\delta f^{(h)}$ by

$$
\begin{equation*}
\delta f^{(h)}=\delta f-\frac{q}{m}\left\langle v_{\|} \delta A_{\|}^{(h)}\right\rangle_{\alpha} \frac{\partial F_{0}}{\partial \varepsilon}, \tag{153}
\end{equation*}
$$

where $\delta A_{\|}^{(h)}$ is a part of $\delta A_{\|}$:

$$
\begin{equation*}
\delta A_{\|}=\delta A_{\|}^{(s)}+\delta A_{\|}^{(h)}, \tag{154}
\end{equation*}
$$

with $\delta A_{\|}^{(s)}$ determined by an evolution equation:

$$
\begin{equation*}
\frac{\partial \delta A_{\|}^{(s)}}{\partial t}=-\mathbf{b} \cdot \nabla \delta \Phi \tag{155}
\end{equation*}
$$

Following the same procedure in Sec. 4.2, we obtain the following evoluation equation for $\delta f^{(h)}$:

$$
\begin{align*}
& {\left[\frac{\partial}{\partial t}+\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\delta \mathbf{V}_{D}\right) \cdot \nabla_{X}\right] \delta f^{(h)}} \\
& =-\delta \mathbf{V}_{D} \cdot \nabla_{X} F_{0}+\frac{q}{m}\left[\left(\mathbf{V}_{D}+\delta \mathbf{V}_{D}\right) \cdot \nabla_{X}\langle\delta \Phi\rangle_{\alpha}\right] \frac{\partial F_{0}}{\partial \varepsilon} \\
& -\frac{q}{m}\left[v_{\|}\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\delta \mathbf{V}_{D}\right) \cdot \nabla_{X}\left\langle\delta A_{\|}^{(h)}\right\rangle_{\alpha}-\left\langle\delta A_{\|}^{(h)}\right\rangle_{\alpha}\left(\mu \mathbf{e}_{\|} \cdot \nabla_{X} B_{0}\right)\right] \frac{\partial F_{0}}{\partial \varepsilon} . \tag{156}
\end{align*}
$$

Next, consider the special case that F_{0} is a local Maxwellian given by

$$
\begin{equation*}
F_{0}(\mathbf{X}, \varepsilon)=n_{0}(\mathbf{X})\left(\frac{m}{2 \pi T_{0}(\mathbf{X})}\right)^{3 / 2} \exp \left[-\frac{m \varepsilon}{T_{0}(\mathbf{X})}\right] \tag{157}
\end{equation*}
$$

Then $\partial F_{0} / \partial \varepsilon$ and $\nabla_{X} F_{0}$ are written as

$$
\begin{equation*}
\frac{\partial F_{0}}{\partial \varepsilon}=\left(-\frac{m}{T}\right) F_{0} \tag{158}
\end{equation*}
$$

and

$$
\begin{align*}
\nabla F_{0} & =\frac{\partial F_{0}}{\partial n_{0}} \nabla n_{0}+\frac{\partial F_{0}}{\partial T} \nabla T_{0} \\
& =F_{0} \frac{\nabla n_{0}}{n_{0}}+F_{0}\left(\frac{m v^{2}}{2 T_{0}}-\frac{3}{2}\right) \frac{\nabla T_{0}}{T_{0}} \\
& =-F_{0}\left[\boldsymbol{\kappa}_{n}+\left(\frac{m v^{2}}{2 T_{0}}-\frac{3}{2}\right) \boldsymbol{\kappa}_{T}\right] \tag{159}
\end{align*}
$$

where $\boldsymbol{\kappa}_{n}=-\frac{\nabla n_{0}}{n_{0}}$, and $\boldsymbol{\kappa}_{T}=-\frac{\nabla T_{0}}{T_{0}}$. Consider the case that $F_{0}(\mathbf{X}, \varepsilon)$ is independent of θ and α, then $\boldsymbol{\kappa}_{n}$ and $\boldsymbol{\kappa}_{T}$ are written as $\boldsymbol{\kappa}_{n}=\kappa_{n} \nabla r$ and $\boldsymbol{\kappa}_{T}=\kappa_{T} \nabla r$, where $\kappa_{n} \equiv-\frac{1}{n_{0}} \frac{d n_{0}}{d r}, \kappa_{T} \equiv-\frac{1}{T_{0}} \frac{d T_{0}}{d r}$, and r is chosen to be the minor radius at the low field side.

Using the above results, Eq. (156) is written as

$$
\begin{align*}
\frac{d \delta f^{(h)}}{d t} & =\delta \mathbf{V}_{D} \cdot \nabla \psi \frac{d r}{d \psi}\left[\kappa_{n}+\left(\frac{m v^{2}}{2 T_{0}}-\frac{3}{2}\right) \kappa_{T}\right] F_{0}-\frac{q}{T}\left[\left(\mathbf{V}_{D}+\delta \mathbf{V}_{D}\right) \cdot \nabla\langle\delta \Phi\rangle\right] F_{0} \\
& +\frac{q}{T}\left[v_{\|}\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\delta \mathbf{V}_{D}\right) \cdot \nabla\left\langle\delta A_{\|}^{(h)}\right\rangle-\left\langle\delta A_{\|}^{(h)}\right\rangle\left(\mu \mathbf{e}_{\|} \cdot \nabla B_{0}\right)\right] F_{0} \tag{160}
\end{align*}
$$

4.3.1 Weight evolution equation

The weight of the j th marker is defined by

$$
\begin{equation*}
w_{j}=\delta f^{(h)}\left(\mathbf{X}_{j}, \mathbf{v}_{j}, t\right) V_{p j 0} \tag{161}
\end{equation*}
$$

where $V_{p j 0}$ is the phase space volume occupied by the j th marker. Multiplying both sides of Eq. (160) by $V_{p j 0}$, and noting that $d\left(V_{p j 0}\right) / d t=0$, we obtain

$$
\begin{align*}
\frac{d w_{j}}{d t} & =\delta \mathbf{V}_{D} \cdot \nabla \psi \frac{d r}{d \psi}\left[\kappa_{n}+\left(\frac{m v^{2}}{2 T_{0}}-\frac{3}{2}\right) \kappa_{T}\right] V_{p j 0} F_{0}-\frac{q}{T}\left[\left(\mathbf{V}_{D}+\delta \mathbf{V}_{D}\right) \cdot\langle\nabla \delta \Phi\rangle\right] V_{p j 0} F_{0} . \\
& +\frac{q}{T}\left[v_{\|}\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\delta \mathbf{V}_{D}\right) \cdot\left\langle\nabla \delta A_{\|}^{(h)}\right\rangle-\left\langle\delta A_{\|}^{(h)}\right\rangle\left(\mu \mathbf{e}_{\|} \cdot \nabla B_{0}\right)\right] V_{p j 0} F_{0} \tag{162}
\end{align*}
$$

where use has been made of $\nabla\langle\delta \Phi\rangle=\langle\nabla \delta \Phi\rangle$ and $\nabla\left\langle\delta A_{\|}^{(h)}\right\rangle=\left\langle\nabla \delta A_{\|}^{(h)}\right\rangle$.
Note that $\nabla \equiv \partial / \partial \mathbf{X}$. Using $\mathbf{x}=\mathbf{X}+\boldsymbol{\rho}$, we obtain

$$
\begin{align*}
\frac{\partial \delta \Phi_{g}\left(\mathbf{X}, \alpha, v_{\perp}\right)}{\partial \mathbf{X}} & =\frac{\partial \delta \Phi_{p}\left(\mathbf{X}+\boldsymbol{\rho}\left(\mathbf{X}, \alpha, v_{\perp}\right)\right)}{\partial \mathbf{X}} \\
& =\frac{\partial \delta \Phi_{p}(\mathbf{x})}{\partial \mathbf{X}}=\frac{\partial \delta \Phi_{p}(\mathbf{x})}{\partial \mathbf{x}} \cdot \frac{\partial \mathbf{x}}{\partial \mathbf{X}} \\
& =\frac{\partial \delta \Phi_{p}(\mathbf{x})}{\partial \mathbf{x}} \cdot\left(1+\frac{\partial \boldsymbol{\rho}}{\partial \mathbf{X}}\right) \\
& \approx \frac{\partial \delta \Phi_{p}(\mathbf{x})}{\partial \mathbf{x}} \tag{163}
\end{align*}
$$

which is accurate up to $O(\lambda)$ in gyrokinetic ordering. Note that field values on a regular \mathbf{X} grid are not available in our simulation because \mathbf{X} is sampled by random markers rather than by a regular grid. This fact makes it diffcult to numerical compute $\partial / \partial \mathbf{X}$. Then the relation $\partial \delta \Phi_{g} / \partial \mathbf{X} \approx \partial \delta \Phi_{p} / \partial \mathbf{x}$, becomes useful because we can use $\delta \Phi$ defined on \mathbf{x} grid (which is available in simulations) to compute $\partial \delta \Phi_{p} / \partial \mathbf{x}$ at \mathbf{x} grid-points (using finite-difference), and then interpolate it to particle position. Similarly, we have $\partial \delta A_{\| g} / \partial \mathbf{X} \approx \partial \delta A_{\| p} / \partial \mathbf{x}$.

Also note that $\left\langle\delta \Phi_{g}\right\rangle$ is not known on \mathbf{X} grid (it is known on random markers). So, to calculate $\partial\left\langle\delta \Phi_{g}\right\rangle / \partial \mathbf{X}$, we need to exchange the operation order:

$$
\begin{equation*}
\frac{\delta\left\langle\delta \Phi_{g}\right\rangle}{\partial \mathbf{X}}=\left\langle\frac{\partial \delta \Phi_{g}}{\partial \mathbf{X}}\right\rangle \approx\left\langle\frac{\partial \delta \Phi_{p}}{\partial \mathbf{x}}\right\rangle . \tag{164}
\end{equation*}
$$

For notation ease, the subscripts g and p will be dropped in the following.

4.3.2 In field-aligned coordinates

In field-aligned coordinates $(x, y, z), \frac{\partial \delta \Phi}{\partial \mathbf{x}}$ can be written as

$$
\begin{equation*}
\frac{\partial \delta \Phi}{\partial \mathbf{x}}=\frac{\partial \delta \Phi}{\partial x} \nabla x+\frac{\partial \delta \Phi}{\partial y} \nabla y+\frac{\partial \delta \Phi}{\partial z} \nabla z . \tag{165}
\end{equation*}
$$

Note that the direction of $\partial \mathbf{r} / \partial x$ at $\theta=-\pi$ is different from that of $\partial \mathbf{r} / \partial x$ at $\theta=+\pi$. This implies that $\partial \delta \Phi / \partial x$ is a non-periodic function of θ. Similarly, ∇y is also a non-perioidic functon of θ. Then both $\partial \delta \Phi / \partial x$ and ∇y are discontinuous across the θ cut $(\theta= \pm \pi)$.

The gyro-average of expression (165) is written as

$$
\begin{equation*}
\left\langle\frac{\partial \delta \Phi}{\partial \mathbf{x}}\right\rangle \approx\left\langle\frac{\partial \delta \Phi}{\partial x}\right\rangle \nabla x+\left\langle\frac{\partial \delta \Phi}{\partial y}\right\rangle \nabla y+\left\langle\frac{\partial \delta \Phi}{\partial z}\right\rangle \nabla z \tag{166}
\end{equation*}
$$

where we approximate $\nabla x, \nabla y$, and ∇z as constants when performing the gyro-averge since they are determined by the equilibrim magnetic field, which is nearly constant on the Larmor radius scale. As is mentioned above, ∇y is not continuous at the θ cut. Do we need to worry about this? We do not. This is because we must stick to the same branch when we perform gryo-average on it, and hence ∇y is always continous. Then, do we need to worry about the disconunity of $\partial \delta \Phi / \partial x$ across the θ cut when performing the gyro-averge on it? We do not either. The reason is the same: we must stick to a single branch. The disconunity is just irrelevant here. The discontinuity only manifest itself when we need to infer value on $\theta=-\pi$ from that on $\theta=+\pi$ (vice versa), i.e., when across branch communication is explicitly needed. In TEK, the field equations are not solved at $\theta=+\pi$ and hence the field values are not directly obtained. Instead, the field values at $\theta=+\pi$ are infered from the field values at $\theta=-\pi$ using the coninuity of $\nabla \delta \Phi$. At the θ cut, the continuity of $\nabla \delta \Phi$ requires

$$
\begin{equation*}
\left\langle\frac{\partial \delta \Phi}{\partial x}\right\rangle^{+} \nabla x+\left\langle\frac{\partial \delta \Phi}{\partial y}\right\rangle \nabla y^{+}=\left\langle\frac{\partial \delta \Phi}{\partial x}\right\rangle^{-} \nabla x+\left\langle\frac{\partial \delta \Phi}{\partial y}\right\rangle \nabla y^{-}, \tag{167}
\end{equation*}
$$

where the superscript " + " and "-" refer to the location $\theta=+\pi$ and $\theta=-\pi$, respectively. Dotting the above by ∇x, we obtain

$$
\begin{equation*}
\left\langle\frac{\partial \delta \Phi}{\partial x}\right\rangle^{+}=\left\langle\frac{\partial \delta \Phi}{\partial x}\right\rangle^{-}+\left\langle\frac{\partial \delta \Phi}{\partial y}\right\rangle \frac{\nabla y^{-} \cdot \nabla x-\nabla y^{+} \cdot \nabla x}{|\nabla x|^{2}} \tag{168}
\end{equation*}
$$

which is used in TEK to infer the value of $\left\langle\frac{\partial \delta \Phi}{\partial x}\right\rangle^{+}$from that of $\left\langle\frac{\partial \delta \Phi}{\partial x}\right\rangle^{-}$.
Similarly, for $\partial \delta A_{\|}^{(h)} / \partial \mathbf{x}$, we obtain:

$$
\begin{gather*}
\frac{\partial \delta A_{\|}^{(h)}}{\partial \mathbf{x}}=\frac{\partial \delta A_{\|}^{(h)}}{\partial x} \nabla x+\frac{\partial \delta A_{\|}^{(h)}}{\partial y} \nabla y+\frac{\partial \delta A_{\|}^{(h)}}{\partial z} \nabla z . \tag{169}\\
\left\langle\frac{\partial \delta A_{\|}^{(h)}}{\partial \mathbf{x}}\right\rangle \approx\left\langle\frac{\partial \delta A_{\|}^{(h)}}{\partial x}\right\rangle \nabla x+\left\langle\frac{\partial \delta A_{\|}^{(h)}}{\partial y}\right\rangle \nabla y+\left\langle\frac{\partial \delta A_{\|}^{(h)}}{\partial z}\right\rangle \nabla z \tag{170}
\end{gather*}
$$

Using these, Eq. (162) is written as

$$
\begin{align*}
\frac{d w_{j}}{d t} & =\delta \mathbf{V}_{D} \cdot \nabla \psi \frac{d r}{d \psi}\left[\kappa_{n}+\left(\frac{m v^{2}}{2 T_{0}}-\frac{3}{2}\right) \kappa_{T}\right] V_{p j 0} F_{0} \\
& -\frac{q}{T}\left[\left\langle\frac{\partial \delta \Phi}{\partial x}\right\rangle \frac{d \mathbf{X}^{\prime}}{d t} \cdot \nabla x+\left\langle\frac{\partial \delta \Phi}{\partial y}\right\rangle \frac{d \mathbf{X}^{\prime}}{d t} \cdot \nabla y+\left\langle\frac{\partial \delta \Phi}{\partial z}\right\rangle \frac{d \mathbf{X}^{\prime}}{d t} \cdot \nabla z\right] V_{p j 0} F_{0} \\
& +\frac{q}{T} v_{\|}\left(\left\langle\frac{\partial \delta A_{\|}^{(h)}}{\partial x}\right\rangle \frac{d \mathbf{X}}{d t} \cdot \nabla x+\left\langle\frac{\partial \delta A_{\|}^{(h)}}{\partial y}\right\rangle \frac{d \mathbf{X}}{d t} \cdot \nabla y+\left\langle\frac{\partial \delta A_{\|}^{(h)}}{\partial z}\right\rangle \frac{d \mathbf{X}}{d t} \cdot \nabla z\right) V_{p j 0} F_{0} \\
& -\frac{q}{T}\left\langle\delta A_{\|}^{(h)}\right\rangle\left(\mu \mathbf{b} \cdot \nabla B_{0}\right) V_{p j 0} F_{0} \tag{171}
\end{align*}
$$

where $\frac{d \mathbf{X}}{d t} \equiv v_{\|} \mathbf{b}+\mathbf{V}_{D}+\delta \mathbf{V}_{D}$ and $\frac{d \mathbf{X}^{\prime}}{d t} \equiv \mathbf{V}_{D}+\delta \mathbf{V}_{D}$. Define

$$
\begin{equation*}
\delta \bar{\Phi}=\frac{q_{u} \delta \Phi}{T_{u}}, \delta \bar{A}_{\|}^{(h)}=\frac{q_{u} v_{u} \delta A_{\|}^{(h)}}{T_{u}} \tag{172}
\end{equation*}
$$

Then, a typical term of the above is written as

$$
\begin{aligned}
\frac{q}{T} v_{\|}\left\langle\frac{\partial \delta A_{\|}^{(h)}}{\partial x}\right\rangle \frac{d \mathbf{X}}{d t} \cdot \nabla x t_{n} & =\frac{q}{T} \frac{T_{u}}{q_{u} v_{u}} v_{n} \bar{v}_{\|}\left\langle\frac{\partial \delta \bar{A}_{\|}^{(h)}}{\partial x}\right\rangle \frac{d \overline{\mathbf{X}}}{d \bar{t}} \cdot \bar{\nabla} x \\
& =\frac{q / q_{u}}{T / T_{u}} \frac{v_{n}}{v_{u}} \bar{v}_{\|}\left\langle\frac{\partial \delta \bar{A}_{\|}^{(h)}}{\partial x}\right\rangle \frac{d \overline{\mathbf{X}}}{d \bar{t}} \cdot \bar{\nabla} x,
\end{aligned}
$$

where $\frac{q / q_{u}}{T / T_{u}} \frac{v_{n}}{v_{u}}$ is the normlizing factor needed when coding. The mirror force term:

$$
\begin{align*}
\frac{q}{T}\left\langle\delta A_{\|}^{(h)}\right\rangle\left(\mu \mathbf{b} \cdot \nabla B_{0}\right) t_{n} & =\frac{q}{T} \frac{T_{u}}{q_{u} v_{u}} \frac{B_{n} \mu_{n}}{L_{n}}\left\langle\delta \bar{A}_{\|}^{(h)}\right\rangle\left(\bar{\mu} \mathbf{b} \cdot \bar{\nabla} \bar{B}_{0}\right) t_{n} \tag{173}\\
& =\frac{q / q_{u}}{T / T_{u}} \frac{1}{v_{u}} \frac{B_{n} v_{n}^{2}}{L_{n} B_{n}}\left\langle\delta \bar{A}_{\|}^{(h)}\right\rangle\left(\bar{\mu} \mathbf{b} \cdot \bar{\nabla} \bar{B}_{0}\right) t_{n} \\
& =\frac{q / q_{u}}{T / T_{u}} \frac{v_{n}}{v_{u}}\left\langle\delta \bar{A}_{\|}^{(h)}\right\rangle\left(\bar{\mu} \mathbf{b} \cdot \bar{\nabla} \bar{B}_{0}\right)
\end{align*}
$$

where $\frac{q / q_{u}}{T / T_{u}} \frac{v_{n}}{v_{u}}$ is the normlizing factor needed when coding.
The pullback:

$$
\begin{aligned}
\frac{q}{m}\left\langle v_{\|} \delta A_{\|}^{(h)}\right\rangle \frac{\partial F_{0}}{\partial \varepsilon} V_{p} & =\frac{q}{m}\left\langle v_{\|} \delta A_{\|}^{(h)}\right\rangle\left(-\frac{m}{T}\right) F_{0} V_{p} \\
& \approx-\frac{q}{T} v_{\|}\left\langle\delta A_{\|}^{(h)}\right\rangle F_{0} V_{p} \\
& =-\frac{q / q_{u}}{T / T_{u}} \frac{v_{\|}}{v_{u}}\left\langle\delta \bar{A}_{\|}^{(h)}\right\rangle F_{0} V_{p}
\end{aligned}
$$

The $\delta \mathbf{E} \times \mathbf{B}_{0}$ drift term is written as

$$
\begin{aligned}
-\frac{\left\langle\frac{\partial \delta \Phi}{\partial \mathbf{x}}\right\rangle \times \mathbf{B}_{0}}{B_{0}^{2}} & =-\frac{1}{B_{0}^{2}}\left(\left\langle\frac{\partial \delta \Phi}{\partial x}\right\rangle \nabla x+\left\langle\frac{\partial \delta \Phi}{\partial y}\right\rangle \nabla y+\left\langle\frac{\partial \delta \Phi}{\partial z}\right\rangle \nabla z\right) \times \mathbf{B}_{0} \\
& =-\left\langle\frac{\partial \delta \Phi}{\partial x}\right\rangle \frac{1}{B_{0}^{2}} \nabla x \times \mathbf{B}_{0}-\left\langle\frac{\partial \delta \Phi}{\partial y}\right\rangle \frac{1}{B_{0}^{2}} \nabla y \times \mathbf{B}_{0}-\left\langle\frac{\partial \delta \Phi}{\partial z}\right\rangle \frac{1}{B_{0}^{2}} \nabla z \times \mathbf{B}_{0} .
\end{aligned}
$$

The $\nabla x, \nabla y$, and ∇z components of the above expression are written as

$$
\begin{align*}
-\frac{\left\langle\frac{\partial \delta \Phi}{\partial \mathbf{x}}\right\rangle \times \mathbf{B}_{0}}{B_{0}^{2}} \cdot \nabla x & =-\left\langle\frac{\partial \delta \Phi}{\partial y}\right\rangle \frac{1}{B_{0}^{2}} \nabla y \times \mathbf{B}_{0} \cdot \nabla x-\left\langle\frac{\partial \delta \Phi}{\partial z}\right\rangle \frac{1}{B_{0}^{2}} \nabla z \times \mathbf{B}_{0} \cdot \nabla x \\
& =-\left\langle\frac{\partial \delta \Phi}{\partial y}\right\rangle \frac{1}{B_{0}^{2}} \nabla x \times \nabla y \cdot \mathbf{B}_{0}-\left\langle\frac{\partial \delta \Phi}{\partial z}\right\rangle \frac{1}{B_{0}^{2}} \nabla x \times \nabla z \cdot \mathbf{B}_{0} \tag{174}
\end{align*}
$$

$$
-\frac{\left\langle\frac{\partial \delta \Phi}{\partial \mathbf{x}}\right\rangle \times \mathbf{B}_{0}}{B_{0}^{2}} \cdot \nabla y=-\left\langle\frac{\partial \delta \Phi}{\partial x}\right\rangle \frac{1}{B_{0}^{2}} \nabla x \times \mathbf{B}_{0} \cdot \nabla y-\left\langle\frac{\partial \delta \Phi}{\partial z}\right\rangle \frac{1}{B_{0}^{2}} \nabla z \times \mathbf{B}_{0} \cdot \nabla y
$$

$$
\begin{equation*}
=\left\langle\frac{\partial \delta \Phi}{\partial x}\right\rangle \frac{1}{B_{0}^{2}} \nabla x \times \nabla y \cdot \mathbf{B}_{0}-\left\langle\frac{\partial \delta \Phi}{\partial z}\right\rangle \frac{1}{B_{0}^{2}} \nabla y \times \nabla z \cdot \mathbf{B}_{0} \tag{175}
\end{equation*}
$$

$$
-\frac{\left\langle\frac{\partial \delta \Phi}{\partial \mathbf{x}}\right\rangle \times \mathbf{B}_{0}}{B_{0}^{2}} \cdot \nabla z=-\left\langle\frac{\partial \delta \Phi}{\partial x}\right\rangle \frac{1}{B_{0}^{2}} \nabla x \times \mathbf{B}_{0} \cdot \nabla z-\left\langle\frac{\partial \delta \Phi}{\partial y}\right\rangle \frac{1}{B_{0}^{2}} \nabla y \times \mathbf{B}_{0} \cdot \nabla z
$$

$$
\begin{equation*}
=\left\langle\frac{\partial \delta \Phi}{\partial x}\right\rangle \frac{1}{B_{0}^{2}} \nabla x \times \nabla z \cdot \mathbf{B}_{0}+\left\langle\frac{\partial \delta \Phi}{\partial y}\right\rangle \frac{1}{B_{0}^{2}} \nabla y \times \nabla z \cdot \mathbf{B}_{0} \tag{176}
\end{equation*}
$$

Using

$$
\begin{equation*}
\frac{d x}{d t}=\mathbf{V}_{G} \cdot \nabla x \tag{177}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\frac{d x}{d \bar{t}}=t_{n} \mathbf{V}_{G} \cdot \nabla x \tag{178}
\end{equation*}
$$

To get the normalizing factor, consider only the contribution from $E \times B$ drift. Then a typical term is written as

$$
\begin{align*}
\frac{d x}{d \bar{t}} & =-t_{n}\left\langle\frac{\partial \delta \Phi}{\partial y}\right\rangle \frac{1}{B_{0}^{2}} \nabla x \times \nabla y \cdot \mathbf{B}_{0} \\
& =-\frac{T_{u}}{q_{u}} \frac{t_{n}}{B_{n} L_{n}^{2}}\left\langle\frac{\partial \delta \bar{\Phi}}{\partial y}\right\rangle \frac{1}{\bar{B}_{0}^{2}} \bar{\nabla} x \times \bar{\nabla} y \cdot \overline{\mathbf{B}}_{0} \\
& =-\frac{T_{u}}{q_{u}} \frac{1}{B_{n} v_{n} L_{n}}\left\langle\frac{\partial \delta \bar{\Phi}}{\partial y}\right\rangle \frac{1}{\bar{B}_{0}^{2}} \bar{\nabla} x \times \bar{\nabla} y \cdot \overline{\mathbf{B}}_{0} \tag{179}
\end{align*}
$$

where $T_{u} /\left(q_{u} v_{n} B_{n} L_{n}\right)$ is the normlizing factor we need when coding.
The magnetic fluttering term is written as

$$
\begin{aligned}
-\frac{v_{\|}}{B_{0}}\left\langle\mathbf{b} \times \nabla_{\mathbf{x}}\left(\delta A_{\|}\right)\right\rangle & =-\frac{v_{\|}}{B_{0}}\left\langle\mathbf{b} \times\left(\frac{\partial \delta A_{\|}}{\partial x} \nabla x+\frac{\partial \delta A_{\|}}{\partial y} \nabla y+\frac{\partial \delta A_{\|}}{\partial z} \nabla z\right)\right\rangle \\
& \approx-\frac{v_{\|}}{B_{0}} \mathbf{b} \times\left(\left\langle\frac{\partial \delta A_{\|}}{\partial x}\right\rangle \nabla x+\left\langle\frac{\partial \delta A_{\|}}{\partial y}\right\rangle \nabla y+\left\langle\frac{\partial \delta A_{\|}}{\partial z}\right\rangle \nabla z\right)
\end{aligned}
$$

The $\nabla x, \nabla y$, and ∇z components of the above expression are written as

$$
\begin{align*}
-\frac{v_{\|}}{B_{0}}\left\langle\mathbf{b} \times \nabla_{\mathbf{x}}\left(\delta A_{\|}\right)\right\rangle \cdot \nabla x & =-\frac{v_{\|}}{B_{0}} \mathbf{b} \times\left(\left\langle\frac{\partial \delta A_{\|}}{\partial y}\right\rangle \nabla y+\left\langle\frac{\partial \delta A_{\|}}{\partial z}\right\rangle \nabla z\right) \cdot \nabla x \\
& =\frac{v_{\|}}{B_{0}^{2}}\left(\left\langle\frac{\partial \delta A_{\|}}{\partial y}\right\rangle \nabla x \times \nabla y+\left\langle\frac{\partial \delta A_{\|}}{\partial z}\right\rangle \nabla x \times \nabla z\right) \cdot \mathbf{B}_{0} \tag{180}\\
-\frac{v_{\|}}{B_{0}}\left\langle\mathbf{b} \times \nabla_{\mathbf{x}}\left(\delta A_{\|}\right)\right\rangle \cdot \nabla y & =-\frac{v_{\|}}{B_{0}} \mathbf{b} \times\left(\left\langle\frac{\partial \delta A_{\|}}{\partial x}\right\rangle \nabla x+\left\langle\frac{\partial \delta A_{\|}}{\partial z}\right\rangle \nabla z\right) \cdot \nabla y \\
& =\frac{v_{\|}}{B_{0}^{2}}\left(\left\langle\frac{\partial \delta A_{\|}}{\partial x}\right\rangle \nabla y \times \nabla x+\left\langle\frac{\partial \delta A_{\|}}{\partial z}\right\rangle \nabla y \times \nabla z\right) \cdot \mathbf{B}_{0} \tag{181}\\
-\frac{v_{\|}}{B_{0}}\left\langle\mathbf{b} \times \nabla_{\mathbf{x}}\left(\delta A_{\|}\right)\right\rangle \cdot \nabla z & =-\frac{v_{\|}}{B_{0}} \mathbf{b} \times\left(\left\langle\frac{\partial \delta A_{\|}}{\partial x}\right\rangle \nabla x+\left\langle\frac{\partial \delta A_{\|}}{\partial y}\right\rangle \nabla y\right) \cdot \nabla z \\
& =\frac{v_{\|}}{B_{0}^{2}}\left(\left\langle\frac{\partial \delta A_{\|}}{\partial x}\right\rangle \nabla z \times \nabla x+\left\langle\frac{\partial \delta A_{\|}}{\partial y}\right\rangle \nabla z \times \nabla y\right) \cdot \mathbf{B}_{0} \tag{182}
\end{align*}
$$

Also to get the normalizing factor needed in the code, consider a typical term:

$$
\left.\left.\begin{array}{rl}
\frac{d x}{d \bar{t}} & =t_{n} \frac{v_{\|}}{B_{0}^{2}}\left\langle\frac{\partial \delta A_{\|}}{\partial y}\right\rangle \nabla x \times \nabla y \cdot \mathbf{B}_{0} \\
& =\frac{T_{u}}{q_{u} v_{u}} t_{n} \frac{v_{n}}{L_{n}^{2} B_{n}} \bar{v}_{\|}^{2}
\end{array} \frac{\partial \delta \bar{A}_{\|}}{\partial y}\right\rangle \bar{\nabla} x \times \bar{\nabla} y \cdot \overline{\mathbf{B}}_{0}\right)
$$

where $T_{u} /\left(q_{u} v_{u} B_{n} L_{n}\right)$ is the normlizing factor I need when coding.
The basic terms involved in the above expressions can be written as

$$
\begin{gather*}
(\nabla x \times \nabla y) \cdot \mathbf{B}_{0}=\frac{B_{0}^{2}}{\Psi^{\prime}} \tag{184}\\
(\nabla x \times \nabla z) \cdot \mathbf{B}_{0}=\left(\frac{\partial x}{\partial Z} \frac{\partial z}{\partial R}-\frac{\partial x}{\partial R} \frac{\partial z}{\partial Z}\right) B_{\phi} \equiv W 14 \tag{185}
\end{gather*}
$$

$$
\begin{equation*}
(\nabla y \times \nabla z) \cdot \mathbf{B}_{0}=\bar{B}_{R}\left(\frac{1}{R} \frac{\partial \alpha}{\partial \phi} \frac{\partial \theta}{\partial Z}\right)+\bar{B}_{\phi}\left(\frac{\partial \alpha}{\partial Z} \frac{\partial \theta}{\partial R}-\frac{\partial \alpha}{\partial R} \frac{\partial \theta}{\partial Z}\right)+\bar{B}_{Z}\left(-\frac{1}{R} \frac{\partial \alpha}{\partial \phi} \frac{\partial \theta}{\partial R}\right) \equiv W 15 \tag{186}
\end{equation*}
$$

In terms of $\delta A_{\|}^{(h)}$, the Ampere's law is written as

$$
\begin{equation*}
\left(\sum_{s} \frac{\omega_{p s}^{2}}{c^{2}}-\nabla_{\perp}^{2}\right) \delta A_{\|}^{(h)}=\mu_{0} \sum_{s} \delta J_{\| s}^{(h)}+\nabla_{\perp}^{2} \delta A_{\|}^{(s)}, \tag{187}
\end{equation*}
$$

where $\delta J_{\| s}^{(h)}$ is the parallel current carried by the distrbution funciton $\delta f_{s}^{(h)}$, where the subscript s is species index (do not confuse it with the superscript s of $\delta A_{\|}^{(s)}$). Here $\delta A_{\|}^{(s)}$ has been moved to the right-hand side since its value is already known when we solve the Ampere's law for $\delta A_{\|}^{(h)}$.

Compared with the $p_{\|}$formulation, the improvement of the above procedure is that a part of $\delta A_{\|}$is solved from an evolution equation (which is chosen by some physical consideration) and the remainder is solved from the Ampere's law. We hope that the former is the dominant part of $\delta A_{\|}$ so that the remainder solved from the Ampere's law is small and hence the cancellation problem (of the Ampere's law) become less significant. While a wise choice of the evolution equation for $\delta A_{\|}^{(s)}$ may help ensure that $\delta A_{\|}^{(s)}$ remain dominant over the entire simulation duration, we have another simple way to make $\delta A_{\|}^{(s)}$ remain dominant: collect both $\delta A_{\|}^{(s)}$ and $\delta A_{\|}^{(h)}$ into $\delta A_{\|}^{(s)}$ at the end of each time step:

$$
\begin{equation*}
\delta A_{\| \text {new }}^{(s)}=\delta A_{\| \text {old }}^{(s)}+\delta A_{\| \text {old }}^{(h)} . \tag{188}
\end{equation*}
$$

Then, to make $\delta A_{\|}$untouched (so that electromagnetic field remain unchanged), we set $\delta A_{\|}^{(h)}$ to zero:

$$
\begin{equation*}
\delta A_{\| \text {new }}^{(h)}=0 . \tag{189}
\end{equation*}
$$

Here "old" and "new" refers to before and after the re-spliting, respectively. Note that this respliting is made at the end of each time step and does not correspond to any time evolution. This re-splitting keeps the value of $\delta A_{\|}$untouched and hence does not influence the electromagnetic field. Meanwhile, the definition of Eq. (153) indicates that, for a given δf, the re-splitting will make the value of $\delta f^{(h)}$ increase by $\Delta=\frac{q}{m}\left\langle v_{\|} \delta A_{\| \text {old }}^{(h)}\right\rangle \frac{\partial F_{0}}{\partial \varepsilon}$ since $\delta A^{(h)}$ is reduced by $\delta A_{\text {old }}^{(h)}$. In other words, to keep δf unchanged, which is what we need to ensure, we must add Δ to $\delta f^{(h)}$:

$$
\begin{equation*}
\delta f_{\text {new }}^{(h)}=\delta f_{\text {old }}^{(h)}+\frac{q}{m}\left\langle v_{\|} \delta A_{\| \text {old }}^{(h)}\right\rangle_{\alpha} \frac{\partial F_{0}}{\partial \varepsilon} . \tag{190}
\end{equation*}
$$

After the operations in (188) (189) and (190), both the electromagnetic field and the distribution function δf remain unchanged. Therefore we do not change any physical process of the system. Hence the above operations can only have effects on numerical round-off errors. As mentioned above, we hope the numerical effects will reduce the cancellation errors.

Define

$$
\begin{equation*}
\delta \bar{\Phi}=\frac{q_{u} \delta \Phi}{T_{u}}, \delta \bar{A}_{\|}^{(h)}=\frac{q_{u} v_{u} \delta A_{\|}^{(h)}}{T_{u}}, \delta \bar{A}_{\|}^{(s)}=\frac{q_{u} v_{u} \delta A_{\|}^{(s)}}{T_{u}}, \delta \bar{J}_{\| s}^{(h)}=\frac{\delta J_{\| s}^{(s)}}{n_{u} q_{u} v_{n s}}, \tag{191}
\end{equation*}
$$

where $q_{u}, n_{u}, T_{u}, v_{u}$ are chosen units, $v_{n s}$ is a velocity unit for a species, whose value is different among different species $\left[v_{n s}=L_{n} /\left(2 \pi /\left(B_{n}\left|q_{s}\right| / m_{s}\right)\right)\right]$. In TEK, v_{u} is chosen as $v_{n s}$ of the first ion species.

Then the Ampere's law (187) is written as

$$
\begin{equation*}
\left(\sum_{s} \frac{\omega_{p s}^{2}}{c^{2}}-\nabla_{\perp}^{2}\right) \delta \bar{A}_{\|}^{(h)}=\frac{\omega_{p u}^{2}}{T_{u} / m_{u}} \frac{v_{u}^{2}}{c^{2}} \sum_{s} \frac{v_{n s}}{v_{u}} \delta \bar{J}_{\| s}^{(h)}+\nabla_{\perp}^{2} \delta \bar{A}_{\|}^{(s)} \tag{192}
\end{equation*}
$$

where $\omega_{p u}^{2}=n_{u} q_{u}^{2} /\left(m_{u} \varepsilon_{0}\right), m_{u}$ is a mass unit, and use has been made of $\mu_{0}=1 /\left(c^{2} \varepsilon_{0}\right)$.
δf pullback in Eq. (190) is now written as (for the case of F_{0} being Maxwellian):

$$
\begin{align*}
\delta f_{\text {new }}^{(h)} & =\delta f_{\text {old }}^{(h)}+\frac{q}{m}\left\langle v_{\|} \delta A_{\| \text {old }}^{(h)}\right\rangle_{\alpha}\left(-\frac{m}{T}\right) F_{0} \\
& =f_{\text {old }}^{(h)}-\frac{q}{T}\left\langle v_{\|} \delta A_{\| \text {old }}^{(h)}\right\rangle_{\alpha} F_{0} \\
& =f_{\text {old }}^{(h)}-\frac{\bar{q}}{\bar{T}} \overline{v_{\|}} \frac{v_{n}}{v_{u}}\left\langle\delta \bar{A}_{\| \text {old }}^{(h)}\right\rangle_{\alpha} F_{0} \tag{193}
\end{align*}
$$

In terms of units used in TEK, Eq. (155) is written as

$$
\frac{\partial \delta \bar{A}_{\|}^{(s)}}{\partial \bar{t}} \frac{T_{u}}{q_{u} v_{u}} \frac{1}{t_{u}}=-\frac{T_{u}}{q_{u} L_{n}} \mathbf{b} \cdot \bar{\nabla} \delta \bar{\Phi}
$$

where $\bar{t}=t / t_{u}, t_{u}=L_{n} / v_{u}$. Then the above equation is written as

$$
\begin{equation*}
\frac{\partial \delta \bar{A}_{\|}^{(s)}}{\partial \bar{t}}=-\mathbf{b} \cdot \bar{\nabla} \delta \bar{\Phi} \tag{194}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\frac{\partial \delta \bar{A}_{\|}^{(s)}}{\partial \bar{t}}=-(\mathbf{b} \cdot \bar{\nabla} z) \frac{\partial \delta \bar{\Phi}}{\partial z} \tag{195}
\end{equation*}
$$

4.4 Discretizing Laplacian operator

The Laplacian operator is approximated as

$$
\begin{equation*}
\nabla_{\perp}^{2} \delta A_{\|} \approx \frac{\partial^{2} \delta A_{\|}}{\partial^{2} x}|\nabla x|^{2}+\frac{\partial^{2} \delta A_{\|}}{\partial^{2} y}|\nabla y|^{2}+\frac{\partial^{2} \delta A_{\|}}{\partial x \partial y} 2 \nabla x \cdot \nabla y \tag{196}
\end{equation*}
$$

To approximate $\delta A_{\|}$of zero boundary condition $A_{\|}(x=0)=A_{\|}\left(x=L_{x}\right)=0$, the sine expansion can be adopted. In the y direction, full Fourier expansion is needed. Then, at each value of z, $A_{\|}(x, y, z)$ is approximated by the following two-dimensional expansion:

$$
\begin{equation*}
\delta A_{\|}(x, y, z) \approx \sum_{n=-N_{y} / 2}^{N_{y} / 2} \exp \left(i n \frac{2 \pi}{L_{y}} y\right) \sum_{m=1}^{N_{x}-1} A_{m, n}(z) \sin \left(\frac{m \pi}{L_{x}}\left(x-x_{0}\right)\right) \tag{197}
\end{equation*}
$$

Using this expression, Eq. (196) is written as

$$
\begin{aligned}
-\nabla_{\perp}^{2} \delta A_{\|}= & \sum_{n=-N_{y} / 2}^{N_{y} / 2} \exp \left(i n \frac{2 \pi}{L_{y}} y\right) \sum_{m=1}^{N_{x}-1} \delta A_{m, n}(z) \\
\times & \left\{\left[\left(\frac{m \pi}{L_{x}}\right)^{2}|\nabla x|^{2}+\left(n \frac{2 \pi}{L_{y}}\right)^{2}|\nabla y|^{2}\right] \sin \left(\frac{m \pi}{L_{x}}\left(x-x_{0}\right)\right)-i n \frac{2 \pi}{L_{y}}\left(\frac{m \pi}{L_{x}}\right) 2 \nabla x\right. \\
& \left.\nabla y \cos \left(\frac{m \pi}{L_{x}}\left(x-x_{0}\right)\right)\right\}
\end{aligned}
$$

At $x=x_{j}$, with $x_{j}-x_{0}=j \Delta$ and $L_{x} / \Delta=N_{x}$, the above expression is written as

$$
\begin{align*}
-\nabla_{\perp}^{2} \delta A_{\|}= & \sum_{n=-N_{y} / 2}^{N_{y} / 2} \exp \left(i n \frac{2 \pi}{L_{y}} y\right) \sum_{m=1}^{N_{x}-1} \delta A_{m, n}(z) \\
\times & \left\{\left[\left(\frac{m \pi}{L_{x}}\right)^{2}|\nabla \quad x|^{2}+\left(n \frac{2 \pi}{L_{y}}\right)^{2}|\nabla \quad y|^{2}\right] \sin \left(\frac{j m \pi}{N_{x}}\right)-i n \frac{2 \pi}{L_{y}}\left(\frac{m \pi}{L_{x}}\right) 2 \nabla \quad x\right. \\
& \left.\nabla y \cos \left(\frac{j m \pi}{N_{x}}\right)\right\} \tag{198}
\end{align*}
$$

where ∇x and ∇y are evaluated at x_{j}. Plugging the DST coefficients

$$
\begin{equation*}
\delta A_{m, n}(z)=\frac{2}{N_{x}} \sum_{j^{\prime}=1}^{N_{x}-1} A_{n}\left(x_{j^{\prime}}, z\right) \sin \left(\frac{j^{\prime} m \pi}{N_{x}}\right) \tag{199}
\end{equation*}
$$

into expression (198) gives

$$
\begin{aligned}
-\nabla_{\perp}^{2} \delta A_{\|} & =\sum_{n=-N_{y} / 2}^{N_{y} / 2} \exp \left(i n \frac{2 \pi}{L_{y}} y\right) \sum_{m=1}^{N_{x}-1} \frac{2}{N_{x}} \sum_{j^{\prime}=1}^{N_{x}-1} A_{n}\left(x_{j^{\prime}}, z\right) \sin \left(\frac{j^{\prime} m \pi}{N_{x}}\right) \\
& \times\left\{\left[\left(\frac{m \pi}{L_{x}}\right)^{2}|\nabla x|^{2}+\left(n \frac{2 \pi}{L_{y}}\right)^{2}|\nabla y|^{2}\right] \sin \left(\frac{j m \pi}{N_{x}}\right)-i n \frac{2 \pi}{L_{y}}\left(\frac{m \pi}{L_{x}}\right) 2 \nabla x \cdot \nabla y \cos \left(\frac{j m \pi}{N_{x}}\right)\right\}
\end{aligned}
$$

For a single toroidal harmonic, the above expression reduces to

$$
\begin{align*}
& \sum_{m=1}^{N_{x}-1} \frac{2}{N_{x}} \sum_{j^{\prime}=1}^{N_{x}-1} A_{n}\left(x_{j^{\prime}}, z\right) \sin \left(\frac{j^{\prime} m \pi}{N_{x}}\right) \\
\times & \left\{\left[\left(\frac{m \pi}{L_{x}}\right)^{2}|\nabla x|^{2}+\left(n \frac{2 \pi}{L_{y}}\right)^{2}|\nabla y|^{2}\right] \sin \left(\frac{j m \pi}{N_{x}}\right)-i n \frac{2 \pi}{L_{y}}\left(\frac{m \pi}{L_{x}}\right) 2 \nabla x \cdot \nabla y \cos \left(\frac{j m \pi}{N_{x}}\right)\right\} \tag{200}
\end{align*}
$$

Define

$$
\begin{aligned}
M_{j j^{\prime}, n} & \equiv \sum_{m=1}^{N_{x}-1} \frac{2}{N_{x}} \sin \left(\frac{j^{\prime} m \pi}{N_{x}}\right) \\
& \times\left\{\left[\left(\frac{m \pi}{L_{x}}\right)^{2}|\nabla x|^{2}+\left(n \frac{2 \pi}{L_{y}}\right)^{2}|\nabla y|^{2}\right] \sin \left(\frac{j m \pi}{N_{x}}\right)-i n \frac{2 \pi}{L_{y}}\left(\frac{m \pi}{L_{x}}\right) 2 \nabla x \cdot \nabla y \cos \left(\frac{j m \pi}{N_{x}}\right)\right\}
\end{aligned}
$$

then expression (200) is written as

$$
\begin{equation*}
\sum_{j^{\prime}=1}^{N_{x}-1} M_{j j^{\prime}, n} A_{n}\left(x_{j^{\prime}}, z\right) . \tag{201}
\end{equation*}
$$

4.5 Summary of distribution function split

In simulations, the seemingly trivial thing on how to split the distribution function is often considered to be a big deal. Separating the perturbation from the total distribution function gets the famous name " δf particle method", in contrast to the conventional particle method which is now called full-f particle method.

In the above, the perturbed part of the distribution function, δF, is split at least three times in order to (1) simplify the gyrokinetic equation by splitting out the adiabatic response; (2) eliminate the time derivatives, $\partial \delta \phi / \partial t$, and (3) $\partial \delta \mathbf{A} / \partial t$, on the right-hand. To avoid confusion, I summarize the split of the distribution function here. The total distribution function F is split as

$$
\begin{equation*}
F=F_{0}+\delta F, \tag{202}
\end{equation*}
$$

where F_{0} is the equilibrium distribution function and δF is the perturbed part of the total distribution function. δF is further split as

$$
\begin{equation*}
\delta F=\delta h+\frac{q}{m}\left(\delta \Phi-\langle\delta \Phi\rangle_{\alpha}\right) \frac{\partial F_{0}}{\partial \varepsilon}+\frac{q}{m}\langle\mathbf{v} \cdot \delta \mathbf{A}\rangle_{\alpha} \frac{\partial F_{0}}{\partial \varepsilon} \tag{203}
\end{equation*}
$$

where δh satisfies the gyrokinetic equation (147) or (152). In PIC simulations, δh is evolved by using markers and its moment in the phase-space is evaluated via Monte-Carlo integration.

The integration of the red and blue terms can be approximated analytically in terms of $\delta \Phi$ and $\delta \mathbf{A}$. But this can also be evaluated using markers, i.e., using Monte-Carlo method, to avoid the inaccurate cancellation between the integration of these parts and the integration of δh.

Another issue is how to accurately solve for $\delta \Phi$ from the Poisson equation and $\delta \mathbf{A}$ from the Ampere's law. To make the solution accurate, one need to have a large term that is explictly dependent on $\delta \Phi$ and $\delta \mathbf{A}$ to appear on the left-hand side of the equations and small terms appear on the right-hand side.

The red term in expression (203) gives "the polarization density" when integrated in the velocity space (discussed in Sec. 6). The reason for the name "polarization" is that ($\delta \Phi-\langle\delta \Phi\rangle_{\alpha}$) is the difference between the local value and the averaged value on a gyro-ring, expressing a kind of "separation".
are also needed to be evaluated using Monte-Carlo markers.

This term is moved to the left-hand side of the Poisson equation and is utilized in solving the Poisson equation. The blue term also has an explicit dependence on $\delta \mathbf{A}$, which, however, will cause numerical problems in particle simulations if it is moved to the left-hand side of the Ampere equation. This is the "cancellation problem" in gyrokinetic simulations discussed in Sec. 4.5.

The blue and red terms in the above expression explicitly depends on the perturbed field. The velocity integrations of these two terms can be performed analytically. However, in some cases, the phase space integration of the blue terms must be evaluated using markers, i.e., using Monte-Carlo method, to avoid the inaccurate cancellation between the integration of these parts and the integration of δh (the latter is computed using Monte-Carlo method). When will the inaccurate cancellation is significant depends on the problem being investigated and thus can only be determined by actual numerical experiments. Electromagnetic particle simulation experiments indicate that the parallel current carried by the blue term must be evaluated via Monte-Carlo method, otherwise inaccurate cancellation between this term and δh will give rise to numerical instabilities.

4.6 Velocity space moment of $\frac{q}{m}\langle\mathrm{v} \cdot \delta \mathrm{A}\rangle_{\alpha} \frac{\partial \boldsymbol{F}_{0}}{\partial \varepsilon}$

Consider the approximation $\delta \mathbf{A} \approx \delta A_{\|} \mathbf{e}_{\|}$, then the blue term in Eq. (203) is written as

$$
\begin{equation*}
\frac{q}{m}\left\langle v_{\|} \delta A_{\|}\right\rangle_{\alpha} \frac{\partial F_{0}}{\partial \varepsilon} \tag{204}
\end{equation*}
$$

Notice that $v_{\|}$can be taken out of the gyro-averaging. Then the above equation is written

$$
\begin{equation*}
\frac{q}{m} v_{\|}\left\langle\delta A_{\|}\right\rangle_{\alpha} \frac{\partial F_{0}}{\partial \varepsilon} \tag{205}
\end{equation*}
$$

If we neglect the FLR effect, then the above expression is written

$$
\begin{equation*}
\frac{q}{m} v_{\|} \delta A_{\|} \frac{\partial F_{0}}{\partial \varepsilon} . \tag{206}
\end{equation*}
$$

The zeroth order moment (number density) is then written as

$$
\begin{equation*}
\delta n=\frac{q}{m} \delta A_{\|} \int v_{\|} \frac{\partial F_{0}}{\partial \varepsilon} d \mathbf{v}, \tag{207}
\end{equation*}
$$

which is zero if F_{0} is Maxwellian. Next, consider the parallel current carried by distribution (206), which is written

$$
\begin{equation*}
\delta j_{\|}=\frac{q^{2}}{m} \delta A_{\|} \int v_{\|}^{2} \frac{\partial F_{0}}{\partial \varepsilon} d \mathbf{v} \tag{208}
\end{equation*}
$$

If F_{0} is a Maxwellian distribution given by

$$
\begin{equation*}
F_{0}=n_{0}\left(\frac{m}{2 \pi T}\right)^{3 / 2} \exp \left(-\frac{m v^{2}}{2 T}\right) . \tag{209}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{\partial F_{0}}{\partial \varepsilon}=-\frac{m}{T} F_{0} . \tag{210}
\end{equation*}
$$

Then expression (208) is written

$$
\begin{equation*}
\delta j_{\|}=-\frac{q^{2}}{T} n_{0}\left(\frac{m}{2 \pi T}\right)^{3 / 2} \delta A_{\|} \int v_{\|}^{2} \exp \left(-\frac{m v^{2}}{2 T}\right) d \mathbf{v} \tag{211}
\end{equation*}
$$

Working in the spherical coordinates, then $v_{\|}=v \cos \theta$ and $d \mathbf{v}=v^{2} \sin \theta d v d \theta d \phi$. Then expression (211) is written

$$
\begin{align*}
\delta j_{\|} & =-\frac{q^{2}}{T} n_{0}\left(\frac{m}{2 \pi T}\right)^{3 / 2} \delta A_{\|} \int v^{2} \cos ^{2} \theta \exp \left(-\frac{m v^{2}}{2 T}\right) v^{2} \sin \theta d v d \theta d \phi \\
& =-\frac{q^{2}}{T} n_{0}\left(\frac{m}{2 \pi T}\right)^{3 / 2} \delta A_{\|} \frac{4 \pi}{3} \int v^{4} \exp \left(-\frac{m v^{2}}{2 T}\right) d v \\
& =-\frac{q^{2}}{T} n_{0}\left(\frac{1}{\pi}\right)^{3 / 2} \frac{2 T}{m} \delta A_{\|} \frac{4 \pi}{3} \int x^{4} \exp \left(-x^{2}\right) d x \\
& =-\frac{q^{2}}{T} n_{0}\left(\frac{1}{\pi}\right)^{3 / 2} \frac{2 T}{m} \delta A_{\|} \frac{4 \pi}{3} \frac{3 \sqrt{\pi}}{8} \\
& =-\frac{q^{2}}{m} n_{0} \delta A_{\|} \tag{212}
\end{align*}
$$

Using $c=1 / \sqrt{\mu_{0} \varepsilon_{0}}$ and $\omega_{p}^{2}=n_{0} q^{2} /\left(m \varepsilon_{0}\right)$, the above expression can be written as

$$
\begin{equation*}
\mu_{0} \delta j_{\|}=-\frac{\omega_{p}^{2}}{c^{2}} \delta A_{\|} \tag{213}
\end{equation*}
$$

where the $c / \omega_{p s}$ is often called the skin depth of species " s ". The skin current can also be written as

$$
\begin{equation*}
\mu_{0} \delta j_{\|}=-\frac{\beta}{\rho^{2}} \delta A_{\|}, \tag{214}
\end{equation*}
$$

where $\rho=\sqrt{2 T / m} / \Omega$ is the thermal Larmor radius.

5 Parallel Ampere's Law

$$
\begin{equation*}
-\nabla_{\perp}^{2} \delta A_{\|}^{(n+1)}=\mu_{0}\left(\delta J_{\| i}^{(n+1)}+\delta J_{\| e}^{(n+1)}\right), \tag{215}
\end{equation*}
$$

where the parallel currents are given by

$$
\begin{gather*}
\delta J_{\| i}^{(n+1)}=\delta J_{\| i}^{\prime}\left(\delta \phi^{(n)}, \delta A_{\|}^{(n)}\right)+\int\left(v_{\|}^{(n+1)}\right)^{2} \frac{q_{i}^{2}}{m_{i}}\left\langle\delta A_{\|}^{(n+1)}\right\rangle_{\alpha} \frac{\partial F_{i 0}}{\partial \varepsilon} d \mathbf{v} \tag{216}\\
\delta J_{\| e}=\delta J_{\| e}^{\prime}\left(\delta \phi^{(n)}, \delta A_{\|}^{(n)}\right)+\int\left(v_{\|}^{(n+1)}\right)^{2} \frac{q_{e}^{2}}{m_{e}}\left\langle\delta A_{\|}^{(n+1)}\right\rangle_{\alpha} \frac{\partial F_{e 0}}{\partial \varepsilon} d \mathbf{v} \tag{217}
\end{gather*}
$$

where $\delta J_{\| i}^{\prime}$ and $\delta J_{\| e}^{\prime}$ is the parallel current carried by the distribution function δh in Eq. (203), which are updated from the value at the nth time step to the $(n+1)$ th time step using an explicit scheme and therefore does not depends on the field at the $(n+1)$ th step. The blue terms in Eqs. (216) and (217) are sometimes called "skin current", which depend on the unknown field at the $(n+1)$ th step and thus need to be moved to the left-hand side of Ampere's law (215) if we want to solve this equation by direct methods. In this case, equation (215) is written as

$$
\begin{align*}
& -\nabla_{\perp}^{2} \delta A_{\|}^{(n+1)}-\mu_{0} \int\left(v_{\|}^{(n+1)}\right)^{2} \frac{q_{i}^{2}}{m_{i}}\left\langle\delta A_{\|}^{(n+1)}\right\rangle_{\alpha} \frac{\partial F_{i 0}}{\partial \varepsilon} d \mathbf{v} \\
& -\mu_{0} \int\left(v_{\|}^{(n+1)}\right)^{2} \frac{q_{e}^{2}}{m_{e}}\left\langle\delta A_{\|}^{(n+1)}\right\rangle_{\alpha} \frac{\partial F_{e 0}}{\partial \varepsilon} d \mathbf{v} \\
& =\mu_{0}\left(\delta J_{\| i}^{\prime}+\delta J_{\| e}^{\prime}\right) \tag{218}
\end{align*}
$$

Then we need to put the blue terms into matrix form. If we put the bule terms into martrix form by using numerical spatial grid integration (as we do for the polarization density), then there arises the cancellation propblem (i.e., the two parts of the distribution are evaluated by different methods,one is grid-based and the other is MC marker based, there is a risk that the sum of the two terms will be inaccurate when the two terms are of opposite signs and large amplitudes, and the final result amplitude is expected to be much smaller than the amplituded of the two terms). If we get the matrix form by evaluating it numerically using MC markers (which can avoid the cancellation problem), the corresponding matrix will depends on markers and thus needs to be reconstructed and inverted each time-step, which is computationally expensive.

Therefore we go back to Eq. (215) and try to solve it using iterative methods. However, it is found numerically that directly using Eq. (215) as an iterative scheme is usually divergent. To obtain a convergent iterative scheme, we need to have an approximate form for the blue terms, which is independent of markers and so that it is easy to construct its matrix, and then subtract this approximate form from both sides. After doing this, the iterative scheme has better chance to be convergent (partially due to that the right-hand side becomes smaller). An approximate form is that derived by neglecting the FLR effect given in Sec. 4.6. Using this, the iterative scheme for solving Eq. (215) is written as

$$
\begin{align*}
& -\nabla_{\perp}^{2} \delta A_{\|}^{(n+1)}-\left(-\frac{\omega_{p i}^{2}}{c^{2}} \delta A_{\|}^{(n+1)}-\frac{\omega_{p e}^{2}}{c^{2}} \delta A_{\|}^{(n+1)}\right) \\
& =\mu_{0}\left(\delta J_{\| i}^{\prime}+\delta J_{\| e}^{\prime}\right) \\
& +\mu_{0} \int\left(v_{\|}^{(n+1)}\right)^{2} \frac{q_{i}^{2}}{m_{i}}\left\langle\delta A_{\|}^{(n+1)}\right\rangle_{\alpha} \frac{\partial F_{i 0}}{\partial \varepsilon} d \mathbf{v} \\
& +\mu_{0} \int\left(v_{\|}^{(n+1)}\right)^{2} \frac{q_{e}^{2}}{m_{e}}\left\langle\delta A_{\|}^{(n+1)}\right\rangle_{\alpha} \frac{\partial F_{e 0}}{\partial \varepsilon} d \mathbf{v} \\
& -\left(-\frac{\omega_{p i}^{2}}{c^{2}} \delta A_{\|}^{(n+1)}-\frac{\omega_{p e}^{2}}{c^{2}} \delta A_{\|}^{(n+1)}\right) . \tag{219}
\end{align*}
$$

In the drift-kinetic limit (i.e., neglecting the FLR effect), the blue and red terms on the right-hand side of the above equation cancel each other exactly. Even in this case, it is found numerically that these terms need to be retained and the blue terms are evaluated using markers. Otherwise, numerical inaccuracy can give numerical instabilities, which is the so-called cancellation problem. The explanation for this is as follows. The blue terms are part of the current. The remained part of the current carried by δh is computed by using Monte-Carlo integration over markers. If the blue terms are evaluated analytically, rather than using Monte-Carlo integration over markers, then the cancellation between this analytical part and Monte-Carlo part can have large error (assume that there are two large contribution that have opposite signs in the two parts) because the two parts are evaluated using different methods and thus have different accuracy, which makes the cancellation less accurate.

Because the ion skin current is less than its electron counterpart by a factor of m_{e} / m_{i}, its accuracy is not important. The cancellation error is not a problem and hence can be neglected. In this case, equation (219) is simplified as

$$
\begin{align*}
& -\nabla_{\perp}^{2} \delta A_{\|}^{(n+1)}-\left(-\frac{\omega_{p i}^{2}}{c^{2}} \delta A_{\|}^{(n+1)}-\frac{\omega_{p e}^{2}}{c^{2}} \delta A_{\|}^{(n+1)}\right) \\
& =\mu_{0}\left(\delta J_{\| i}^{\prime}+\delta J_{\| e}^{\prime}\right) \\
& +\mu_{0} \int\left(v_{\|}^{(n+1)}\right)^{2} \frac{q_{e}^{2}}{m_{e}}\left\langle\delta A_{\|}^{(n+1)}\right\rangle_{\alpha} \frac{\partial F_{e 0}}{\partial \varepsilon} d \mathbf{v} \\
& -\left(-\frac{\omega_{p e}^{2}}{c^{2}} \delta A_{\|}^{(n+1)}\right) . \tag{220}
\end{align*}
$$

Note that the blue term will be evaluated using Monte-Carlo markers.

6 Poisson's equation and polarization density

Poisson's equation is written as

$$
\begin{equation*}
-\varepsilon_{0} \nabla^{2} \delta \Phi=q_{i} \delta n_{i}+q_{e} \delta n_{e} \tag{221}
\end{equation*}
$$

where $-\varepsilon_{0} \nabla^{2} \delta \Phi$ is called the space-charge term. Since we consider modes with $k_{\|} \ll k_{\perp}$, the spacecharge term is approximated as $\nabla^{2} \delta \Phi \equiv \nabla_{\perp}^{2} \delta \Phi+\nabla_{\|}^{2} \delta \Phi \approx \nabla_{\perp}^{2} \delta \Phi$. Then Eq. (221) is written as

$$
\begin{equation*}
-\varepsilon_{0} \nabla_{\perp}^{2} \delta \Phi=q_{i} \delta n_{i}+q_{e} \delta n_{e} \tag{222}
\end{equation*}
$$

This approximation eliminates the parallel plasma oscillation from the system. The perpendicular plasma oscillations seem to be only partially eliminated in the system consisting of gyrokinetic ions and drift-kinetic electrons. There are the so-called Ω_{H} modes (also called electrostatic shear Alfven wave) that appear in the gyrokinetic system which have some similarity with the plasma oscillations but with a much smaller frequency, $\Omega_{H} \sim\left(k_{\|} / k_{\perp}\right)\left(\lambda_{D} / \rho_{s}\right) \omega_{p e}$.

Using expression (203), the perturbed number density δn is written as

$$
\begin{align*}
\delta n & =\int \delta F d \mathbf{v} \\
& =\int \delta h d \mathbf{v}+\int\left[\frac{q}{m}\left(\delta \Phi-\langle\delta \Phi\rangle_{\alpha}\right) \frac{\partial F_{0}}{\partial \varepsilon}\right] d \mathbf{v}+\int\left[\frac{q}{m}\langle\mathbf{v} \cdot \delta \mathbf{A}\rangle_{\alpha} \frac{\partial F_{0}}{\partial \varepsilon}\right] d \mathbf{v} \tag{223}
\end{align*}
$$

where the blue term is approximately zero for isotropic F_{0} and this term is usually dropped in simulations that assume isotropic F_{0} and approximate $\delta \mathbf{A}$ as $\delta A_{\|} \mathbf{e}_{\|}$. The red term in expression (223) is the so-called the polarization density n_{p}, i.e.,

$$
\begin{equation*}
\delta n_{p}(\mathbf{x})=\int \frac{q}{m}\left(\delta \Phi-\langle\delta \Phi\rangle_{\alpha}\right) \frac{\partial F_{0}}{\partial \varepsilon} d \mathbf{v} \tag{224}
\end{equation*}
$$

which has an explicit dependence on $\delta \Phi$ and is usually moved to the left hand of Poisson's equation when constructing the numerical solver of the Poisson equation, i.e., equation (222) is written as

$$
\begin{equation*}
-\varepsilon_{0} \nabla_{\perp}^{2} \delta \Phi-q_{i} \int \frac{q_{i}}{m_{i}}\left(\delta \Phi-\langle\delta \Phi\rangle_{\alpha}\right) \frac{\partial F_{i 0}}{\partial \varepsilon} d \mathbf{v}=q_{i} \delta n_{i}^{\prime}+q_{e} \delta n_{e} \tag{225}
\end{equation*}
$$

where $\delta n_{i}^{\prime}=\delta n_{i}-\delta n_{p i}=\int \delta h_{i} d \mathbf{v}$, which is evaluated by using Monte-Carlo markers. Since some parts depending on $\delta \Phi$ are moved from the right-hand side to the left-hand side of the field equation, numerical solvers (for $\delta \Phi$) based on the left-hand side of Eq. (225) probably behaves better than the one that is based on the left-hand side of Eq. (222), i.e., $-\varepsilon_{0} \nabla_{\perp}^{2} \delta \Phi$.

6.1 Discussion on cancellation scheme

The polarization density is part of the perturbed density that is extracted from the source term and moved to the left-hand side of the Poisson equation. The polarization density will be evaluated without using Monte-Carlo markers, whereas the remained density on the right-hand side will be evaluated using Mote-Carlo markers. The two different methods of evaluating two parts of the total perturbed density can possibly introduce significant errors if the two terms are expected to cancel each other and give a small quantity that is much smaller than either of the two terms. This is one pitfall for PIC simulations that extract some parts from the source term and move them to the lefthand side. To remedy this, rather than directly moving a part of the distribution function to the left-hand side, we subtract an (approximate) analytic expression from both sides of Eq. (222). The analytical expressions on both sides are evaluated based on grid values of perturbed electromagnetic fields and are independent of makers. All the original parts of the distribution functions are kept on the right-hand side and are still evaluated by using markers, which hopefully avoids the possible cancellation problem. This strategy is often called a cancellation scheme. Since unknown perturbed electromagnetic fields appear on the right-hand side, iteration is needed to solve the field equation.

Note that two things appear here: What motivates us to move parts of the distribution function to the left? It is the goal of hopefully making the left-hand side matrix more well-behaved (such as good condition number, etc.) Why do we need the cancellation scheme? Because we want to avoid the numerical inaccuracy that appears when large terms cancels each other. Note that iteration is needed when the cancellation scheme is used because the right-hand side explicitly contains unknown electromagnetic fields.

It turns out that the cancellation scheme is not necessary for Eq. (225), but for the field solver for Ampere's equation (discussed later), this cancellation scheme is necessary in order to obtain stable results.

7 Polarization density expressed as local Fourier expansion

Since $\delta \Phi$ is independent of the velocity in the particle coaordinates, the first term (adiabatic term) in expression (224) is trivial and the velocity integration can be readily performed (assume F_{0} is Maxwellian), giving

$$
\begin{align*}
\delta n_{\mathrm{ad}} & =\int \frac{q}{m}(\delta \Phi) \frac{\partial F_{0}}{\partial \varepsilon} d \mathbf{v} \\
& =\frac{q}{m}(\delta \Phi) \int\left(-\frac{m}{T} f_{M}\right) d \mathbf{v} \\
& =-\frac{q \delta \Phi}{T} n_{0} \tag{226}
\end{align*}
$$

which is called adiabatic response. Next, let us perform the gyro-averaging and the velocity integration of the second term in expression (224), i.e.,

$$
\begin{equation*}
-\int \frac{q}{m}\langle\delta \Phi\rangle_{\alpha} \frac{\partial F_{0}}{\partial \varepsilon} d \mathbf{v} . \tag{227}
\end{equation*}
$$

7.1 Gyro-averaging of $\delta \Phi$ in guiding-center coordinates

In order to perform the gyro-averaging of $\delta \Phi$, we Fourier expand $\delta \Phi$ in space as

$$
\begin{equation*}
\delta \Phi(\mathbf{x})=\int \delta \Phi_{k} \exp (i \mathbf{k} \cdot \mathbf{x}) \frac{d \mathbf{k}}{(2 \pi)^{3}} \tag{228}
\end{equation*}
$$

and then express \mathbf{x} in terms of the guiding center variables (\mathbf{X}, \mathbf{v}) since the gyro-averaging is taken by holding \mathbf{X} rather than \mathbf{x} constant. The guiding-center transformation gives

$$
\begin{equation*}
\mathbf{x}=\mathbf{X}+\boldsymbol{\rho}(\mathbf{x}, \mathbf{v}) \approx \mathbf{X}-\mathbf{v} \times \frac{\mathbf{e}_{\|}(\mathbf{X})}{\Omega(\mathbf{X})} \tag{229}
\end{equation*}
$$

Using expressions (228) and (229), the gyro-average of $\delta \Phi$ is written as

$$
\begin{align*}
\langle\delta \Phi\rangle_{\alpha} & =\left\langle\int \delta \Phi_{k} \exp (i \mathbf{k} \cdot \mathbf{x}) \frac{d \mathbf{k}}{(2 \pi)^{3}}\right\rangle_{\alpha} \\
& =\left\langle\int \delta \Phi_{k} \exp \left(i \mathbf{k} \cdot\left(\mathbf{X}-\mathbf{v} \times \frac{\mathbf{e}_{\|}(\mathbf{X})}{\Omega(\mathbf{X})}\right)\right) \frac{d \mathbf{k}}{(2 \pi)^{3}}\right\rangle_{\alpha} \\
& =\int \delta \Phi_{k} \exp (i \mathbf{k} \cdot \mathbf{X})\left\langle\exp \left(-i \mathbf{k} \cdot \mathbf{v} \times \frac{\mathbf{e}_{\|}(\mathbf{X})}{\Omega(\mathbf{X})}\right)\right\rangle_{\alpha} \frac{d \mathbf{k}}{(2 \pi)^{3}} . \tag{230}
\end{align*}
$$

When doing the gyro-averaging, \mathbf{X} is hold constant and thus $\mathbf{e}_{\|}(\mathbf{X})$ is also constant. Then it is straightforward to define the gyro-angle α. Let \mathbf{k}_{\perp} define one of the perpendicular direction $\hat{\mathbf{e}}_{1}$, i.e., $\mathbf{k}_{\perp}=k_{\perp} \hat{\mathbf{e}}_{1}$. Then another perpendicular basis vector is defined by $\hat{\mathbf{e}}_{2}=\mathbf{e}_{\|} \times \hat{\mathbf{e}}_{1}$. Then \mathbf{v}_{\perp} is written as $\mathbf{v}_{\perp}=v_{\perp}\left(\hat{\mathbf{e}}_{1} \cos \alpha+\hat{\mathbf{e}}_{2} \sin \alpha\right)$, which defines the gyro-angle α. Then the blue expression in Eq. (230) is written as

$$
\begin{align*}
-i \mathbf{k} \cdot \mathbf{v} \times \frac{\mathbf{e}_{\|}(\mathbf{X})}{\Omega(\mathbf{X})} & =-i \mathbf{k} \cdot v_{\perp}\left(\hat{\mathbf{e}}_{1} \cos \alpha+\hat{\mathbf{e}}_{2} \sin \alpha\right) \times \frac{\mathbf{e}_{\|}(\mathbf{X})}{\Omega(\mathbf{X})} \\
& =-i \mathbf{k} \cdot \frac{v_{\perp}}{\Omega(\mathbf{X})}\left(-\hat{\mathbf{e}}_{2} \cos \alpha+\hat{\mathbf{e}}_{1} \sin \alpha\right) \\
& =-i \frac{k_{\perp} v_{\perp}}{\Omega} \sin \alpha . \tag{231}
\end{align*}
$$

Then the gyro-averaging in expression (230) is written as

$$
\begin{align*}
\left\langle\exp \left(-i \mathbf{k} \cdot \mathbf{v} \times \frac{\mathbf{e}_{\|}(\mathbf{X})}{\Omega(\mathbf{X})}\right)\right\rangle_{\alpha} & =\left\langle\exp \left(-i \frac{k_{\perp} v_{\perp}}{\Omega} \sin \alpha\right)\right\rangle_{\alpha} \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \exp \left(-i \frac{k_{\perp} v_{\perp}}{\Omega} \sin \alpha\right) d \alpha \\
& =J_{0}\left(\frac{k_{\perp} v_{\perp}}{\Omega}\right) . \tag{232}
\end{align*}
$$

where use has been made of the definition of the zeroth Bessel function of the first kind. Then $\langle\delta \Phi\rangle_{\alpha}$ in expression (230) is written as

$$
\begin{equation*}
\langle\delta \Phi\rangle_{\alpha}=\int \delta \Phi_{k} \exp (i \mathbf{k} \cdot \mathbf{X}) J_{0}\left(\frac{k_{\perp} v_{\perp}}{\Omega}\right) \frac{d \mathbf{k}}{(2 \pi)^{3}} . \tag{233}
\end{equation*}
$$

7.2 Gryo-angle integration in particle coordinates

Next, we need to perform the integration in velocity space, which is done by holding \mathbf{x} (rather than \mathbf{X}) constant. Therefore, it is convenient to transform back to particle coordinates. Using $\mathbf{X}=\mathbf{x}+\mathbf{v} \times \frac{\mathbf{e}_{\|}(\mathbf{x})}{\Omega(\mathbf{x})}$, expression (233) is written as

$$
\begin{equation*}
\langle\delta \Phi\rangle_{\alpha}=\int \delta \Phi_{k} \exp (i \mathbf{k} \cdot \mathbf{x}) J_{0}\left(\frac{k_{\perp} v_{\perp}}{\Omega}\right) \exp \left(i \mathbf{k} \cdot \mathbf{v} \times \frac{\mathbf{e}_{\|}}{\Omega}\right) \frac{d \mathbf{k}}{(2 \pi)^{3}} \tag{234}
\end{equation*}
$$

Then the velocity integration is written as

$$
\begin{align*}
& \int\langle\delta \Phi\rangle_{\alpha} \frac{\partial F_{0}}{\partial \varepsilon} d \mathbf{v} \\
& =\int \delta \Phi_{k} \exp (i \mathbf{k} \cdot \mathbf{x})\left[\int J_{0}\left(\frac{k_{\perp} v_{\perp}}{\Omega}\right) \exp \left(i \mathbf{k} \cdot \mathbf{v} \times \frac{\mathbf{e}_{\|}}{\Omega}\right) \frac{\partial F_{0}}{\partial \varepsilon} d \mathbf{v}\right] \frac{d \mathbf{k}}{(2 \pi)^{3}} \tag{235}
\end{align*}
$$

Similar to Eq. (231), except for now at \mathbf{x} rather than $\mathbf{X}, i \mathbf{k} \cdot \mathbf{v} \times \frac{\mathbf{e}_{\|}}{\Omega}$ is written as

$$
\begin{equation*}
i \mathbf{k} \cdot \mathbf{v} \times \frac{\mathbf{e}_{\|}}{\Omega}=i \frac{k_{\perp} v_{\perp}}{\Omega} \sin \alpha . \tag{236}
\end{equation*}
$$

Since this is at \mathbf{x} rather than $\mathbf{X}, k_{\perp}, v_{\perp}$, and Ω are different from those appearing in expression (231). However, since this difference is due to the variation of the equilibrium quantity $\mathbf{e}_{\|} / \Omega$ in a Larmor radius, and thus is small and is ignored in the following.

Plugging expression (236) into expression (235) and using $d \mathbf{v}=v_{\perp} d v_{\perp} d v_{\|} d \alpha$, we get

$$
\begin{align*}
& \int\langle\delta \Phi\rangle_{\alpha} \frac{\partial F_{0}}{\partial \varepsilon} d \mathbf{v} \\
& =\int \delta \Phi_{k} \exp (i \mathbf{k} \cdot \mathbf{x})\left[\int J_{0}\left(\frac{k_{\perp} v_{\perp}}{\Omega}\right) \exp \left(i \frac{k_{\perp} v_{\perp}}{\Omega} \sin \alpha\right) \frac{\partial F_{0}}{\partial \varepsilon} v_{\perp} d v_{\perp} d v_{\|} d \alpha\right] \frac{d \mathbf{k}}{(2 \pi)^{3}} \tag{237}
\end{align*}
$$

Note that $\partial F_{0} / \partial \varepsilon$ is independent of the gyro-angle α in terms of guiding-center variables. When transformed back to particle coordinates, \mathbf{X} contained in $\partial F_{0} / \partial \varepsilon$ will introduce α dependence via $\mathbf{X}=\mathbf{x}+\mathbf{v} \times \frac{\mathbf{e}_{\|}}{\Omega}$. This dependence on α is weak since the equilibrium quantities can be considered constant over a Larmor radius distance evaluated at the thermal velocity. Therefore this dependence can be ignored when performing the integration over α, i.e., in terms of particle coordinates, $\partial F_{0} / \partial \varepsilon$ is approximately independent of the gyro-angle α. Then the integration over α in Eq. (237) can be performed, yielding

$$
\begin{align*}
& \int\langle\delta \Phi\rangle_{\alpha} \frac{\partial F_{0}}{\partial \varepsilon} d \mathbf{v} \\
= & \int \delta \Phi_{k} \exp (i \mathbf{k} \cdot \mathbf{x}) \iint J_{0}\left(\frac{k_{\perp} v_{\perp}}{\Omega}\right)\left[\int_{0}^{2 \pi} \exp \left(i \frac{k_{\perp} v_{\perp}}{\Omega} \sin \alpha\right) d \alpha\right] \frac{\partial F_{0}}{\partial \varepsilon} v_{\perp} d v_{\perp} d v_{\|} \frac{d \mathbf{k}}{(2 \pi)^{3}} \\
= & \int \delta \Phi_{k} \exp (i \mathbf{k} \cdot \mathbf{x})\left[\iint J_{0}\left(\frac{k_{\perp} v_{\perp}}{\Omega}\right) 2 \pi J_{0}\left(\frac{k_{\perp} v_{\perp}}{\Omega}\right) \frac{\partial F_{0}}{\partial \varepsilon} v_{\perp} d v_{\perp} d v_{\|}\right] \frac{d \mathbf{k}}{(2 \pi)^{3}}, \tag{238}
\end{align*}
$$

where again use has been made of the definition of the Bessel function.

7.2.1 The remaining velocity integration can be performed analytically if \boldsymbol{F}_{0} is Maxwellian

In order to perform the remaining velocity integration in expression (238), we assume that F_{0} is a Maxwellian distribution given by

$$
\begin{align*}
F_{0} & =f_{M}=\frac{n_{0}(\mathbf{X})}{(2 \pi T(\mathbf{X}) / m)^{3 / 2}} \exp \left(\frac{-m v^{2}}{2 T(\mathbf{X})}\right) \tag{239}\\
& =\frac{n_{0}}{(2 \pi)^{3 / 2} v_{t}^{3}} \exp \left(\frac{-v^{2}}{2 v_{t}^{2}}\right), \tag{240}
\end{align*}
$$

where $v_{t}=\sqrt{T / m}$, then

$$
\begin{equation*}
\frac{\partial F_{0}}{\partial \varepsilon}=-\frac{m}{T} f_{M} \tag{241}
\end{equation*}
$$

Again we will ignore the weak dependence of $n_{0}(\mathbf{X})$ and $T(\mathbf{X})$ on \mathbf{v} introduced by $\mathbf{X}=\mathbf{x}+\mathbf{v} \times \mathbf{e}_{\|} / \Omega$ when transformed back to particle coordinates. (For sufficiently large velocity, the corresponding Larmor radius will be large enough to make the equilibrium undergo substantial variation. Since the velocity integration limit is to infinite, this will definitely occur. However, F_{0} is exponentially decreasing with velocity, making those particles with velocity much larger than the thermal velocity negligibly few and thus can be neglected.)

Parallel integration

Using Eq. (241), the expression in the square brackets of Eq. (238) is written as

$$
\begin{align*}
& 2 \pi \iint J_{0}^{2}\left(\frac{k_{\perp} v_{\perp}}{\Omega}\right) \frac{\partial F_{0}}{\partial \varepsilon} v_{\perp} d v_{\perp} d v_{\|} \\
& =-\frac{m}{T} \frac{n_{0}}{(2 \pi)^{1 / 2}} \iint J_{0}^{2}\left(\frac{k_{\perp} v_{\perp}}{\Omega}\right) \frac{1}{v_{t}^{3}} \exp \left(-\frac{v_{\|}^{2}+v_{\perp}^{2}}{2 v_{t}^{2}}\right) v_{\perp} d v_{\perp} d v_{\|} \tag{242}\\
& =-\frac{m}{T} \frac{n_{0}}{(2 \pi)^{1 / 2}} \iint J_{0}^{2}\left(\frac{k_{\perp} v_{\perp}}{\Omega}\right) \exp \left(-\frac{\bar{v}_{\|}^{2}+\bar{v}_{\perp}^{2}}{2}\right) \bar{v}_{\perp} d \bar{v}_{\perp} d \bar{v}_{\|} \tag{243}
\end{align*}
$$

where $\bar{v}_{\|}=v_{\|} / v_{t}, \bar{v}_{\perp}=v_{\perp} / v_{t}$. Using

$$
\begin{equation*}
\int_{-\infty}^{\infty} \exp \left(-\frac{x^{2}}{2}\right) d x=\sqrt{2 \pi} \tag{244}
\end{equation*}
$$

the integration over $\bar{v}_{\|}$in expression (243) can be performed, yielding

$$
\begin{equation*}
-\frac{m}{T} n_{0} \int_{0}^{\infty} J_{0}^{2}\left(\frac{k_{\perp} v_{\perp}}{\Omega}\right) \exp \left(-\frac{\bar{v}_{\perp}^{2}}{2}\right) \bar{v}_{\perp} d \bar{v}_{\perp} \tag{245}
\end{equation*}
$$

Perpendicular integration

Using (I verified this by using Sympy)

$$
\begin{equation*}
\int_{0}^{\infty} J_{0}^{2}(a x) \exp \left(-\frac{x^{2}}{2}\right) x d x=\exp \left(-a^{2}\right) I_{0}\left(a^{2}\right), \tag{246}
\end{equation*}
$$

where $I_{0}(a)$ is the zeroth modified Bessel function of the first kind, expression (245) is written

$$
\begin{equation*}
-\frac{m}{T} n_{0} \exp (-b) I_{0}(b) \tag{247}
\end{equation*}
$$

where $b=k_{\perp}^{2} v_{t}^{2} / \Omega^{2}=k_{\perp}^{2} \rho_{t}^{2}$. Then the corresponding density (227) is written as

$$
\begin{equation*}
-\frac{q}{m} \int\langle\delta \Phi\rangle_{\alpha} \frac{\partial F_{0}}{\partial \varepsilon} d \mathbf{v}=\frac{q n_{0}}{T} \int \delta \Phi_{k} \exp (i \mathbf{k} \cdot \mathbf{x}) \exp (-b) I_{0}(b) \frac{d \mathbf{k}}{(2 \pi)^{3}} \tag{248}
\end{equation*}
$$

7.2.2 Final form of polarization density

In Fourier space, the adiabatic term in expression (226) is written as

$$
\begin{equation*}
\int \frac{q}{m}(\delta \Phi) \frac{\partial F_{0}}{\partial \varepsilon} d \mathbf{v}=-\frac{q n_{0}}{T} \delta \Phi=-\frac{q n_{0}}{T} \int \delta \Phi_{k} \exp (i \mathbf{k} \cdot \mathbf{x}) \frac{d \mathbf{k}}{(2 \pi)^{3}} . \tag{249}
\end{equation*}
$$

Plugging expression (248) and (249) into expression (224), the polarization density n_{p} is written as

$$
\begin{equation*}
n_{p}=-\frac{q n_{0}}{T} \int \delta \Phi_{k} \exp (i \mathbf{k} \cdot \mathbf{x})\left[1-\exp (-b) I_{0}(b)\right] \frac{d \mathbf{k}}{(2 \pi)^{3}} \tag{250}
\end{equation*}
$$

Define

$$
\begin{equation*}
\Gamma_{0}=\exp (-b) I_{0}(b), \tag{251}
\end{equation*}
$$

then Eq. (250) is written as

$$
\begin{equation*}
n_{p}=-\frac{q n_{0}}{T} \int \delta \Phi_{k} \exp (i \mathbf{k} \cdot \mathbf{x})\left[1-\Gamma_{0}\right] \frac{d \mathbf{k}}{(2 \pi)^{3}} \tag{252}
\end{equation*}
$$

Expression (252) agrees with the result given in Yang Chen's notes. Note that the dependence on species mass enters the formula through the Larmor radius ρ_{t} in Γ_{0}.

7.3 Pade approximation

Γ_{0} defined in Eq. (251) can be approximated by the Pade approximation as

$$
\begin{equation*}
\Gamma_{0} \approx \frac{1}{1+b} . \tag{253}
\end{equation*}
$$

The comparison between the exact value of Γ_{0} and the above Pade approximation is shown in Fig. 1.

Figure 1. Comparison between the exact value of $\Gamma_{0}=\exp \left(-\left(k_{\perp} \rho\right)^{2}\right) I_{0}\left(\left(k_{\perp} \rho\right)^{2}\right)$ and the corresponding Pade approximation $1 /\left(1+\left(k_{\perp} \rho\right)^{2}\right)$.

Using the Pade approximation (253), the polarization density n_{p} in expression (252) can be written as

$$
\begin{equation*}
n_{p} \approx-\frac{q n_{0}}{T} \int \delta \Phi_{k} \exp (i \mathbf{k} \cdot \mathbf{x}) \frac{k_{\perp}^{2} \rho^{2}}{1+k_{\perp}^{2} \rho^{2}} \frac{d \mathbf{k}}{(2 \pi)^{3}} \tag{254}
\end{equation*}
$$

(Pade approximate is the "best" approximation of a function by a rational function of given order - under this technique, the approximant's power series agrees with the power series of the function it is approximating.)

7.3.1 Long wavelength approximation of the polarization density

In the long wavelength limit, $k_{\perp} \rho \ll 1$, expression (254) can be further approximated as

$$
\begin{align*}
n_{p} & \approx-\frac{q n_{0}}{T} \int \delta \Phi_{k} \exp (i \mathbf{k} \cdot \mathbf{x}) k_{\perp}^{2} \rho^{2} \frac{d \mathbf{k}}{(2 \pi)^{3}} \\
& =\frac{q n_{0}}{T} \rho^{2} \nabla_{\perp}^{2} \delta \Phi \tag{255}
\end{align*}
$$

Then the corresponding term in the Poisson equation is written as

$$
\begin{align*}
\frac{q}{\varepsilon_{0}} n_{p} & =\frac{q^{2} n_{0}}{\varepsilon_{0} T} \rho^{2} \nabla_{\perp}^{2} \delta \Phi \\
& =\frac{\rho^{2}}{\lambda_{D}^{2}} \nabla_{\perp}^{2} \delta \Phi \tag{256}
\end{align*}
$$

where λ_{D} is the Debye length defined by $\lambda_{D}^{2}=T \varepsilon_{0} /\left(n_{0} q^{2}\right)$. For typical tokamak plasmas, the thermal ion gyroradius ρ_{i} is much larger than λ_{D}. Therefore the term in expression (256) for ions is much larger than the space charge term $\nabla^{2} \delta \Phi \equiv \nabla_{\perp}^{2} \delta \Phi+\nabla_{\|}^{2} \delta \Phi \approx \nabla_{\perp}^{2} \delta \Phi$ in the Poisson equation. Therefore the space charge term can be neglected in the long wavelength limit.

Equation (256) also shows that electron polarization density is smaller than the ion polarization density by a factor of $\rho_{e} / \rho_{i} \approx 1 / 60$. Note that this conclusion is drawn in the long wavelength limit. For short wavelength, the electron polarization and ion polarization density can be of similar magnitude (to be discussed later).

7.3.2 Polarization density expressed in terms of Laplacian operator

The polarization density expression (255) is for the long wavelength limit, which partially neglects FLR effect. Let us go back to the more general expression (254). The Poisson equation is written

$$
\begin{equation*}
-\varepsilon_{0} \nabla_{\perp}^{2} \delta \Phi=q_{i} \delta n_{i}+q_{e} \delta n_{e} \tag{257}
\end{equation*}
$$

Write $\delta n_{i}=n_{p i}+\delta n_{i}^{\prime}$, where $\delta n_{p i}$ is the ion polarization density, then the above expression is written

$$
\begin{equation*}
-\varepsilon_{0} \nabla_{\perp}^{2} \delta \Phi-q_{i} n_{p i}=q_{i} \delta n_{i}^{\prime}+q_{e} \delta n_{e} \tag{258}
\end{equation*}
$$

Fourier transforming in space, the above equation is written

$$
\begin{equation*}
-\varepsilon_{0} k_{\perp}^{2} \delta \hat{\Phi}-q_{i} \hat{n}_{p i}=q_{i} \delta \hat{n}_{i}^{\prime}+q_{e} \delta \hat{n}_{e}, \tag{259}
\end{equation*}
$$

where $\hat{n}_{p i}$ is the Fourier transformation (in space) of the polarization density $n_{p i}$ and similar meanings for $\delta \hat{\Phi}, \delta \hat{n}_{i}^{\prime}$, and $\delta \hat{n}_{e}$. Expression (254) implies that $\hat{n}_{p i}$ is given by

$$
\begin{equation*}
\hat{n}_{p i}=-\frac{q_{i} n_{i 0}}{T_{i}} \delta \hat{\Phi} \frac{k_{\perp}^{2} \rho_{i}^{2}}{1+k_{\perp}^{2} \rho_{i}^{2}} \tag{260}
\end{equation*}
$$

Using this, equation (259) is written

$$
\begin{equation*}
-\varepsilon_{0} k_{\perp}^{2} \delta \hat{\Phi}-q_{i}\left(-\frac{q_{i} n_{i 0}}{T_{i}} \frac{k_{\perp}^{2} \rho_{i}^{2}}{1+k_{\perp}^{2} \rho_{i}^{2}} \delta \hat{\Phi}\right)=q_{i} \delta \hat{n}_{i}^{\prime}+q_{e} \delta \hat{n}_{e} \tag{261}
\end{equation*}
$$

Multiplying both sides by $\left(1+k_{\perp}^{2} \rho_{i}^{2}\right) / \varepsilon_{0}$, the above equation is written

$$
\begin{equation*}
-\left(1+k_{\perp}^{2} \rho_{i}^{2}\right) k_{\perp}^{2} \delta \hat{\Phi}-\frac{q_{i}}{\varepsilon_{0}}\left(-\frac{q_{i} n_{i 0}}{T_{i}}\left(k_{\perp}^{2} \rho_{i}^{2}\right) \delta \hat{\Phi}\right)=\frac{1}{\varepsilon_{0}}\left(1+k_{\perp}^{2} \rho_{i}^{2}\right)\left(q_{i} \delta \hat{n}_{i}^{\prime}+q_{e} \delta \hat{n}_{e}\right) . \tag{262}
\end{equation*}
$$

Next, transforming the above equation back to the real space, we obtain

$$
\begin{equation*}
-\left(1-\rho_{i}^{2} \nabla_{\perp}^{2}\right) \nabla_{\perp}^{2} \delta \Phi-\frac{q_{i}}{\varepsilon_{0}}\left(\frac{q_{i} n_{i 0}}{T_{i}} \rho_{i}^{2} \nabla_{\perp}^{2} \delta \Phi\right)=\frac{1}{\varepsilon_{0}}\left(1-\rho_{i}^{2} \nabla_{\perp}^{2}\right)\left(q_{i} \delta n_{i}^{\prime}+q_{e} \delta n_{e}\right) . \tag{263}
\end{equation*}
$$

Neglecting the Debye shielding term, the above equation is written

$$
\begin{equation*}
-\left(\frac{\rho_{i}^{2}}{\lambda_{D i}^{2}} \nabla_{\perp}^{2} \delta \Phi\right)=\frac{1}{\varepsilon_{0}}\left(1-\rho_{i}^{2} \nabla_{\perp}^{2}\right)\left(q_{i} \delta n_{i}^{\prime}+q_{e} \delta n_{e}\right) \tag{264}
\end{equation*}
$$

which is the equation actually solved in many gyrokinetic codes, where $\lambda_{D i}^{2}=\varepsilon_{0} T_{i} /\left(q_{i}^{2} n_{i 0}\right)$.

8 Polarization density matrix obtained by numerically integrating in phase space using grid

In Sec. 7, to evaluate the polarization density, the potential $\delta \Phi$ is Fourier expanded in space using local Cartesian coordinates, and then the double gyro-angle integration of each harmonic is expressed as the Bessel function. (It seems that the original motivation of using the Fourier expansion here is to facilitate analytical treatment and is not designed for numerical use. GEM code does make use of the local Fourier expansion in its numerical implementation, where the local perpendicular wave number needs to be estimated numerically, which seems awkward.)

In this section, we avoid using the local Fourier expansion, and directly express the double gyro-angle integral as linear combination of values of $\delta \Phi$ at spatial grid-points. The polarization density is given by Eq. (224), i.e.,

$$
\begin{equation*}
n_{p}(\mathbf{x})=\frac{q}{m} \int d \mathbf{v}\left(\left(\delta \Phi-\langle\delta \Phi\rangle_{\alpha}\right) \frac{\partial F_{0}}{\partial \varepsilon}\right) \tag{265}
\end{equation*}
$$

Our goal is to write n_{p} in the following real-space discrete from:

$$
\begin{equation*}
n_{p}\left(\mathbf{x}_{k}\right)=\sum_{i, j} c_{i j} \delta \Phi_{i, j} . \tag{266}
\end{equation*}
$$

8.1 Direct evaluation of the double gyrophase integration

Define

$$
\begin{equation*}
A(\mathbf{x})=-\frac{q}{m} \int d \mathbf{v}\left(\langle\delta \Phi\rangle_{\alpha} \frac{\partial F_{0}}{\partial \varepsilon}\right) \tag{267}
\end{equation*}
$$

Using $d \mathbf{v}=v_{\perp} d v_{\perp} d v_{\|} d \alpha$, the above integration is written as

$$
\begin{equation*}
A(\mathbf{x})=-\frac{q}{m} \int_{-\infty}^{\infty} d v_{\|} \int_{0}^{\infty} v_{\perp} d v_{\perp} \frac{\partial F_{0}}{\partial \varepsilon} \int_{0}^{2 \pi} d \alpha\langle\delta \Phi\rangle_{\alpha} \tag{268}
\end{equation*}
$$

where use has been made of the assumption that $\partial F_{0} / \partial \varepsilon$ is uniform in α in ($\left.\mathbf{x}, v_{\perp}, v_{\|}, \alpha\right)$ coordinates, and thus is moved outside of the α integration. Using the definition of gyro-averaging $(2 \pi)^{-1} \int_{0}^{2 \pi}(\ldots) d \alpha^{\prime}$, the above integration is written as

$$
\begin{equation*}
A(\mathbf{x})=-\frac{q}{m} \int_{-\infty}^{\infty} d v_{\|} \int_{0}^{\infty} d v_{\perp} \frac{\partial F_{i 0}}{\partial \varepsilon} v_{\perp} \int_{0}^{2 \pi} d \alpha\left(\frac{1}{2 \pi} \int_{0}^{2 \pi} \delta \Phi d \alpha^{\prime}\right) \tag{269}
\end{equation*}
$$

Note that the gyro-averaging is performed in the guiding-center space, i.e., performed by varying the gyroangle α^{\prime} while keeping guiding-center position \mathbf{X}, v_{\perp}, and $v_{\|}$constant. Using the definition of $\delta \Phi_{g}$ (i.e., its relation with $\delta \Phi$):

$$
\begin{equation*}
\delta \Phi_{g}\left(\mathbf{X}, \alpha^{\prime}, v_{\perp}\right)=\delta \Phi(\mathbf{x}) \tag{270}
\end{equation*}
$$

where the particle location \mathbf{x} is computed from the guiding-center location by

$$
\begin{equation*}
\mathbf{x}=\mathbf{X}+\boldsymbol{\rho}(\mathbf{x}, \mathbf{v}) \approx \mathbf{X}-\mathbf{v} \times \frac{\mathbf{e}_{\|}(\mathbf{X})}{\Omega(\mathbf{X})} \tag{271}
\end{equation*}
$$

then $A(\mathbf{x})$ is written as

$$
\begin{aligned}
& A(\mathbf{x}) \\
& =-\frac{q}{m} \int_{-\infty}^{\infty} d v_{\|} \int_{0}^{\infty} d v_{\perp} \frac{\partial F_{i 0}}{\partial \varepsilon} v_{\perp} \int_{0}^{2 \pi} d \alpha\left[\frac{1}{2 \pi} \int_{0}^{2 \pi} \delta \Phi\left(\mathbf{X}-\mathbf{v}_{\perp}\left(v_{\perp}, \alpha^{\prime}\right) \times \frac{\mathbf{e}_{\|}(\mathbf{X})}{\Omega(\mathbf{X})}\right) d \alpha^{\prime}\right] \\
& \approx-\frac{q}{m} \int_{-\infty}^{\infty} d v_{\|} \int_{0}^{\infty} d v_{\perp} \frac{\partial F_{i 0}}{\partial \varepsilon} v_{\perp} \int_{0}^{2 \pi} d \alpha\left[\frac{1}{N_{2}} \sum_{j=1}^{N_{2}} \delta \Phi\left(\mathbf{X}-\mathbf{v}_{\perp}\left(v_{\perp}, \alpha_{j}^{\prime}\right) \times \frac{\mathbf{e}_{\|}(\mathbf{X})}{\Omega(\mathbf{X})}\right)\right]
\end{aligned}
$$

where $\mathbf{v}_{\perp}=\mathbf{v}\left(v_{\perp}, \alpha_{j}^{\prime}\right)$ denotes a perpendicular velocity corresponding to a discrete gyro-angle α_{j}^{\prime}.
Next, in order to perform the remaining velocity space integration, transform back to the particle coordinates (because the velocity integration is performed in the particle coordinates, i.e., it is performed by keeping the particle coordinate \mathbf{x} constant):

$$
\begin{align*}
& A(\mathbf{x})=-\frac{q}{m} \int_{-\infty}^{\infty} d v_{\|} \int_{0}^{\infty} d v_{\perp} \frac{\partial F_{i 0}}{\partial \varepsilon} v_{\perp} \\
& \times \int_{0}^{2 \pi} d \alpha\left[\frac{1}{N_{2}} \sum_{j=1}^{N_{2}} \delta \Phi\left(\mathbf{x}+\mathbf{v}_{\perp}\left(v_{\perp}, \alpha\right) \times \frac{\mathbf{e}_{\|}(\mathbf{X})}{\Omega(\mathbf{X})}-\mathbf{v}_{\perp}\left(v_{\perp}, \alpha_{j}^{\prime}\right) \times \frac{\mathbf{e}_{\|}(\mathbf{X})}{\Omega(\mathbf{X})}\right)\right] \\
& \approx-\frac{q}{m} \int_{-\infty}^{\infty} d v_{\|} \int_{0}^{\infty} d v_{\perp} \frac{\partial F_{i 0}}{\partial \varepsilon} v_{\perp} \\
& \times \int_{0}^{2 \pi} d \alpha\left[\frac{1}{N_{2}} \sum_{j=1}^{N_{2}} \delta \Phi\left(\mathbf{x}+\mathbf{v}_{\perp}\left(v_{\perp}, \alpha\right) \times \frac{\mathbf{e}_{\|}(\mathbf{x})}{\Omega(\mathbf{x})}-\mathbf{v}_{\perp}\left(v_{\perp}, \alpha_{j}^{\prime}\right) \times \frac{\mathbf{e}_{\|}(\mathbf{x})}{\Omega(\mathbf{x})}\right)\right] \\
& \approx-\frac{q}{m} \int_{-\infty}^{\infty} d v_{\|} \int_{0}^{\infty} d v_{\perp} \frac{\partial F_{i 0}}{\partial \varepsilon} v_{\perp} \\
& \times \frac{2 \pi}{N_{1}} \sum_{i=1}^{N_{1}} \frac{1}{N_{2}} \sum_{j=1}^{N_{2}} \delta \Phi\left(\mathbf{x}+\mathbf{v}_{\perp}\left(v_{\perp}, \alpha_{i}\right) \times \frac{\mathbf{e}_{\|}(\mathbf{x})}{\Omega(\mathbf{x})}-\mathbf{v}_{\perp}\left(v_{\perp}, \alpha_{j}^{\prime}\right) \times \frac{\mathbf{e}_{\|}(\mathbf{x})}{\Omega(\mathbf{x})}\right) . \tag{272}
\end{align*}
$$

For notation ease, define

$$
\begin{equation*}
\Delta \boldsymbol{\rho}_{i j}=\mathbf{v}_{\perp}\left(v_{\perp}, \alpha_{i}\right) \times \frac{\mathbf{e}_{\|}(\mathbf{x})}{\Omega(\mathbf{x})}-\mathbf{v}_{\perp}\left(v_{\perp}, \alpha_{j}^{\prime}\right) \times \frac{\mathbf{e}_{\|}(\mathbf{x})}{\Omega(\mathbf{x})} \tag{273}
\end{equation*}
$$

where $\Delta \boldsymbol{\rho}_{i j}$ is a function of ($\left.\mathbf{x}, v_{\perp}, \alpha_{i}, \alpha_{j}^{\prime}\right)$. Then Eq. (272) is written as

$$
\begin{equation*}
A(\mathbf{x})=-\frac{q}{m} \int_{-\infty}^{\infty} d v_{\|} \int_{0}^{\infty} d v_{\perp} \frac{\partial F_{i 0}}{\partial \varepsilon} v_{\perp} \frac{2 \pi}{N_{1}} \sum_{i=1}^{N_{1}} \frac{1}{N_{2}} \sum_{j=1}^{N_{2}} \delta \Phi\left(\mathbf{x}+\Delta \boldsymbol{\rho}_{i j}\right) \tag{274}
\end{equation*}
$$

The guiding-center transform and its inverse involved in the above are illustrated in Fig. 2. Then the double gyro-angle integral appearing in the polarization density is approximated as

$$
\begin{equation*}
\int_{0}^{2 \pi} d \alpha\left(\int_{0}^{2 \pi} \delta \Phi(\mathbf{x}) d \alpha^{\prime}\right) \approx \frac{(2 \pi)^{2}}{N_{1} N_{2}} \sum_{i=1}^{N_{1}} \sum_{j=1}^{N_{2}} \delta \Phi\left(\mathbf{x}_{i j}\right) \tag{275}
\end{equation*}
$$

where $N_{1}=4, N_{2}=4$ for the case shown in Fig. 2. This gives how to approximate the double gyroangle integration using the discrete values of $\delta \Phi_{i j}$. The spatial points $\mathbf{x}_{i j}$ appearing in Eq. (275) are not necessarily grid points. Linear interpolations are used to express $\delta \Phi\left(\mathbf{x}_{i j}\right)$ as linear combination of values of $\delta \Phi$ at grid-points.

Figure 2. Given a v_{\perp}, then the double gyro-angle integration in Eq. (269) at a particle location \mathbf{x} is evaluated by the following steps: Use the guiding center transform to get guiding-center locations (four locations are shown in this case, namely \mathbf{X}_{i} with $i=1,2,3,4$, corresponding gyro-angle α_{i} with $i=1,2,3$, 4; 2.) For each guiding-center location, use the inverse guiding-center transform to calculate points on the corresponding gyro-ring (four points are shown for each guiding-center \mathbf{X}_{i} in this case, namely $\mathbf{x}_{i j}$ with $j=1,2,3,4$, corresponding gyro angle α_{j}^{\prime} with $j=1,2,3,4$.)

8.2 Performing the parallel velocity integration

Assume that F_{0} is Maxwellian, then

$$
\begin{equation*}
\frac{\partial F_{0}}{\partial \varepsilon}=-\frac{m}{T} f_{M}=-\frac{m}{T} \frac{n_{0}}{(2 \pi T / m)^{3 / 2}} \exp \left(\frac{-m v_{\|}^{2}}{2 T}\right) \exp \left(\frac{-m v_{\perp}^{2}}{2 T}\right) . \tag{276}
\end{equation*}
$$

Note that $\Delta \boldsymbol{\rho}_{i j}$ is independent of $v_{\|}$. Then the integration over $v_{\|}$in Eq. (274) can be analytically performed, yielding

$$
\begin{align*}
A(\mathbf{x}) & =\frac{q}{T} \int_{-\infty}^{\infty} d \bar{v}_{\|} \exp \left(\frac{-\bar{v}_{\|}^{2}}{2}\right) \int_{0}^{\infty} d \bar{v}_{\perp} \bar{v}_{\perp} \frac{n_{0}}{(2 \pi)^{3 / 2}} \exp \left(\frac{-\bar{v}_{\perp}^{2}}{2}\right) \\
& \times \frac{2 \pi}{N_{1}} \sum_{i=1}^{N_{1}} \frac{1}{N_{2}} \sum_{j=1}^{N_{2}} \delta \Phi\left(\mathbf{x}+\Delta \mathbf{\rho}_{i j}\right) \\
& =n_{0} \int_{0}^{\infty} d \bar{v}_{\perp} \bar{v}_{\perp} \exp \left(\frac{-\bar{v}_{\perp}^{2}}{2}\right) \frac{1}{N_{1}} \sum_{i=1}^{N_{1}} \frac{1}{N_{2}} \sum_{j=1}^{N_{2}} \frac{q}{T} \delta \Phi\left(\mathbf{x}+\Delta \mathbf{\rho}_{i j}\right) . \tag{277}
\end{align*}
$$

where $\bar{v}_{\|}=v_{\|} / v_{t}, \bar{v}_{\perp}=v_{\perp} / v_{t}, \quad v_{t}=\sqrt{T / m}$, and use has been made of

$$
\begin{equation*}
\int_{-\infty}^{\infty} \exp \left(-\frac{x^{2}}{2}\right) d x=\sqrt{2 \pi} \tag{278}
\end{equation*}
$$

8.3 Toroidal DFT of polarization density in field-aligned coordinates

In field-aligned coordinates (x, y, z), Fourier expansion of $\delta \Phi$ along y is written

$$
\begin{equation*}
\delta \Phi(\mathbf{x}) \approx \sum_{n=-N_{y} / 2}^{N_{y} / 2} \exp \left(\iota n \frac{2 \pi}{L_{y}} y\right) \delta \Phi_{n}(x, z) \tag{279}
\end{equation*}
$$

where $\iota=\sqrt{-1}$. Use this in Eq. (277), yielding

$$
\begin{align*}
A(\mathbf{x}) & =n_{0} \int_{0}^{\infty} d \bar{v}_{\perp} \bar{v}_{\perp} \exp \left(\frac{-\bar{v}_{\perp}^{2}}{2}\right) \\
& \times \frac{1}{N_{1}} \sum_{i=1}^{N_{1}} \frac{1}{N_{2}} \sum_{j=1}^{N_{2}}\left[\frac{q}{T} \sum_{n=-N_{y} / 2}^{N_{y} / 2} \exp \left(\iota n \frac{2 \pi}{L_{y}}\left(y+\Delta \rho_{i j y}\right)\right) \delta \Phi_{n}\left(x+\Delta \rho_{i j x}, z+\Delta \rho_{i j z}\right)\right] \\
& =\sum_{n=-N_{y} / 2}^{N_{t} / 2} \exp \left(\iota n \frac{2 \pi}{L_{y}} y\right) n_{0} \int_{0}^{\infty} d \bar{v}_{\perp} \bar{v}_{\perp} \exp \left(\frac{-\bar{v}_{\perp}^{2}}{2}\right) \\
& \times \frac{1}{N_{1}} \sum_{i=1}^{N_{1}} \frac{1}{N_{2}} \sum_{j=1}^{N_{2}}\left[\exp \left(\iota n \frac{2 \pi}{L_{y}} \Delta \rho_{i j y}\right) \frac{q}{T} \delta \Phi_{n}\left(x+\Delta \rho_{i j x}, z+\Delta \rho_{i j z}\right)\right] \tag{280}
\end{align*}
$$

From Eq. (280), the Fourier expansion coefficient of $A(\mathbf{x})$ can be identified:

$$
\begin{align*}
A_{n}(x, z) & =n_{0} \int_{0}^{\infty} d \bar{v}_{\perp} \bar{v}_{\perp} \exp \left(\frac{-\bar{v}_{\perp}^{2}}{2}\right) \\
& \times \frac{1}{N_{1}} \sum_{i=1}^{N_{1}} \frac{1}{N_{2}} \sum_{j=1}^{N_{2}}\left[\exp \left(\iota n \frac{2 \pi}{L_{y}} \Delta \rho_{i j y}\right) \frac{q}{T} \delta \Phi_{n}\left(x+\Delta \rho_{i j x}, z+\Delta \rho_{i j z}\right)\right] \tag{281}
\end{align*}
$$

Let us make the following approximation

$$
\begin{equation*}
\delta \Phi_{n}\left(x+\Delta \rho_{i j x}, z+\Delta \rho_{i j z}\right) \approx \delta \Phi_{n}\left(x+\Delta \rho_{i j x}, z\right) \tag{282}
\end{equation*}
$$

which should be a good approximation since the variation of $\delta \Phi$ along a field line over a distance of a Larmor radius is small. Then expression (281) is written as

$$
\begin{align*}
& A_{n}(x, z) \approx n_{0} \int_{0}^{\infty} d \bar{v}_{\perp} \bar{v}_{\perp} \exp \left(\frac{-\bar{v}_{\perp}^{2}}{2}\right) \\
& \times \frac{1}{N_{1}} \sum_{i=1}^{N_{1}} \frac{1}{N_{2}} \sum_{j=1}^{N_{2}}\left[\exp \left(\iota n \frac{2 \pi}{L_{y}} \Delta \rho_{i j y}\right) \frac{q}{T} \delta \Phi_{n}\left(x+\Delta \rho_{i j x}, z\right)\right] \tag{283}
\end{align*}
$$

The approximation (282) makes the operator A_{n} on $\delta \Phi_{n}$ become local in z direction, i.e., it involves $\delta \Phi_{n}$ at locations with a fixed value of z. This makes $A_{n}(x, z)$ reduce to a 1D operator on $\delta \Phi_{n}$ in the x direction.

8.4 Using MC integration, to be continued, not necessary

The integration we try to express is given by

$$
\begin{align*}
A_{i j k} & \approx \frac{1}{V_{i j k}} \int_{V_{i j k}} d \mathbf{x} n_{p}(\mathbf{x}) \\
& =\frac{1}{V_{i j k}} \int_{V_{i j k}} d \mathbf{x} \int d \mathbf{v}\left(\frac{q}{m}\left(\delta \Phi-\langle\delta \Phi\rangle_{\alpha}\right) \frac{\partial F_{0}}{\partial \varepsilon}\right) \tag{284}
\end{align*}
$$

where $A_{i j k}$ is the value of $n_{p}(\mathbf{x})$ at a grid-point, which is approximated by the spatial averaging of $n_{p}(\mathbf{x})$ over the cell whose center is the grid-point, $V_{i j k}$ is the volume of the cell. We will use MonteCarlo guiding-center markers to compute the above cell average.

$$
\begin{aligned}
A_{i j k}^{(1)} & =-\frac{q}{m} \frac{1}{V_{i j k}} \sum_{p} \sum_{\alpha}\left(\langle\delta \Phi\rangle_{\alpha} \frac{\partial F_{0}}{\partial \varepsilon} \frac{1}{g}\right) \\
& =-\frac{q}{m} \frac{1}{V_{i j k}} \sum_{p}\langle\delta \Phi\rangle_{\alpha} \sum_{\alpha}\left(\frac{\partial F_{0}}{\partial \varepsilon} \frac{1}{g}\right)
\end{aligned}
$$

Nearest neighbour interpolation

$$
\begin{aligned}
A_{i j k}^{(2)} & =-\frac{q}{m} \frac{1}{V_{i j k}} \sum_{p} \sum_{\alpha}\left(\delta \Phi \frac{\partial F_{0}}{\partial \varepsilon} \frac{1}{g}\right) \\
& =-\frac{q}{m} \frac{\delta \Phi_{i j k}}{V_{i j k}} \sum_{p} \sum_{\alpha}\left(\frac{\partial F_{0}}{\partial \varepsilon} \frac{1}{g}\right)
\end{aligned}
$$

Later, I found that evaluating the polarization density using grid works well. Therefore there is no need to evaluate it using MC markers, which is more complicated.

Appendix A Adiabatic electron response

Assume that the total electron density satisfies the Boltzmann distribution on each magnetic surface, i.e.,

$$
\begin{equation*}
n_{e}=N_{e}(\psi) \exp \left(-\frac{q_{e} \delta \Phi}{T_{e}}\right) \approx N_{e}\left(1-\frac{q_{e} \delta \Phi}{T_{e}}\right) \tag{285}
\end{equation*}
$$

where N_{e} is a radial function. Note that this does not imply that the equilibrium density is N_{e} (it just implies that the total density is N_{e} at the location where $\delta \Phi=0$, which can still be different from the equilibrium density).

Further assume that the magnetic surface average of $\delta n_{e}=n_{e}-n_{e 0}$ is zero, i.e.,

$$
\begin{equation*}
\left\langle n_{e}-n_{e 0}\right\rangle_{f}=0 \tag{286}
\end{equation*}
$$

where $n_{e 0}$ is the equilibrium electron density, $\langle\ldots\rangle_{f}$ is the magntic surface averaging operator. Using Eq. (285) in the above condition, we get

$$
\begin{equation*}
N_{e}=n_{e 0} \frac{1}{1-\frac{q_{e}\langle\delta \Phi\rangle_{f}}{T_{e}}} \approx n_{e 0}\left(1+\frac{q_{e}\langle\delta \Phi\rangle_{f}}{T_{e}}\right) . \tag{287}
\end{equation*}
$$

Then expression (285) is written as

$$
\begin{equation*}
n_{e}=n_{e 0}\left(1+\frac{q_{e}\langle\delta \Phi\rangle_{f}}{T_{e}}\right)\left(1-\frac{q_{e} \delta \Phi}{T_{e}}\right) \approx n_{e 0}\left(1+\frac{q_{e}\langle\delta \Phi\rangle_{f}}{T_{e}}-\frac{q_{e} \delta \Phi}{T_{e}}\right) \tag{288}
\end{equation*}
$$

Then the perturbation $\delta n_{e}=n_{e}-n_{e 0}$ is written as

$$
\begin{equation*}
\delta n_{e}=-n_{0 e} \frac{q_{e}\left(\delta \Phi-\langle\delta \Phi\rangle_{f}\right)}{T_{e}} \tag{289}
\end{equation*}
$$

This model of electron response is often called adiabatic electron.

A. 1 Poisson's equation with adiabatic electron response

Pluging expression (289) into the Poisson equation (225), we get

$$
\begin{equation*}
-\varepsilon_{0} \nabla_{\perp}^{2} \delta \Phi-q_{i} \int \frac{q_{i}}{m_{i}}\left(\delta \Phi-\langle\delta \Phi\rangle_{\alpha}\right) \frac{\partial F_{i 0}}{\partial \varepsilon} d \mathbf{v}+n_{0 e} \frac{q_{e}^{2}\left(\delta \Phi-\langle\delta \Phi\rangle_{f}\right)}{T_{e}}=q_{i} \delta n_{i}^{\prime} \tag{290}
\end{equation*}
$$

When solving the Poisson equation, the equation is Fourier expanded in toroidal harmonics and each harmonic is independent of each other, so that they can be solved independently. For $n \neq 0$ harmonics, the $\langle\delta \Phi\rangle_{f}$ terms is zero and thus it is trivial to treat the electron term. For the $n=0$ harmonic, the $\langle\delta \Phi\rangle_{f}$ term is nonzero and needs special treatment. I use the following method to obtain $\langle\delta \Phi\rangle_{f}$. First slove the $n=0$ harmonic of the following equation:

$$
\begin{equation*}
-\varepsilon_{0} \nabla_{\perp}^{2} \delta \Phi^{\prime}-q_{i} \int \frac{q_{i}}{m_{i}}\left(\delta \Phi^{\prime}-\left\langle\delta \Phi^{\prime}\right\rangle_{\alpha}\right) \frac{\partial F_{i 0}}{\partial \varepsilon} d \mathbf{v}=q_{i} \delta n_{i}^{\prime} \tag{291}
\end{equation*}
$$

(i.e., Eq. (290) with electron term dropped), and then take the magnetic surface average of the solution $\delta \Phi^{\prime}$ to get $\left\langle\delta \Phi^{\prime}\right\rangle_{f}$. It can be proved that $\left\langle\delta \Phi^{\prime}\right\rangle_{f}$ is equal to $\langle\delta \Phi\rangle_{f}$. Then solving Eq. (290) becomes easier since $\langle\delta \Phi\rangle_{f}$ term is known and can be moved to the right-hand side as a source term.

Appendix B Characteristic curves of Frieman-Chen nonlinear gyrokinetic equation

Examining the left-hand side of Eq. (), it is ready to find that the characteristic curves of this equation are given by the following equations:

$$
\begin{gather*}
\frac{d \mathbf{X}}{d t}=v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\delta \mathbf{V}_{D} \tag{292}\\
\frac{d \varepsilon}{d t}=0 \tag{293}\\
\frac{d \mu}{d t}=0 \tag{294}
\end{gather*}
$$

(It is instructive to notice that the kinetic energy ε is conserved along the characteristic curves while the real kinetic energy of a particle is usually not conserved in a perturbed electromagnetic field. This may be an indication that Frieman-Chen equation neglects the velocity space nonlinearity.) For notation ease, we denote the total guiding-center velocity by \mathbf{V}_{G}, i.e.,

$$
\begin{equation*}
\mathbf{V}_{G}=\frac{d \mathbf{X}}{d t}=\frac{d \mathbf{X}_{0}}{d t}+\frac{d \mathbf{X}_{1}}{d t}=v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\delta \mathbf{V}_{D} \tag{295}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{d \mathbf{X}_{0}}{d t}=v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D} \tag{296}
\end{equation*}
$$

In the above, $v_{\|}$can be obtained by using $v_{\|}=\sigma \sqrt{2(\varepsilon-B \mu)}$. However σ is not easy to determine since it changes with time for trapped particles. In practice, we get $v_{\|}$from an evolution equation. This evolution equation for $v_{\|}$can be obtained by combining the equations for ε and μ. Next, we derive this equation.

B. 1 Time evolution equation for $\mathbf{v}_{\|}$

Using the definition $\mu=v_{\perp}^{2} /\left(2 B_{0}\right)$, equation (294), i.e., $d \mu / d t=0$, is written as
which is written as

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{v_{\perp}^{2}}{2 B_{0}}\right)=0 \tag{297}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{B} \frac{d}{d t}\left(v_{\perp}^{2}\right)+v_{\perp}^{2} \frac{d}{d t}\left(\frac{1}{B_{0}}\right)=0 \tag{298}
\end{equation*}
$$

which can be further written as

$$
\begin{equation*}
\frac{d}{d t}\left(v_{\perp}^{2}\right)=2 \mu \frac{d}{d t}\left(B_{0}\right) . \tag{299}
\end{equation*}
$$

Using the definition of the characteristics, the right-hand side of the above equation can be expanded, giving

$$
\begin{equation*}
\frac{d}{d t}\left(v_{\perp}^{2}\right)=2 \mu\left(\frac{\partial B_{0}}{\partial t}+\frac{d \mathbf{X}}{d t} \cdot \nabla_{X} B_{0}+\frac{d \varepsilon}{d t} \frac{\partial B_{0}}{\partial \varepsilon}+\frac{d \mu}{d t} \frac{\partial B_{0}}{\partial \mu}\right) \tag{300}
\end{equation*}
$$

where $d \mathbf{X} / d t, d \varepsilon / d t$, and $d \mu / d t$ are given by Eq. (292), (293), and (294), respectively. Using Eqs. (292)-(294) and $\partial B_{0} / \partial t=0$, equation (300) is reduced to

$$
\begin{equation*}
\frac{d}{d t}\left(v_{\perp}^{2}\right)=2 \mu\left(\frac{d \mathbf{X}}{d t} \cdot \nabla_{X} B_{0}\right) \tag{301}
\end{equation*}
$$

On the other hand, equation (293), i.e., $d \varepsilon / d t=0$, is written as

$$
\begin{equation*}
\frac{d}{d t}\left(v^{2}\right)=0 \tag{302}
\end{equation*}
$$

which can be further written as

$$
\begin{equation*}
\frac{d}{d t}\left(v_{\|}^{2}\right)=-\frac{d}{d t}\left(v_{\perp}^{2}\right) \tag{303}
\end{equation*}
$$

Using Eq. (301), the above equation is written as

$$
\begin{equation*}
\frac{d}{d t}\left(v_{\|}\right)=-\frac{\mu}{v_{\|}}\left(\frac{d \mathbf{X}}{d t} \cdot \nabla_{X} B_{0}\right) \tag{304}
\end{equation*}
$$

which is the equation for the time evolution of $v_{\|}$. This equation involves $d \mathbf{X} / d t$, i,e., the guidingcenter drift, which is given by Eq. (292). Equation (304) for $v_{\|}$can be simplified by noting that the Frieman-Chen equation is correct only to the second order, $O\left(\lambda^{2}\right)$, and thus the characteristics need to be correct only to the first order $O(\lambda)$ and higher order terms can be dropped. Note that, in the guiding-center drift $d \mathbf{X} / d t$ given by Eq. (292), only the $v_{\|} \mathbf{e}_{\|}$term in is of order $O\left(\lambda^{0}\right)$, all the other terms are of $O\left(\lambda^{1}\right)$. Using this, accurate to order $O\left(\lambda^{1}\right)$, equation (304) is written as

$$
\begin{equation*}
\frac{d}{d t}\left(v_{\|}\right)=-\mu \mathbf{e}_{\|} \cdot \nabla_{X} B_{0} \tag{305}
\end{equation*}
$$

which is the time evolution equation ready to be used for numerically advancing $v_{\|}$. Note that only the mirror force $-\mu \mathbf{e}_{\|} \cdot \nabla B$ appears in Eq. (305) and there is no parallel acceleration term $q v_{\|} \delta E_{\|} / m$ in Eq. (305). This is because $\delta E_{\|}=-\mathbf{b} \cdot \nabla \delta \Phi-\partial \delta A_{\|} / \partial t$ is of order $O\left(\lambda^{2}\right)$ and (** check** the terms involving $E_{\|}$are of $O\left(\lambda^{3}\right)$ or higher and thus have been dropped in deriving FriemanChen equation.)

Appendix C From ($\delta \Phi, \delta \mathrm{A}$) to ($\delta \mathrm{E}, \delta \mathrm{B}$)

C. 1 Expression of δB_{\perp} in terms of δA

Note that

$$
\begin{align*}
\delta \mathbf{B}_{\perp} & =\nabla \times \delta \mathbf{A}-\left(\mathbf{e}_{\|} \cdot \nabla \times \delta \mathbf{A}\right) \mathbf{e}_{\|} \\
& =\nabla \times\left(\delta \mathbf{A}_{\perp}+\delta A_{\|} \mathbf{e}_{\|}\right)-\left[\mathbf{e}_{\|} \cdot \nabla \times\left(\delta \mathbf{A}_{\perp}+\delta A_{\|} \mathbf{e}_{\|}\right)\right] \mathbf{e}_{\|} \tag{306}
\end{align*}
$$

Correct to order $O(\lambda), \delta \mathbf{B}_{\perp}$ in the above equation is written as $\mathbf{e}_{\|}$vector can be considered as constant because its spatial gradient combined with $\delta \mathbf{A}$ will give terms of $O\left(\lambda^{2}\right)$, which are neglected)

$$
\begin{align*}
\delta \mathbf{B}_{\perp} & \approx \nabla \times \delta \mathbf{A}_{\perp}+\nabla \delta A_{\|} \times \mathbf{e}_{\|}-\left[\mathbf{e}_{\|} \cdot \nabla \times \delta \mathbf{A}_{\perp}+\mathbf{e}_{\|} \cdot\left(\nabla \delta A_{\|} \times \mathbf{e}_{\|}\right)\right] \mathbf{e}_{\|} \tag{307}\\
& =\nabla \times \delta \mathbf{A}_{\perp}+\nabla \delta A_{\|} \times \mathbf{e}_{\|}-\left(\mathbf{e}_{\|} \cdot \nabla \times \delta \mathbf{A}_{\perp}\right) \mathbf{e}_{\|} \tag{308}
\end{align*}
$$

Using local cylindrical coordinates (r, ϕ, z) with z being along the local direction of \mathbf{B}_{0}, and two components of \mathbf{A}_{\perp} being A_{r} and A_{ϕ}, then $\nabla \times \mathbf{A}_{\perp}$ is written as

$$
\begin{equation*}
\nabla \times \delta \mathbf{A}_{\perp}=\left(-\frac{\partial \delta A_{\phi}}{\partial z}\right) \mathbf{e}_{r}+\left(\frac{\partial \delta A_{r}}{\partial z}\right) \mathbf{e}_{\phi}+\frac{1}{r}\left[\frac{\partial}{\partial r}\left(r \delta A_{\phi}\right)-\frac{\partial \delta A_{r}}{\partial \phi}\right] \mathbf{e}_{\|} . \tag{309}
\end{equation*}
$$

Note that the parallel gradient operator $\nabla_{\|} \equiv \mathbf{e}_{\|} \cdot \nabla=\partial / \partial z$ acting on the the perturbed quantities will result in quantities of order $O\left(\lambda^{2}\right)$. Retaining terms of order up to $O(\lambda)$, equation (309) is written as

$$
\begin{equation*}
\nabla \times \delta \mathbf{A}_{\perp} \approx \frac{1}{r}\left[\frac{\partial}{\partial r}\left(r \delta A_{\phi}\right)-\frac{\partial \delta A_{r}}{\partial \phi}\right] \mathbf{e}_{\|} \tag{310}
\end{equation*}
$$

i.e., only the parallel component survive, which exactly cancels the last term in Eq. (308), i.e., equation (308) is reduced to

$$
\begin{equation*}
\delta \mathbf{B}_{\perp}=\nabla \delta A_{\|} \times \mathbf{e}_{\|} \tag{311}
\end{equation*}
$$

C.1.1 Using basis vectors in field-aligned coordinates

In terms of $\delta B_{x L}$ and $\delta B_{y L}, \delta \mathbf{B}_{\perp}$ is written as

$$
\begin{equation*}
\delta \mathbf{B}_{\perp}=\delta B_{x L} \nabla x+\delta B_{y L} \nabla y=\nabla \delta A_{\|} \times \mathbf{e}_{\|} \tag{312}
\end{equation*}
$$

Dotting the above equation by ∇x and ∇y, respectively, we obtain

$$
\begin{align*}
\delta B_{x L}|\nabla x|^{2}+\delta B_{y L} \nabla x \cdot \nabla y & =\nabla x \cdot\left(\nabla \delta A_{\|} \times \mathbf{e}_{\|}\right), \tag{313}\\
\delta B_{x L} \nabla x \cdot \nabla y+\delta B_{y L}|\nabla y|^{2} & =\nabla y \cdot\left(\nabla \delta A_{\|} \times \mathbf{e}_{\|}\right) . \tag{314}
\end{align*}
$$

Equations (313) and (314) can be further written as
and

$$
\begin{equation*}
\delta B_{x L}|\nabla x|^{2}+\delta B_{y L} \nabla x \cdot \nabla y=-\nabla x \cdot\left(\frac{\partial \delta A_{\|}}{\partial y} \nabla y \times \mathbf{e}_{\|}+\frac{\partial \delta A_{\|}}{\partial z} \nabla z \times \mathbf{e}_{\|}\right) \tag{315}
\end{equation*}
$$

$$
\begin{equation*}
\delta B_{x L} \nabla x \cdot \nabla y+\delta B_{y L}|\nabla y|^{2}=-\nabla y \cdot\left(\frac{\partial \delta A_{\|}}{\partial x} \nabla x \times \mathbf{e}_{\|}+\frac{\partial \delta A_{\|}}{\partial z} \nabla z \times \mathbf{e}_{\|}\right) \tag{316}
\end{equation*}
$$

The solution of this 2×2 system is expressed by Cramer's rule in the code.

$$
\begin{aligned}
& \text { Use } \mathbf{B}_{0}=\Psi^{\prime} \nabla x \times \nabla y \\
& \mathbf{b}=\Psi^{\prime} \nabla x \times \nabla y / B_{0}
\end{aligned}
$$

C. 2 Expression of $\delta B_{\|}$in terms of δA

$$
\begin{align*}
\delta B_{\|} & =\mathbf{e}_{\|} \cdot \nabla \times \delta \mathbf{A} \\
& =\mathbf{e}_{\|} \cdot \nabla \times\left(\delta \mathbf{A}_{\perp}+\delta A_{\|} \mathbf{e}_{\|}\right) \tag{317}
\end{align*}
$$

Accurate to $O\left(\lambda^{1}\right), \delta B_{\|}$in the above equation is written as ($\mathbf{e}_{\|}$vector can be considered as constant because its spatial gradient combined with $\delta \mathbf{A}$ will give $O\left(\lambda^{2}\right)$ terms, which are neglected)

$$
\begin{align*}
\delta B_{\|} & \approx \mathbf{e}_{\|} \cdot \nabla \times \delta \mathbf{A}_{\perp}+\mathbf{e}_{\|} \cdot\left(\nabla \delta A_{\|} \times \mathbf{e}_{\|}\right) \\
& =\mathbf{e}_{\|} \cdot \nabla \times \delta \mathbf{A}_{\perp} \tag{318}
\end{align*}
$$

[Using local cylindrical coordinates (r, ϕ, z) with z being along the local direction of \mathbf{B}_{0}, and two components of $\delta \mathbf{A}_{\perp}$ being δA_{r} and δA_{ϕ}, then $\nabla \times \delta \mathbf{A}_{\perp}$ is written as

$$
\begin{equation*}
\nabla \times \delta \mathbf{A}_{\perp}=\left(-\frac{\partial \delta A_{\phi}}{\partial z}\right) \mathbf{e}_{r}+\left(\frac{\partial \delta A_{r}}{\partial z}\right) \mathbf{e}_{r}+\frac{1}{r}\left[\frac{\partial}{\partial r}\left(r \delta A_{\phi}\right)-\frac{\partial \delta A_{r}}{\partial \phi}\right] \mathbf{e}_{\|} \tag{319}
\end{equation*}
$$

Note that the parallel gradient operator $\nabla_{\|} \equiv \mathbf{e}_{\|} \cdot \nabla=\partial / \partial z$ acting on the the perturbed quantities will result in quantities of order $O\left(\lambda^{2}\right)$. Retaining terms of order up to $O(\lambda)$, equation (309) is written as

$$
\begin{equation*}
\nabla \times \delta \mathbf{A}_{\perp} \approx \frac{1}{r}\left[\frac{\partial}{\partial r}\left(r \delta A_{\phi}\right)-\frac{\partial \delta A_{r}}{\partial \phi}\right] \mathbf{e}_{\|} \tag{320}
\end{equation*}
$$

Using this, equation (318) is written as

$$
\begin{equation*}
\delta B_{\|}=\frac{1}{r}\left[\frac{\partial}{\partial r}\left(r \delta A_{\phi}\right)-\frac{\partial \delta A_{r}}{\partial \phi}\right] . \tag{321}
\end{equation*}
$$

However, this expression is not useful for GEM because GEM does not use the local coordinates (r, ϕ, z).]

C. 3 Expressing the perturbed drift in terms of δE and δB

The perturbed drift $\delta \mathbf{V}_{D}$ is given by Eq. (138), i.e.,

$$
\begin{equation*}
\delta \mathbf{V}_{D}=-\frac{q}{m} \nabla_{X}\langle\delta L\rangle_{\alpha} \times \frac{\mathbf{e}_{\|}}{\Omega} \tag{322}
\end{equation*}
$$

Using $\delta L=\delta \Phi-\mathbf{v} \cdot \delta \mathbf{A}$, the above expression can be further written as

$$
\begin{align*}
\delta \mathbf{V}_{D}= & -\frac{q}{m} \nabla_{X}\langle\delta \Phi-\mathbf{v} \cdot \delta \mathbf{A}\rangle_{\alpha} \times \frac{\mathbf{e}_{\|}}{\Omega} \\
= & \frac{q}{m} \frac{\mathbf{e}_{\|}}{\Omega} \times \nabla_{X}\langle\delta \Phi\rangle_{\alpha}-\frac{q}{m} \frac{\mathbf{e}_{\|}}{\Omega} \times \nabla_{X}\left\langle v_{\|} \delta A_{\|}\right\rangle_{\alpha} \\
& -\frac{q}{m} \frac{\mathbf{e}_{\|}}{\Omega} \times \nabla_{X}\left\langle\mathbf{v}_{\perp} \cdot \delta \mathbf{A}_{\perp}\right\rangle_{\alpha} . \tag{323}
\end{align*}
$$

Accurate to order $O(\lambda)$, the term involving $\delta \Phi$ is

$$
\begin{align*}
\frac{q}{m} \frac{\mathbf{e}_{\|}}{\Omega} \times \nabla_{X}\langle\delta \Phi\rangle_{\alpha} & =\frac{\mathbf{e}_{\|}}{B_{0}} \times\left\langle\nabla_{X} \delta \Phi\right\rangle_{\alpha} \\
& \approx \frac{\mathbf{e}_{\|}}{B_{0}} \times\left\langle\nabla_{x} \delta \Phi\right\rangle_{\alpha} \\
& \approx \frac{\mathbf{e}_{\|}}{B_{0}} \times\left\langle-\delta \mathbf{E}-\frac{\partial \delta \mathbf{A}}{\partial t}\right\rangle_{\alpha} \\
& \approx \frac{\mathbf{e}_{\|}}{B_{0}} \times\langle-\delta \mathbf{E}\rangle_{\alpha} \\
& \equiv \delta \mathbf{V}_{E} \tag{324}
\end{align*}
$$

which is the $\delta \mathbf{E} \times \mathbf{B}_{0}$ drift. Accurate to $O(\lambda)$, the $\left\langle v_{\|} \delta A_{\|}\right\rangle_{\alpha}$ term on the right-hand side of Eq. (323) is written

$$
\begin{align*}
-\frac{q}{m} \frac{\mathbf{e}_{\|}}{\Omega} \times \nabla_{X}\left\langle v_{\|} \delta A_{\|}\right\rangle_{\alpha} & \approx-\frac{q}{m} \frac{v_{\|}}{\Omega}\left\langle\mathbf{e}_{\|} \times \nabla_{X}\left(\delta A_{\|}\right)\right\rangle_{\alpha} \\
& \approx-\frac{q}{m} \frac{v_{\|}}{\Omega}\left\langle\mathbf{e}_{\|} \times \nabla_{\mathbf{x}}\left(\delta A_{\|}\right)\right\rangle_{\alpha} \tag{325}\\
& =v_{\|} \frac{\left\langle\delta \mathbf{B}_{\perp}\right\rangle_{\alpha}}{B_{0}} \tag{326}
\end{align*}
$$

which is called "magnetic fluttering" (this is actually not a real drift). In obtaining the last equality, use has been made of Eq. (311), i.e., $\delta \mathbf{B}_{\perp}=\nabla_{\mathbf{x}} \delta A_{\|} \times \mathbf{e}_{\|}$.

Accurate to $O(\lambda)$, the last term on the right-hand side of expression (323) is written

$$
\begin{aligned}
-\frac{q}{m} \frac{\mathbf{e}_{\|}}{\Omega} \times \nabla_{X}\left\langle\mathbf{v}_{\perp} \cdot \delta \mathbf{A}_{\perp}\right\rangle_{\alpha} & \approx-\frac{1}{B_{0}}\left\langle\mathbf{e}_{\|} \times \nabla_{X}\left(\mathbf{v}_{\perp} \cdot \delta \mathbf{A}_{\perp}\right)\right\rangle_{\alpha} \\
& \approx-\frac{1}{B_{0}}\left\langle\mathbf{e}_{\|} \times \nabla_{x}\left(\mathbf{v}_{\perp} \cdot \delta \mathbf{A}_{\perp}\right)\right\rangle_{\alpha} \\
& =-\frac{1}{B_{0}}\left\langle\mathbf{e}_{\|} \times\left(\mathbf{v}_{\perp} \times \nabla_{x} \times \delta \mathbf{A}_{\perp}+\mathbf{v}_{\perp} \cdot \nabla_{x} \delta \mathbf{A}_{\perp}\right)\right\rangle_{\alpha} \\
& =-\frac{1}{B_{0}}\left\langle\left(\mathbf{e}_{\|} \cdot \nabla_{x} \times \delta \mathbf{A}_{\perp}\right) \mathbf{v}_{\perp}+\mathbf{e}_{\|} \times \mathbf{v}_{\perp} \cdot \nabla_{x} \delta \mathbf{A}_{\perp}\right\rangle_{\alpha}
\end{aligned}
$$

Using equation (318), i.e., $\delta B_{\|}=\mathbf{e}_{\|} \cdot \nabla \times \delta \mathbf{A}_{\perp}$, the above expression is written as

$$
\begin{align*}
-\frac{q}{m} \frac{\mathbf{e}_{\|}}{\Omega} \times \nabla_{X}\left\langle\mathbf{v}_{\perp} \cdot \delta \mathbf{A}_{\perp}\right\rangle_{\alpha} & =-\frac{1}{B_{0}}\left\langle\delta B_{\|} \mathbf{v}_{\perp}+\mathbf{e}_{\|} \times \mathbf{v}_{\perp} \cdot \nabla_{x} \delta \mathbf{A}_{\perp}\right\rangle_{\alpha} \\
& \approx-\frac{1}{B_{0}}\left\langle\delta B_{\|} \mathbf{v}_{\perp}+\mathbf{e}_{\|} \times \mathbf{v}_{\perp} \cdot \nabla_{X} \delta \mathbf{A}_{\perp}\right\rangle_{\alpha} \\
& \approx-\frac{1}{B_{0}}\left\langle\delta B_{\|} \mathbf{v}_{\perp}\right\rangle_{\alpha}-\frac{1}{B_{0}} \mathbf{e}_{\|} \times\left\langle\mathbf{v}_{\perp} \cdot \nabla_{X} \delta \mathbf{A}_{\perp}\right\rangle_{\alpha} \\
& \approx-\frac{1}{B_{0}}\left\langle\delta B_{\|} \mathbf{v}_{\perp}\right\rangle_{\alpha} \tag{327}
\end{align*}
$$

where use has been made of $\left\langle\mathbf{v}_{\perp} \cdot \nabla_{X} \delta \mathbf{A}_{\perp}\right\rangle_{\alpha} \approx 0$ (**seems wrong**), where the error is of $O(\lambda) \delta \mathbf{A}_{\perp}$. The term $\left\langle\delta B_{\|} \mathbf{v}_{\perp}\right\rangle_{\alpha} / B_{0}$ is of $O\left(\lambda^{2}\right)$ and thus can be neglected (I need to verify this).

Using Eqs. (324), (326), and (327), expression (323) is finally written as

$$
\begin{equation*}
\delta \mathbf{V}_{D} \equiv-\frac{q}{m} \nabla_{X}\langle\delta L\rangle_{\alpha} \times \frac{\mathbf{e}_{\|}}{\Omega}=\frac{\langle\delta \mathbf{E}\rangle_{\alpha} \times \mathbf{e}_{\|}}{B_{0}}+v_{\|} \frac{\left\langle\delta \mathbf{B}_{\perp}\right\rangle_{\alpha}}{B_{0}} . \tag{328}
\end{equation*}
$$

Using this, the first equation of the characteristics, equation (292), is written as

$$
\begin{align*}
\frac{d \mathbf{X}}{d t} & =v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\delta \mathbf{V}_{D} \tag{329}\\
& =v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\frac{\langle\delta \mathbf{E}\rangle_{\alpha} \times \mathbf{e}_{\|}}{B_{0}}+v_{\|} \frac{\left\langle\delta \mathbf{B}_{\perp}\right\rangle_{\alpha}}{B_{0}} \\
& \equiv \mathbf{V}_{G} \tag{330}
\end{align*}
$$

C. 4 Expressing the coefficient before $\partial F_{0} / \partial \varepsilon$ in terms of δE and δB

[Note that

$$
\begin{equation*}
\frac{\partial \delta \mathbf{A}_{\perp}}{\partial t}=-\left(\delta \mathbf{E}_{\perp}+\nabla_{\perp} \delta \Phi\right) \tag{331}
\end{equation*}
$$

where $\partial \delta \mathbf{A}_{\perp} / \partial t$ is of $O\left(\lambda^{2}\right)$. This means that $\delta \mathbf{E}_{\perp}+\nabla_{\perp} \delta \phi$ is of $O\left(\lambda^{2}\right)$ although both $\delta \mathbf{E}_{\perp}$ and $\delta \phi$ are of $O(\lambda)$.]

Note that

$$
\begin{align*}
\frac{\partial\langle\mathbf{v} \cdot \delta \mathbf{A}\rangle_{\alpha}}{\partial t} & =v_{\|} \frac{\partial\left\langle\delta A_{\|}\right\rangle_{\alpha}}{\partial t}+\mathbf{v}_{\perp} \cdot \frac{\partial\langle\delta \mathbf{A}\rangle_{\alpha}}{\partial t} \\
& =v_{\|} \frac{\partial\left\langle\delta A_{\|}\right\rangle_{\alpha}}{\partial t}+\left\langle\mathbf{v}_{\perp} \cdot(-\delta \mathbf{E}-\nabla \delta \Phi)\right\rangle_{\alpha} \\
& \approx v_{\|} \frac{\partial\left\langle\delta A_{\|\rangle_{\alpha}}\right.}{\partial t}-\left\langle\mathbf{v}_{\perp} \cdot \delta \mathbf{E}\right\rangle_{\alpha} \tag{332}
\end{align*}
$$

where use has been made of $\left\langle\mathbf{v}_{\perp} \cdot \nabla \delta \phi\right\rangle \approx 0$, This indicates that $\left\langle\mathbf{v}_{\perp} \cdot \delta \mathbf{E}\right\rangle_{\alpha}$ is of $O\left(\lambda^{1}\right) \delta \mathbf{E}$. Using Eq. (332), the coefficient before $\partial F_{0} / \partial \varepsilon$ in Eq. (141) can be further written as

$$
\begin{align*}
& -\frac{q}{m}\left[-\frac{\partial\langle\mathbf{v} \cdot \delta \mathbf{A}\rangle_{\alpha}}{\partial t}-\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}-\frac{q}{m} \frac{\mathbf{e}_{\|}}{\Omega} \times \nabla_{X}\langle\mathbf{v} \cdot \delta \mathbf{A}\rangle_{\alpha}\right) \cdot \nabla_{X}\langle\delta \Phi\rangle_{\alpha}\right] \\
& =-\frac{q}{m}\left[-v_{\|} \frac{\partial\left\langle\delta A_{\|}\right\rangle_{\alpha}}{\partial t}+\left\langle\mathbf{v}_{\perp} \cdot \delta \mathbf{E}\right\rangle_{\alpha}-\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}-\frac{q}{m} \frac{\mathbf{e}_{\|}}{\Omega} \times \nabla_{X}\langle\mathbf{v} \cdot \delta \mathbf{A}\rangle_{\alpha}\right) \cdot\left\langle-\delta \mathbf{E}-\frac{\partial \delta \mathbf{A}}{\partial t}\right\rangle_{\alpha}\right] \\
& \approx-\frac{q}{m}\left[-v_{\|} \frac{\partial\left\langle\delta A_{\|}\right\rangle_{\alpha}}{\partial t}+\left\langle\mathbf{v}_{\perp} \cdot \delta \mathbf{E}\right\rangle_{\alpha}-\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}-\frac{q}{m} \frac{\mathbf{e}_{\|}}{\Omega} \times \nabla_{X}\langle\mathbf{v} \cdot \delta \mathbf{A}\rangle_{\alpha}\right) \cdot\langle-\delta \mathbf{E}\rangle_{\alpha}+v_{\|}\left\langle\frac{\partial A_{\|}}{\partial t}\right\rangle_{\alpha}\right] \\
& =-\frac{q}{m}\left[\left\langle\mathbf{v}_{\perp} \cdot \delta \mathbf{E}\right\rangle_{\alpha}+\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}-\frac{q}{m} \frac{\mathbf{e}_{\|}}{\Omega} \times \nabla_{X}\langle\mathbf{v} \cdot \delta \mathbf{A}\rangle_{\alpha}\right) \cdot\langle\delta \mathbf{E}\rangle_{\alpha}\right] \\
& \approx-\frac{q}{m}\left[\left\langle\mathbf{v}_{\perp} \cdot \delta \mathbf{E}\right\rangle_{\alpha}+\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+v_{\|} \frac{\left\langle\delta \mathbf{B}_{\perp}\right\rangle}{B_{0}}\right) \cdot\langle\delta \mathbf{E}\rangle_{\alpha}\right] . \tag{333}
\end{align*}
$$

Using Eq. (333) and (), gyrokinetic equation (141) is finally written as

$$
\begin{align*}
& {\left[\frac{\partial}{\partial t}+\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\frac{\langle\delta \mathbf{E}\rangle_{\alpha} \times \mathbf{e}_{\|}}{B_{0}}+v_{\|} \frac{\left\langle\delta \mathbf{B}_{\perp}\right\rangle_{\alpha}}{B_{0}}\right) \cdot \nabla_{X}\right] \delta f} \\
& =-\left(\frac{\langle\delta \mathbf{E}\rangle_{\alpha} \times \mathbf{e}_{\|}}{B_{0}}+v_{\|} \frac{\left\langle\delta \mathbf{B}_{\perp}\right\rangle_{\alpha}}{B_{0}}\right) \cdot \nabla_{X} F_{0} \\
& -\frac{q}{m}\left[\left\langle\mathbf{v}_{\perp} \cdot \delta \mathbf{E}\right\rangle_{\alpha}+\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+v_{\|} \frac{\left\langle\delta \mathbf{B}_{\perp}\right\rangle_{\alpha}}{B_{0}}\right) \cdot\langle\delta \mathbf{E}\rangle_{\alpha}\right] \frac{\partial F_{0}}{\partial \varepsilon} . \tag{334}
\end{align*}
$$

Appendix D Coordinate system and grid in TEK code

In the magnetic coordinates (ψ, θ, ϕ) used in TEK code, ψ is the normalized poloidal magnetic flux, $\psi=\left(\Psi-\Psi_{\text {axis }}\right) /\left(\Psi_{\text {lcfs }}-\Psi_{\text {axis }}\right), \theta$ is increasing along the anti-clockwise direction when viewed along $\nabla \phi$ direction, ϕ is the toroidal angle of the right-handed cylindrical coordinates (R, ϕ, Z). In this convention the Jacobian of the (ψ, θ, ϕ) coordinate system, $\mathcal{J}=(\nabla \psi \cdot \nabla \theta \times \nabla \phi)$ is negative, i.e., (ψ, θ, ϕ) is a left-handed system. The field-line-following coordinate system (ψ, θ, α) is also a lefthanded system. The coordinate system $(x=\psi, y=\alpha, z=\theta)$ is a right-handed system.

Figure 3. Poloidal grid for equilibrium quantities used in TEK and GEM code. The array starts at $\theta=-\pi$ and ends at $\theta=+\pi$ ($\theta= \pm \pi$ is chosen to be at the high-field side midplane in both the codes). TEK array index starts from 1 whereas GEM array index starts from 0 . Hence mpol=nth +1 . nth is denoted by ntheta in GEM.

I do not need to make connection with GEM's equilibrium poloidal array because there is no coupling of equilibrium quantities between the code written by me and the original code in GEM.

The coupling happens for the perturbed quanties, whose poloidal grids need to be consistent. TEK poloidal grid-points for perturbation are indexed as $0:$ mpol 2 with the index 0 corresponding to $\theta=-\pi$ and the index mpol2 corresponding to $\theta=+\pi$. Field equation is solved at $0:$ mpol2 - 1. (The field at mpol2, i.e., $\theta=+\pi$, is obtained by inerpolating the field at $\theta=-\pi$.) mpol2 is determined by mpol2=numproc/ntube, i.e., mpol2 is the total number of cells along the θ direction use for MPI parallelation. mpol and mpol2 must be chosen in a way that makes (mpol-1)/mpol2 be an integer, which can be larger than 1 , i.e., one simulation cell can span several equilibrium cells.

Figure 4. Radial grid used in TEK. Two radial arrays are used in the code, radcor_1d_array(1:nt) and radcor_1d_array2(1:n), equilibrium is defined on the former grid, and perturbations are defined on the latter grid.

Here $n t=n+2 m, m$ is the number of grid points in one of the two buffer regions (regions in blue color).
In the code n is denoted by nflux2 and nt is denoted by nflux, m is denoted by points_in_buffer. In GEM the radial array does no include the buffer regions and the index starts at 0 and ends at imx. Hence $\mathrm{n}=\mathrm{imx} \mathrm{x}$. .

Figure 5. Toroidal grid used in TEK and GEM. TEK array index starts at 1 whereas GEM array index starts from 0. In TEK, the toroidal array is tor_1d_array ($1:$ mtor +1). source terms, δn and $\delta j_{\|}$, are defined at 1:mtor; EM fields are defined at 1:mtor +1 .

GEM array ends at jm. It follows that mtor=jm.

GEM array index system is better than TEK's because my system is not consistent: sometimes I use 0-based index and sometimes I use 1-based index, sometimes the index ends at n and sometimes ends at $\mathrm{n}+1$. It is important to know accurately the transformation between the two systems.

Appendix E Split-weight scheme for electrons in GEM code

The perturbed distribution function is decomposed as given by Eq. (203), i.e.,

$$
\begin{equation*}
\delta F=\delta h+\frac{q}{m}\left(\delta \Phi-\langle\delta \Phi\rangle_{\alpha}\right) \frac{\partial F_{0}}{\partial \varepsilon}+\frac{q}{m}\langle\mathbf{v} \cdot \delta \mathbf{A}\rangle_{\alpha} \frac{\partial F_{0}}{\partial \varepsilon} \tag{335}
\end{equation*}
$$

where the term in blue is the so-called adiabatic response, which depends on the gyro-angle in guiding-center coordinates. Recall that the red term $\langle\delta \Phi\rangle_{\alpha}$, which is independent of the gyro-angle, is introduced in order to eliminate the time derivative $\partial\langle\delta \Phi\rangle_{\alpha} / \partial t$ term on the right-hand side of the original Frieman-Chen gyrokinetic equation.

The so-called generalized split-weight scheme corresponds to going back to the original FriemanChen gyrokinetic equation by introducing another $\langle\delta \Phi\rangle_{\alpha}$ term with a free small parameter ϵ_{g}. Specifically, δh in the above is split as

$$
\begin{equation*}
\delta h=\delta h_{s}+\epsilon_{g} \frac{q}{m}\langle\delta \Phi\rangle_{\alpha} \frac{\partial F_{0}}{\partial \varepsilon} . \tag{336}
\end{equation*}
$$

(If $\varepsilon_{g}=1$, then the two $\langle\delta \Phi\rangle_{\alpha}$ terms in Eq. (335) and (336) cancel each other.) Substituting this expression into Eq. (), we obtain the following equation for δh_{s} :

$$
\begin{align*}
& {\left[\frac{\partial}{\partial t}+\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\delta \mathbf{V}_{D}\right) \cdot \nabla_{X}\right] \delta h_{s}} \\
& +\epsilon_{g} \frac{q}{m} \frac{\partial F_{0}}{\partial \varepsilon}\left[\frac{\partial}{\partial t}+\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\delta \mathbf{V}_{D}\right) \cdot \nabla_{X}\right]\langle\delta \Phi\rangle_{\alpha} \\
& +\epsilon_{g} \frac{q}{m}\langle\delta \Phi\rangle_{\alpha}\left[\frac{\partial}{\partial t}+\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\delta \mathbf{V}_{D}\right) \cdot \nabla_{X}\right] \frac{\partial F_{0}}{\partial \varepsilon} \\
& =-\delta \mathbf{V}_{D} \cdot \nabla_{X} F_{0} \\
& -\frac{q}{m}\left[\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\delta \mathbf{V}_{D}\right) \cdot \nabla_{X}\left(\langle\mathbf{v} \cdot \delta \mathbf{A}-\delta \Phi\rangle_{\alpha}\right)\right] \frac{\partial F_{0}}{\partial \varepsilon} . \tag{337}
\end{align*}
$$

Noting that $\partial F_{0} / \partial t=0, \mathbf{e}_{\|} \cdot \nabla F_{0}=0, \nabla F_{0} \sim O\left(\lambda^{1}\right) F_{0}$, we find that the third line of the above equation is of order $O\left(\lambda^{3}\right)$ and thus can be dropped. Moving the second line to the right-hand side, the above equation is written as

$$
\begin{align*}
& {\left[\frac{\partial}{\partial t}+\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\delta \mathbf{V}_{D}\right) \cdot \nabla_{X}\right] \delta h_{s}} \\
& =-\delta \mathbf{V}_{D} \cdot \nabla_{X} F_{0} \\
& -\frac{q}{m}\left\{\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\delta \mathbf{V}_{D}\right) \cdot \nabla_{X}\left[\langle\mathbf{v} \cdot \delta \mathbf{A}\rangle_{\alpha}-\langle\delta \Phi\rangle_{\alpha}\right]+\epsilon_{g}\left[\frac{\partial\langle\delta \Phi\rangle_{\alpha}}{\partial t}+\mathbf{V}_{G} \cdot \nabla_{X}\langle\delta \Phi\rangle_{\alpha}\right]\right\} \frac{\partial F_{0}}{\partial \varepsilon} \tag{338}
\end{align*}
$$

E.0.1 special case of $\epsilon_{g}=1$

For the special case of $\epsilon_{g}=1$ (the default and most used case in GEM code, Yang Chen said $\epsilon_{g}<1$ cases are sometimes not accurate, so he gave up using it since 2009), equation (338) can be simplified as:

$$
\begin{align*}
& {\left[\frac{\partial}{\partial t}+\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\delta \mathbf{V}_{D}\right) \cdot \nabla_{X}\right] \delta h_{s}} \\
& =-\delta \mathbf{V}_{D} \cdot \nabla_{X} F_{0} \\
& -\frac{q}{m}\left[\mathbf{V}_{G} \cdot \nabla_{X}\langle\mathbf{v} \cdot \delta \mathbf{A}\rangle_{\alpha}+\frac{\partial\langle\delta \Phi\rangle_{\alpha}}{\partial t}\right] \frac{\partial F_{0}}{\partial \varepsilon} \tag{339}
\end{align*}
$$

where two $\mathbf{V}_{G} \cdot\langle\delta \Phi\rangle_{\alpha}$ terms cancel each other. Because the $v_{\|} E_{\|}$term is one of the factors that make kinetic electron simulations difficult, eliminating $\mathbf{V}_{G} \cdot\langle\delta \Phi\rangle_{\alpha}$ term may be beneficial for obtaining stable algorithms.

For $\epsilon_{g}=1, \delta F$ is written as

$$
\begin{align*}
\delta F & =\delta h_{s}+\varepsilon_{g} \frac{q}{m}\langle\delta \Phi\rangle_{\alpha} \frac{\partial F_{g 0}}{\partial \varepsilon}+\frac{q}{m}\left(\delta \Phi-\langle\delta \Phi\rangle_{\alpha}\right) \frac{\partial F_{0}}{\partial \varepsilon}+\frac{q}{m}\langle\mathbf{v} \cdot \delta \mathbf{A}\rangle_{\alpha} \frac{\partial F_{0}}{\partial \varepsilon} \\
& =\delta h_{s}+\frac{q}{m} \delta \Phi \frac{\partial F_{g 0}}{\partial \varepsilon}+\frac{q}{m}\langle\mathbf{v} \cdot \delta \mathbf{A}\rangle_{\alpha} \frac{\partial F_{0}}{\partial \varepsilon} \tag{340}
\end{align*}
$$

where the adiabatic term will be moved to the left-hand side of the Poisson's equation. The descretization of this term is much easier than the polarization density. This term is already in GEM.

Equation (339) actually goes back to the original Frieman-Chen equation. The only difference is that $\frac{q}{m}\langle\mathbf{v} \cdot \delta \mathbf{A}\rangle_{\alpha} \frac{\partial F_{0}}{\partial \varepsilon}$ is further split from the perturbed distribution function. Considering this, equation (339) can also be obtained from the original Frieman-Chen equation (136) by writing δG_{0} as

$$
\begin{equation*}
\delta G_{0}=\delta h_{s}+\frac{q}{m}\langle\mathbf{v} \cdot \delta \mathbf{A}\rangle_{\alpha} \frac{\partial F_{0}}{\partial \varepsilon} \tag{341}
\end{equation*}
$$

In this case, δF is written as

$$
\begin{equation*}
\delta F=\delta h_{s}+\frac{q}{m} \delta \Phi \frac{\partial F_{g 0}}{\partial \varepsilon}+\frac{q}{m}\langle\mathbf{v} \cdot \delta \mathbf{A}\rangle_{\alpha} \frac{\partial F_{0}}{\partial \varepsilon} \tag{342}
\end{equation*}
$$

Substituting expression (341) into equation (136), we obtain the following equation for δh_{s} :

$$
\begin{align*}
& {\left[\frac{\partial}{\partial t}+\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\delta \mathbf{V}_{D}\right) \cdot \nabla_{X}\right] \delta h_{s}} \\
& +\frac{q}{m} \frac{\partial F_{0}}{\partial \varepsilon}\left[\frac{\partial}{\partial t}+\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\delta \mathbf{V}_{D}\right) \cdot \nabla_{X}\right]\langle\mathbf{v} \cdot \delta \mathbf{A}\rangle_{\alpha} \\
& +\frac{q}{m}\langle\mathbf{v} \cdot \delta \mathbf{A}\rangle_{\alpha}\left[\frac{\partial}{\partial t}+\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\delta \mathbf{V}_{D}\right) \cdot \nabla_{X}\right] \frac{\partial F_{0}}{\partial \varepsilon} \\
& =-\delta \mathbf{V}_{D} \cdot \nabla_{X} F_{0}-\frac{q}{m} \frac{\partial\langle\delta \Phi-\mathbf{v} \cdot \delta \mathbf{A}\rangle_{\alpha}}{\partial t} \frac{\partial F_{0}}{\partial \varepsilon} \tag{343}
\end{align*}
$$

Noting that $\partial F_{0} / \partial t=0, \mathbf{e}_{\|} \cdot \nabla F_{0}=0, \nabla F_{0} \sim O\left(\lambda^{1}\right) F_{0}$, we find that the third line of the above equation is of order $O\left(\lambda^{3}\right)$ and thus can be dropped. Moving the second line to the right-hand side, the above equation is written as

$$
\begin{align*}
& {\left[\frac{\partial}{\partial t}+\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\delta \mathbf{V}_{D}\right) \cdot \nabla_{X}\right] \delta h_{s}} \\
& =-\delta \mathbf{V}_{D} \cdot \nabla_{X} F_{0} \\
& -\frac{q}{m}\left[\frac{\partial\langle\delta \Phi\rangle_{\alpha}}{\partial t}+\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\delta \mathbf{V}_{D}\right) \cdot \nabla_{X}\langle\mathbf{v} \cdot \delta \mathbf{A}\rangle_{\alpha}\right] \frac{\partial F_{0}}{\partial \varepsilon}, \tag{344}
\end{align*}
$$

which agrees with Eq. (339).
In GEM, the split weight method is used only for electrons, and $\partial\langle\delta \Phi\rangle_{\alpha} / \partial t$ is approximated by $\partial \delta \Phi / \partial t$, which is obtained from the vorticity equation (rather than from time-difference scheme).

When using the split weight scheme, a $\partial \delta \phi / \partial t$ terms appear in the right-hand-side of the weight evolution equation. GEM makes use of the vorticity equation (time derivative of the Poissson equation) to evaluate $\partial \delta \phi / \partial t$.

Appendix F Implementation of gyrokinetics in particle-in-cell (PIC) codes

F. 1 Monte-Carlo evaluation of distribution function moment at gridpoints

Suppose that the 6 D guiding-center phase-space (\mathbf{X}, \mathbf{v}) is described by ($\psi, \theta, \phi, v_{\|}, \alpha, v_{\perp}$) coordinates, where α is the gyro-angle. Denote the Jacobian of the coordinate system by $\mathcal{J}_{r v}$.

Suppose that we sample the 6D phase-space by using a probability function $P\left(\psi, \theta, \phi, v_{\perp}, \alpha, v_{\|}\right)$. (Then the effecitive probability function used in rejection method is $P \mathcal{J}_{r} \mathcal{J}_{v}$.) Note that we will sample a distribution function $\delta f_{g}\left(\mathbf{X}, v_{\perp}, v_{\|}, \alpha\right)$ that happens to be independent of the gyro-angle α. Since δf_{g} is uniform in α, it is natural to smaple α using a uniform probability function, i.e., $P\left(\mathbf{X}, v_{\perp}, \alpha, v_{\|}\right)$can be chosen to be independent of α. Then the weight is also independent of α. In terms of sampling δf_{g}, there is no need to specify α because both f_{g} and marker distribution $g=N_{p} P$ are indepedent of α. However, sampling α is still necessary in simulations. From the perspective of programming, it is ready to understand why α needs to be specified: when computing density at grid-points, we need to compute particle locations from the guiding-center locations which requires us to specify the gyro-angle α for each marker. Specifically, markers in guidingcenter space $\left(\mathbf{X}, v_{\perp}, \alpha, v_{\|}\right)$with fixed $\left(\mathbf{X}, v_{\perp}, v_{\|}\right)$but different values of α correspond to markers in particle space with different locations (and different α^{\prime}). In the PIC method of computing δn or $\delta j_{\|}$at fixed \mathbf{x}, the contribution of each particle marker to the density is affected by the distance of the particle marker to the fixed \mathbf{x}. Therefore different values of α contributes differently to δn or $\delta j_{\|}$, and thus the resolution of α matters.

For a marker with coordinators $\left(\mathbf{X}, v_{\perp}, v_{\|}, \alpha\right)$, the corresponding particle position can be calculated by using the inverse guiding-center transformation (29). Then we can deposit the marker weight to grid-points in the same way that we do in conventional PIC simulations. Looping over all markers, we build the particle density at grids.

Compared with conventional PIC methods, where particle positions are directly sampled, what is the benefit of sampling guiding-center positions and then transform them back to the particle positions? More computations are involved since we need to numerically perform the inverse guiding-center transformation. The answer lies in the important fact that the distribution function $f_{g}\left(\mathbf{X}, v_{\perp}, v_{\|}, \alpha\right)$ that needs to be numerically evaluated in gyrokinetic simulation is actually independent of the gyro-angle α. Furthermore, we use a probability density function P that is independent of α to sample the 6D phase space ($\mathbf{X}, v_{\perp}, v_{\|}, \alpha$). Then the marker weight $w \equiv$ $f_{g} /\left(N_{p} P\right)$ is independent of α, where N_{p} is number of markers loaded. This fact enable resolution in particle coordinates can be increased in a trivial way, as described below.

Suppose we have a concrete sampling of f_{g} in the 6 D phase-space $\left(\mathbf{X}, v_{\perp}, v_{\|}, \alpha\right)$, i.e., $\left(\mathbf{X}_{j}, v_{\perp j}\right.$, $v_{\| j}, \alpha_{j}, w_{j}$) with $j=1, \ldots, N_{p}$, then we can do the inverse guiding-center transform and then deposit particles to the grids to obtain a moment (e.g. density).

Since $P \mathcal{J}_{r v}$ is independent of α, the sampling α_{j} with $j=0,1, \ldots, N_{p}$ are uniform distributed random numbers. Therefore we can generate another sampling of α (denoted by α_{j}^{\prime} with $j=1, \ldots$, N_{p}) using random number generators and combine α_{j}^{\prime} with the old sampling ($\left.\mathbf{X}_{j}, v_{\perp j}, v_{\| j}\right)$ to obtain a new sampling $\left(\mathbf{X}_{j}, v_{\perp j}, v_{\| j}, \alpha_{j}^{\prime}, w_{j}^{\prime}\right)$. The values of w at the new sampling points are equal to the original values, i.e., $w_{j}^{\prime}=w_{j}$ since the particle weight $w=f_{g} /\left(N_{p} P\right)$ is independent of α. Using the new sampling and following the same procedures given above, we can estimate values of the moment at grid-points again, which will differ from the estimation obtained using the old sampling because the resulting sampling of \mathbf{x} and α^{\prime} for f_{p} is different. Taking the average of the two estimations will give a more accurate estimation because the resolution in \boldsymbol{x} and α^{\prime} for f_{p} is increased.
[Note that even if $P \mathcal{J}_{r v}$ is dependent on α due to the possible dependence of $\mathcal{J}_{r v}$ on α, we still can easily generate a new set of sampling which differs from the old sampling only in α. Specifically, in the rejection method, we use the old sampling $\left(\mathbf{X}_{j}, v_{\perp j}, v_{\| j}\right)$ for each reject step and only adjust α to satisfy the acceptance criteria.]

We can also construct a new sampling by replacing α_{j} with $\alpha_{j}+\Delta$, where Δ is a constant. Then the new set of sampling $\left(\mathbf{X}_{j}, v_{\perp j}, v_{\| j}, \alpha_{j}+\Delta, w_{j}\right)$ with $j=1, \ldots, N_{p}$ is still a consistent set of sampling.

In doing the deposition, each marker has a single gyro-angle. Due to the independence of the weight $\left(w=f_{g} /\left(N_{p} P\right)\right)$ of the gyro-angle, the particle phase space resolution can be increased in a way that there can be several gyro-angles for a single $\left(\mathbf{X}_{j}, v_{\perp j}, v_{\| j}\right)$. This gives the wrong impression that the gyro-angle of a guiding-center marker is arbitrary. The correct understanding is that given above, i.e., we do several (say 4) separate sampling of the phase space and then average the results.

In the code, the gyro-angle is defined relative to the direction $\nabla \psi /|\nabla \psi|$ at the guiding-center position. Specifically, the gyro-angle is defined as the included angle between $\nabla \psi /|\nabla \psi|$ and $-\mathbf{v} \times \mathbf{e}_{\|}(\mathbf{x}) / \Omega(\mathbf{x})$, where $\mathbf{e}_{\|}(\mathbf{x}) / \Omega(\mathbf{x})$ is approximated by the value at the guiding-center location.

Then $\left(\mathbf{X}_{j}, v_{\perp j}, v_{\| j}\right)$ can be evolved by using the guiding-center motion equation. (It is obvious how to evalute the gyro-averaging of the electromagnetic fields needed in pusing markers.)

F. 2 Monte-Carlo sampling of 6D guiding-center phase-space

Suppose that the 6 D guiding-center phase-space (\mathbf{X}, \mathbf{v}) is described by $\left(\psi, \theta, \phi, v_{\|}, v_{\perp}, \alpha\right)$ coordinates. The Jacobian of the coordinate system is given by $\mathcal{J}=\mathcal{J}_{r} v_{\perp}$, where $\mathcal{J}_{r}=\mathcal{J}(\psi, \theta)$ is the Jacobian of the coordinates (ψ, θ, ϕ). Suppose that we sample the 6 D phase-space by using the following probability density function:

$$
\begin{equation*}
P\left(\psi, \theta, \phi, v_{\|}, v_{\perp}, \alpha\right)=\frac{1}{V_{r}}\left(\frac{m}{2 \pi T}\right)^{3 / 2} \exp \left[-\frac{m\left(v_{\|}^{2}+v_{\perp}^{2}\right)}{2 T}\right] \tag{345}
\end{equation*}
$$

where V_{r} is the volume of the spatial simulation box, T is a constant temperature. P given above is independent of ψ, θ, ϕ and α. It is ready to verify that the above P satisfies the following normalization condition:

$$
\begin{equation*}
\int_{V_{r}} \int P d \mathbf{v} d \mathbf{X}=\int_{V_{r}} \int_{-\infty}^{+\infty} \int_{0}^{\infty} \int_{0}^{2 \pi} P v_{\perp} d \alpha d v_{\perp} d v_{\|} \mathcal{J}_{r} d \psi d \theta d \phi=1 . \tag{346}
\end{equation*}
$$

I use the rejection method to numerically generate N_{p} markers that satisfy the above probability density function. [The effective probability density function actually used in the rejection method is P^{\prime}, which is related to P by

$$
\begin{equation*}
P^{\prime}=\left|\mathcal{J}_{r} \mathcal{J}_{v}\right| P=\left|\mathcal{J}_{r}(\psi, \theta)\right| v_{\perp} P \tag{347}
\end{equation*}
$$

Note that P^{\prime} does not depend on the gyro-angle α.]
Then the weight of a marker sampling δf_{g} is written as

$$
\begin{equation*}
w=\frac{\delta f_{g}\left(\psi, \theta, \phi, v_{\|}, v_{\perp}\right)}{N_{p} P} \tag{348}
\end{equation*}
$$

Since both f_{g} and P are independent of the gyro-angle α, w is also independent of α.
The numerical representation of δf_{g} is written

$$
\begin{equation*}
\delta \tilde{f}_{g}=\frac{1}{\mathcal{J}_{r} v_{\perp}} \sum_{j}^{N_{p}} w_{j} \delta\left(\psi-\psi_{j}\right) \delta\left(\theta-\theta_{j}\right) \delta\left(\phi-\phi_{j}\right) \delta\left(v_{\|}-v_{\| j}\right) \delta\left(v_{\perp}-v_{\perp j}\right) \delta\left(\alpha-\alpha_{j}\right) \tag{349}
\end{equation*}
$$

Although the distribution function δf_{g} to be sampled is independent of the gyro-angle α, we still need to specify the gyro-angle because we need to use the inverse guiding-center transformation, which needs the gyro-angle. Each marker needs to have a specific gyro-angle value α_{j} so that we know how to transform its \mathbf{X}_{j} to \mathbf{x}_{j} and then do the charge deposition in \mathbf{x} space.

To increase the resolution over the gyro-angle (the quantity of intest to us, e.g., density, is the integration of the particle distribution function at fixed spatial location, and the distribution at the fixed location is not uniform in the gyro-angle. So the resolution over α matters), we need to load more markers. However, thanks to the fact that both sampling probability density function P and δf_{g} are independent of α, the resolution over the gyro-angle can be increased in a simple way.

$$
\begin{equation*}
n(\mathbf{x})=\frac{n_{1}(\mathbf{x})+n_{2}(\mathbf{x})+n_{3}(\mathbf{x})+n_{4}(\mathbf{x})}{4} \tag{350}
\end{equation*}
$$

This corresponds to sampling the 6 D phase-space 4 separate times (each time with identical sampling points in ($\mathbf{X}, v_{\|}, v_{\perp}$) but different sampling points in α) and then using the averaging of the 4 Monte-Carlo integrals to estimate the exact value. This estimation can also be (roughly) considered as a Monte-Carlo estimation using 4 times larger number of markers as that is originally used (the Monte-Carlo estimation using truly 4 time larger number of markers is more accurate than the result we obtained above because the former also increase the resolution of $\left(\mathbf{X}, v_{\|}, v_{\perp}\right)$ while the latter keeps the resolution of ($\mathbf{X}, v_{\|}, v_{\perp}$) unchanged.)

In numerical implementation, we choose N sampling points that are evenly distributed on the gyro-ring (N is usually 4 as a compromise between efficiency and accuracy). And the weight is evenly split by the N sub-markers on the gyro-ring. Therefore each sub-marker have a Monte-Carlo weight w_{j} / N, where w_{j} is the weight of the j th marker. Then calculating the integration (356) at a grid corresponds to depositing all the N sub-markers associated with each guiding-center marker to the grid, as is illustrated in Fig. 6. However, interpreting in this way is confusing to me because: why can you split a single sampling into N different samplings? I prefer the above interpretation that the 6 D phase space is sampled 4 separate times and thus we get 4 estimations and finally we take the averaging of these 4 estimations. It took a long time for me to finally find this way of understanding.

Figure 6. The spatial grid in the plane perpendicular to the equilibrium magnetic field, a guiding-center marker C, and its gyro-ring with 4 sampling points (sub-markers) on it. The 4 sub-markers are calculated by using the transformation (29) (inverse guiding-center transform). Assume that Monte-Carlo weight of the guiding-center marker C is w_{j}. Then The Monte-Carlo weight of each sub-marker is $w_{j} / 4$. The value of integration (356) at a grid point is approximated by $I / \Delta V$, where I is the Monte-Carlo integration of all sub-markers (associated with all guiding-center markers) in the cell, ΔV is the cell volume. The cell associated with a grid-point (e.g., A) is indicated by the dashed rectangle (this is for the 2 D projection, the cell is 3D and it is a cube). If the Dirac delta function is used as the shape function of the sub-markers, then calculating the contribution of a sub-marker to a grid corresponds to the nearest-point interpolation (for example, the 4 sub-markers will contribute nothing to grid point B since no-sub marker is located within the cell). In practice, the flat-top shape function with its support equal to the cell size is often used, then the depositing corresponds to linearly interpolating the weight of each sub-marker to the nearby grids.

In summary, the phase-space to be sampled in gyrokinetic simulations are still 6D rather than 5 D . In this sense, the statement that gyrokinetic simulation works in a 5 D phase space is misleading. We are still working in the 6 D phase-space. The only subtle thing is that the sixth dimension, i.e., gyro-angle, can be sampled in an easy way that is independent of the other 5 variables.

In numerical implementation, the gyro-angle may not be explicitly used. We just try to find 4 arbitrary points on the gyro-ring that are easy to calculate. Some codes (e.g. ORB5) introduces a random variable to rotate these 4 points for different markers so that the gyro-angle can be sampled less biased.

From the view of particle simulations, the gyrokinetic model can be considered as a noise reduction method, where the averaging over the gyro-angle is equivalent to a time averaging over a gyro-period, which reduces the fluctuation level (in both time and space) associated with evaluating the Monte-Carlo phase integration. Here the averaging in gyrokinetic particle simulation refers to taking several points on a gyro-ring when depositing markers to spatial grids to obtain the density and current on the grids. (Another gyro-averaging appears in evaluating the guidingcenter drift.) In gyrokinetic particle simulation, even a step size smaller than a gyro-period is taken, the quantities used in the model is still the ones averaged over one gyro-period. In this sense, a gyrokinetic simulation is only meaningful when the time step size is larger than one gyroperiod. [**Some authors may disagree with that the gyro-averaging is a time-averaging. They may consider the gyro-averaging as the phase-space integration over the gyro-angle coordinate. This view seems to be right in Euler simulations but seems to be wrong in particle simulations. The reason is as follows. For each marker, choose a random gyro-phase and then do the inverse transformation to obtain particle position, and sum over all markers (this corresponds to phasespace Monte-Carlo integration, which include the gyro-angle integration, so no further gyro-angle integration is needed); choose another random gyro-phase and repeat the above procedure (this can be interpreted as do the phase-space Monte-Carlo integration at another time), choose further random gyro-phase for each marker and repeat. Finally averaging all the above values to obtain the final estimation of the phase-space integration. This amounts to a time-averaging over a gyromotion. In summary, sampling several times with different gyro-phases for each marker and taking the average amounts to the time averaging over gyro-motion**]

When doing the time-average over the ion cyclotron motion, the time variation of the lowfrequency mode is negligible and only the spatial variation of the modes is important. For the gyromotion, only the gyro-angle is changing and all the other variables, $\left(\mathbf{X}, v_{\perp}, v_{\|}\right)$, are approximately constant. As a result, this time averaging finally reduces to a gyro-averaging.

I prefer to reason in terms of particle position and velocity, and consider the guiding-center location as an image of the particle position. When working in the guiding-center coordinates, I prefer to reason by transforming back to the particle position. This reasoning is clear and help me avoid some confusions I used to have.

F. 3 Distribution function transform** ${ }^{*}$ check

In the above, we assume that \mathbf{X} and \mathbf{x} are related to each other by the guiding-center transformation (27) or (29), i.e., \mathbf{x} and \mathbf{X} are not independent. For some cases, it may be convenient to treat \mathbf{x} and \mathbf{X} as independent variables and express the guiding-center transformation via an integral of the Dirac delta function. For example,

$$
\begin{equation*}
f_{p}(\mathbf{x}, \mathbf{v})=\int f_{g}(\mathbf{X}, \mathbf{v}) \delta^{3}(\mathbf{X}-\mathbf{x}+\boldsymbol{\rho}) d \mathbf{X} \tag{351}
\end{equation*}
$$

where \mathbf{x} and \mathbf{X} are considered as independent variables, $\boldsymbol{\rho}$ is the gyroradius evaluated at \mathbf{x}, $\delta^{3}(\mathbf{x}-\mathbf{X}-\boldsymbol{\rho})$ is the three-dimensional Dirac delta function. [In terms of general coordinates $\left(x_{1}, x_{2}\right.$, x_{3}), the three-dimensional Dirac delta function is defined via the 1D Dirac delta function as follows:

$$
\begin{equation*}
\delta^{3}(\mathbf{x})=\frac{1}{|\mathcal{J}|} \delta\left(x_{1}\right) \delta\left(x_{2}\right) \delta\left(x_{3}\right) \tag{352}
\end{equation*}
$$

where \mathcal{J} is the the Jacobian of the general coordinate system. The Jacobian is included in order to make $\delta^{3}(\mathbf{x})$ satisfy the normalization condition $\int \delta^{3}(\mathbf{x}) d \mathbf{x}=\int \delta^{3}(\mathbf{x})|\mathcal{J}| d x_{1} d x_{2} d x_{3}=1$.]

Expression (351) can be considered as a transformation that transforms an arbitrary function from the guiding-center coordinates to the particle coordinates. Similarly,

$$
\begin{equation*}
f_{g}(\mathbf{X}, \mathbf{v})=\int f_{p}(\mathbf{x}, \mathbf{v}) \delta^{3}(\mathbf{x}-\mathbf{X}-\boldsymbol{\rho}) d \mathbf{x} \tag{353}
\end{equation*}
$$

is a transformation that transforms an arbitrary function from the the particle coordinates to the guiding-center coordinates.

F. 4 Moments of distribution function expressed as integration over guiding-center variables

In terms of particle variables (\mathbf{x}, \mathbf{v}), it is straightforward to calculate the moment of the distribution function. For example, the number density $n(\mathbf{x})$ is given by

$$
\begin{equation*}
n(\mathbf{x})=\int f_{p}(\mathbf{x}, \mathbf{v}) d \mathbf{v} \tag{354}
\end{equation*}
$$

However, it is a little difficult to calculate $n(\mathbf{x})$ at real space location \mathbf{x} by using the guiding-center variables (\mathbf{X}, \mathbf{v}). This is because holding \mathbf{x} constant and changing \mathbf{v}, which is required by the integration in Eq. (354), means the guiding-center variable \mathbf{X} is changing according to Eq. (27). Using Eq. (34), expression (354) is written as

$$
\begin{equation*}
n(\mathbf{x})=\int f_{g}(\mathbf{X}(\mathbf{x}, \mathbf{v}), \mathbf{v}) d \mathbf{v} \tag{355}
\end{equation*}
$$

As is mentioned above, the $d \mathbf{v}$ integration in Eq. (355) should be performed by holding \mathbf{x} constant and changing \mathbf{v}, which means the guiding-center variable $\mathbf{X}=\mathbf{X}(\mathbf{x}, \mathbf{v})$ is changing. This means that, in (\mathbf{X}, \mathbf{v}) space, the above integration is a (generalized) curve integral along the the curve $\mathbf{X}(\mathbf{v})=\mathbf{x}-\boldsymbol{\rho}(\mathbf{x}, \mathbf{v})$ with \mathbf{x} being constant. Treating \mathbf{X} and \mathbf{x} as independent variables and using the Dirac delta function δ, this curve integral can be written as the following double integration over the independent variables \mathbf{X} and \mathbf{v} :

$$
\begin{equation*}
n(\mathbf{x})=\iint f_{g}(\mathbf{X}, \mathbf{v}) \delta^{3}(\mathbf{X}-\mathbf{x}+\boldsymbol{\rho}) d \mathbf{v} d \mathbf{X} \tag{356}
\end{equation*}
$$

Another perspective of interpreting Eq. (356) is that we are first using the transformation (351) to transform f_{g} to f_{p} and then integrating f_{p} in the velocity space.

Appendix G Diamagnetic flow ** check**

The perturbed distribution function δF given in Eq. () contains two terms. The first term is gyrophase dependent while the second term is gyro-phase independent. The perpendicular velocity moment of the second term will give rise to the so-called diamagnetic flow. For this case, it is crucial to distinguish between the distribution function in terms of the guiding-center variables, $f_{g}(\mathbf{X}, \mathbf{v})$, and that in terms of the particle variables, $f_{p}(\mathbf{x}, \mathbf{v})$. In terms of these denotations, equation () is written as

$$
\begin{equation*}
\delta F_{g}=\frac{q}{m}\left(\delta \Phi-\langle\delta \Phi\rangle_{\alpha}\right) \frac{\partial F_{0 g}}{\partial \varepsilon}+\delta f_{g} . \tag{357}
\end{equation*}
$$

Next, consider the perpendicular flow \mathbf{U}_{\perp} carried by δf_{g}. This flow is defined by the corresponding distribution function in terms of the particle variables, δf_{p}, via,

$$
\begin{equation*}
n \mathbf{U}_{\perp}=\int \mathbf{v}_{\perp} \delta f_{p}(\mathbf{x}, \mathbf{v}) d \mathbf{v} \tag{358}
\end{equation*}
$$

where n is the number density defined by $n=\int \delta f_{p} d \mathbf{v}$. Using the relation between the particle distribution function and guiding-center distribution function, equation (358) is written as

$$
\begin{equation*}
n \mathbf{U}_{\perp}=\int \mathbf{v}_{\perp} \delta f_{g}(\mathbf{x}-\boldsymbol{\rho}, \mathbf{v}) d \mathbf{v} \tag{359}
\end{equation*}
$$

Using the Taylor expansion near $\mathbf{x}, \delta f_{g}(\mathbf{x}-\boldsymbol{\rho}, \mathbf{v})$ can be approximated as

$$
\begin{equation*}
\delta f_{g}(\mathbf{x}-\boldsymbol{\rho}, \mathbf{v}) \approx \delta f_{g}(\mathbf{x}, \mathbf{v})-\boldsymbol{\rho} \cdot \nabla \delta f_{g}(\mathbf{x}, \mathbf{v}) . \tag{360}
\end{equation*}
$$

Plugging this expression into Eq. (359), we obtain

$$
\begin{equation*}
n \mathbf{U}_{\perp} \approx \int \mathbf{v}_{\perp} \delta f_{g}(\mathbf{x}, \mathbf{v}) d \mathbf{v}-\int \mathbf{v}_{\perp} \boldsymbol{\rho} \cdot \nabla \delta f_{g}(\mathbf{x}, \mathbf{v}) d \mathbf{v} \tag{361}
\end{equation*}
$$

As mentioned above, $\delta f_{g}(\mathbf{x}, \mathbf{v})$ is independent of the gyro-angle α. It is obvious that the first integration is zero and thus Eq. (361) is reduced to

$$
\begin{equation*}
n \mathbf{U}_{\perp}=-\int \mathbf{v}_{\perp} \boldsymbol{\rho} \cdot \nabla \delta f_{g}(\mathbf{x}, \mathbf{v}) d \mathbf{v} \tag{362}
\end{equation*}
$$

Using the definition $\boldsymbol{\rho}=-\mathbf{v} \times \mathbf{e}_{\|} / \Omega$, the above equation is written

$$
\begin{align*}
n \mathbf{U}_{\perp} & =\int \mathbf{v}_{\perp} \frac{\mathbf{v} \times \mathbf{e}_{\|}}{\Omega} \cdot \nabla \delta f_{g}(\mathbf{x}, \mathbf{v}) d \mathbf{v} \\
& =\int \mathbf{v}_{\perp}\left(\frac{\mathbf{e}_{\|}}{\Omega} \times \nabla \delta f_{g}(\mathbf{x}, \mathbf{v})\right) \cdot \mathbf{v}_{\perp} d \mathbf{v} \\
& =\int \mathbf{v}_{\perp} \mathbf{H} \cdot \mathbf{v}_{\perp} d \mathbf{v} \tag{363}
\end{align*}
$$

where $\mathbf{H}=\frac{\mathbf{e}_{\|}}{\Omega} \times \nabla \delta f_{g}(\mathbf{x}, \mathbf{v})$, which is independent of the gyro-angle α because both $\mathbf{e}_{\|}(\mathbf{x}) / \Omega(\mathbf{x})$ and $\delta f_{g}(\mathbf{x}, \mathbf{v})$ are independent of α. Next, we try to perform the integration over α in Eq. (363). In terms of velocity space cylindrical coordinates $\left(v_{\|}, v_{\perp}, \alpha\right), \mathbf{v}_{\perp}$ is written as

$$
\begin{equation*}
\mathbf{v}_{\perp}=v_{\perp}(\hat{\mathbf{x}} \cos \alpha+\hat{\mathbf{y}} \sin \alpha) \tag{364}
\end{equation*}
$$

where $\hat{\mathbf{x}}$ and $\hat{\mathbf{y}}$ are two arbitrary unit vectors perpendicular each other and both perpendicular to $\mathbf{B}_{0}(\mathbf{x}) . \mathbf{H}$ can be written as

$$
\begin{equation*}
\mathbf{H}=H_{x} \hat{\mathbf{x}}+H_{y} \hat{\mathbf{y}}, \tag{365}
\end{equation*}
$$

where H_{x} and H_{y} are independent of α. Using these in Eq. (363), we obtain

$$
\begin{align*}
n \mathbf{U}_{\perp} & =\int v_{\perp}(\hat{\mathbf{x}} \cos \alpha+\hat{\mathbf{y}} \sin \alpha) v_{\perp}\left(H_{x} \cos \alpha+H_{y} \sin \alpha\right) d \mathbf{v} \\
& =\int v_{\perp}^{2}\left[\hat{\mathbf{x}}\left(H_{x} \cos ^{2} \alpha+H_{y} \sin \alpha \cos \alpha\right)+\hat{\mathbf{y}}\left(H_{x} \cos \alpha \sin \alpha+H_{y} \sin ^{2} \alpha\right)\right] d \mathbf{v} \tag{366}
\end{align*}
$$

Using $d \mathbf{v}=v_{\perp} d v_{\|} d v_{\perp} d \alpha$, the above equation is written as

$$
\begin{align*}
n \mathbf{U}_{\perp} & =\int_{-\infty}^{\infty} d v_{\|} \int_{0}^{\infty} v_{\perp} d v_{\perp} \int_{0}^{2 \pi} v_{\perp}^{2}\left[\hat{\mathbf{x}}\left(H_{x} \cos ^{2} \alpha+H_{y} \sin \alpha \cos \alpha\right)+\hat{\mathbf{y}}\left(H_{x} \cos \alpha \sin \alpha+H_{y} \sin ^{2} \alpha\right)\right] d \alpha \\
& =\int_{-\infty}^{\infty} d v_{\|} \int_{0}^{\infty} v_{\perp} d v_{\perp} \int_{0}^{2 \pi} v_{\perp}^{2}\left(\hat{\mathbf{x}} H_{x} \cos ^{2} \alpha+\hat{\mathbf{y}} H_{y} \sin ^{2} \alpha\right) d \alpha \\
& =\int_{-\infty}^{\infty} d v_{\|} \int_{0}^{\infty} v_{\perp} d v_{\perp}\left[v_{\perp}^{2}\left(\hat{\mathbf{x}} H_{x} \pi+\hat{\mathbf{y}} H_{y} \pi\right)\right] \\
& =\int_{-\infty}^{\infty} d v_{\|} \int_{0}^{\infty} v_{\perp} d v_{\perp}\left[v_{\perp}^{2} \mathbf{H} \pi\right] \\
& =\int_{-\infty}^{\infty} d v_{\|} \int_{0}^{\infty} v_{\perp} d v_{\perp}\left[v_{\perp}^{2} \frac{\mathbf{e}_{\|}}{\Omega} \times \nabla \delta f_{g}(\mathbf{x}, \mathbf{v}) \pi\right] \\
& =\frac{\mathbf{e}_{\|}}{\Omega} \times \nabla \int_{-\infty}^{\infty} d v_{\|} \int_{0}^{\infty} v_{\perp} d v_{\perp} \delta f_{g}(\mathbf{x}, \mathbf{v}) \frac{v_{\perp}^{2}}{2} 2 \pi \\
& =\frac{\mathbf{e}}{m \Omega} \times \nabla \delta p_{\perp}, \tag{367}
\end{align*}
$$

where

$$
\begin{align*}
\delta p_{\perp} & \equiv \int_{-\infty}^{\infty} d v_{\|} \int_{0}^{\infty} v_{\perp} d v_{\perp} \delta f_{g}(\mathbf{x}, \mathbf{v}) \frac{m v_{\perp}^{2}}{2} 2 \pi \\
& =\int \delta f_{g}(\mathbf{x}, \mathbf{v}) \frac{m v_{\perp}^{2}}{2} d \mathbf{v} \tag{368}
\end{align*}
$$

is the perpendicular pressure carried by $\delta f_{g}(\mathbf{x}, \mathbf{v})$. The flow given by Eq. (367) is called the diamagnetic flow.

Appendix H Transform gyrokinetic equation from (X, μ, ε, α) to (X, $\mu, v_{\|}, \alpha$) coordinates

The gyrokinetic equation given above is written in terms of variables $(\mathbf{X}, \mu, \varepsilon, \alpha)$. Next, we transform it into coordinates ($\mathbf{X}^{\prime}, \mu^{\prime}, v_{\|}, \alpha^{\prime}$) which are defined by

$$
\left\{\begin{array}{l}
\mathbf{X}^{\prime}(\mathbf{X}, \mu, \varepsilon, \alpha)=\mathbf{X} \tag{369}\\
\mu^{\prime}(\mathbf{X}, \mu, \varepsilon, \alpha)=\mu \\
\alpha^{\prime}(\mathbf{X}, \mu, \varepsilon, \alpha)=\alpha \\
v_{\|}(\mathbf{X}, \mu, \varepsilon, \alpha)= \pm \sqrt{2\left(\varepsilon-\mu B_{0}(\mathbf{X})\right)}
\end{array}\right.
$$

Use this definition and the chain rule, we obtain

$$
\begin{align*}
\left.\frac{\partial}{\partial \mathbf{X}}\right|_{\mu, \varepsilon, \alpha} & =\frac{\partial \mathbf{X}^{\prime}}{\partial \mathbf{X}} \cdot \frac{\partial}{\partial \mathbf{X}^{\prime}}+\frac{\partial \mu^{\prime}}{\partial \mathbf{X}} \frac{\partial}{\partial \mu^{\prime}}+\frac{\partial v_{\|}}{\partial \mathbf{X}} \frac{\partial}{\partial v_{\|}}+\frac{\partial \alpha^{\prime}}{\partial \mathbf{X}} \frac{\partial}{\partial \alpha^{\prime}} \\
& =\frac{\partial}{\partial \mathbf{X}^{\prime}}-\frac{\mu}{v_{\|}} \frac{\partial B_{0}}{\partial \mathbf{X}} \frac{\partial}{\partial v_{\|}}, \tag{370}
\end{align*}
$$

and

$$
\begin{align*}
\left.\frac{\partial}{\partial \varepsilon}\right|_{\mathbf{X}, \mu, \alpha} & =\frac{\partial \mathbf{X}^{\prime}}{\partial \varepsilon} \frac{\partial}{\partial \mathbf{X}^{\prime}}+\frac{\partial \mu^{\prime}}{\partial \varepsilon} \frac{\partial}{\partial \mu^{\prime}}+\frac{\partial v_{\|}}{\partial \varepsilon} \frac{\partial}{\partial v_{\|}}+\frac{\partial \alpha^{\prime}}{\partial \varepsilon} \frac{\partial}{\partial \alpha^{\prime}} \\
& =\frac{1}{v_{\|}} \frac{\partial}{\partial v_{\|}} \tag{371}
\end{align*}
$$

Then, in terms of $\left(\mathbf{X}^{\prime}, \mu^{\prime}, v_{\|}, \alpha^{\prime}\right)$, equation (136) is written

$$
\begin{align*}
& {\left[\frac{\partial}{\partial t}+\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\delta \mathbf{V}_{D}\right) \cdot \frac{\partial}{\partial \mathbf{X}^{\prime}}\right] \delta G_{0}-\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\delta \mathbf{V}_{D}\right) \cdot \frac{\mu}{v_{\|}} \frac{\partial B_{0}}{\partial \mathbf{X}} \frac{\partial \delta G_{0}}{\partial v_{\|}}} \\
& =-\delta \mathbf{V}_{D} \cdot\left(\frac{\partial F_{0}}{\partial \mathbf{X}^{\prime}}-\frac{\mu}{v_{\|}} \frac{\partial B_{0}}{\partial \mathbf{X}} \frac{\partial F_{0}}{\partial v_{\|}}\right)-\frac{q}{m} \frac{\partial\langle\delta L\rangle_{\alpha}}{\partial t} \frac{\partial F_{0}}{\partial v_{\|}} \frac{1}{v_{\|}} \tag{372}
\end{align*}
$$

Dropping terms of order higher than $O\left(\lambda^{2}\right)$, equation (372) is written as

$$
\begin{align*}
& {\left[\frac{\partial}{\partial t}+\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\delta \mathbf{V}_{D}\right) \cdot \frac{\partial}{\partial \mathbf{X}^{\prime}}\right] \delta G_{0}-\mathbf{e}_{\|} \cdot \mu \frac{\partial B_{0}}{\partial \mathbf{X}} \frac{\partial \delta G_{0}}{\partial v_{\|}}} \\
& =-\delta \mathbf{V}_{D} \cdot\left(\frac{\partial F_{0}}{\partial \mathbf{X}^{\prime}}\right)+\left(\delta \mathbf{V}_{D} \cdot \mu \frac{\partial B_{0}}{\partial \mathbf{X}}-\frac{q}{m} \frac{\partial\langle\delta L\rangle_{\alpha}}{\partial t}\right) \frac{\partial F_{0}}{\partial v_{\|}} \frac{1}{v_{\|}}, \tag{373}
\end{align*}
$$

The above equation drops all terms higher than $O\left(\lambda^{2}\right)$ and as a result the coefficient before $\partial \delta f / \partial v_{\|}$ contains only the mirror force, i.e., $-\mathbf{e}_{\|} \cdot \mu \nabla B_{0}$, which is independent of any perturbations.

Note that the gyro-averaging operator in $\left(\mathbf{X}^{\prime}, \mu^{\prime}, v_{\|}, \alpha^{\prime}\right)$ coordinates is identical to that in the old coordinates since the perpendicular velocity variable μ is identical between the two coordinate systems. Also note that the perturbed guiding-center velocity $\delta \mathbf{V}_{D}$ is given by

$$
\begin{equation*}
\delta \mathbf{V}_{D}=\frac{\mathbf{e}_{\|} \times \nabla_{X}\langle\delta \phi\rangle_{\alpha}}{B_{0}}+v_{\|} \frac{\left\langle\delta \mathbf{B}_{\perp}\right\rangle_{\alpha}}{B_{0}} \tag{374}
\end{equation*}
$$

where $\partial / \partial \mathbf{X}$ (rather than $\left.\partial / \partial \mathbf{X}^{\prime}\right)$ is used. Since $\delta \phi(\mathbf{x})=\delta \phi_{g}\left(\mathbf{X}, \mu^{\prime}, \alpha^{\prime}\right)$, which is independent of $v_{\|}$, then Eq. (370) indicates that $\partial \delta \phi / \partial \mathbf{X}=\partial \delta \phi / \partial \mathbf{X}^{\prime}$.

Following the same procedures, equation (141) in terms of $\left(\mathbf{X}^{\prime}, \mu^{\prime}, v_{\|}, \alpha^{\prime}\right)$ is written as

$$
\begin{align*}
& {\left[\frac{\partial}{\partial t}+\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\delta \mathbf{V}_{D}\right) \cdot \frac{\partial}{\partial \mathbf{X}^{\prime}}\right] \delta f-\mathbf{e}_{\|} \cdot \mu \nabla B_{0} \frac{\partial \delta f}{\partial v_{\|}}} \\
& =-\delta \mathbf{V}_{D} \cdot\left(\frac{\partial F_{0}}{\partial \mathbf{X}^{\prime}}\right)+\delta \mathbf{V}_{D} \cdot \mu \nabla B_{0} \frac{\partial F_{0}}{\partial v_{\|}} \frac{1}{v_{\|}} \\
& -\frac{q}{m}\left[-\frac{\partial\langle\mathbf{v} \cdot \delta \mathbf{A}\rangle_{\alpha}}{\partial t}-\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+v_{\|} \frac{\left\langle\delta \mathbf{B}_{\perp}\right\rangle_{\alpha}}{B_{0}}\right) \cdot \nabla_{X}\langle\delta \phi\rangle_{\alpha}\right] \frac{\partial F_{0}}{\partial v_{\|}} \frac{1}{v_{\|}} . \tag{375}
\end{align*}
$$

next, try to recover the equation in Mishchenk's paper:

$$
\begin{aligned}
& {\left[\frac{\partial}{\partial t}+\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\delta \mathbf{V}_{D}\right) \cdot \frac{\partial}{\partial \mathbf{X}^{\prime}}\right] \delta f-\mathbf{e}_{\|} \cdot \mu \nabla B_{0} \frac{\partial \delta f}{\partial v_{\|}}} \\
& =-\delta \mathbf{V}_{D} \cdot\left(\frac{\partial F_{0}}{\partial \mathbf{X}^{\prime}}\right)+\delta \mathbf{V}_{D} \cdot \mu \nabla B_{0} \frac{\partial F_{0}}{\partial v_{\|}} \frac{1}{v_{\|}} \\
& -\frac{q}{m}\left[-\frac{\partial\left\langle\delta A_{\|}\right\rangle_{\alpha}}{\partial t}-\left(\mathbf{e}_{\|}+\frac{\mathbf{V}_{D}}{v_{\|}}+\frac{\left\langle\delta \mathbf{B}_{\perp}\right\rangle_{\alpha}}{B_{0}}\right) \cdot \nabla_{X}\langle\delta \phi\rangle_{\alpha}\right] \frac{\partial F_{0}}{\partial v_{\|}} .
\end{aligned}
$$

$\delta L=\delta \Phi-\mathbf{v} \cdot \delta \mathbf{A}$,

$$
\begin{gather*}
\frac{\delta \mathbf{V}_{D}}{v_{\|}}=-\frac{q}{m v_{\|}} \nabla_{X}\left\langle\delta \Phi-v_{\|} A_{\|}\right\rangle_{\alpha} \times \frac{\mathbf{e}_{\|}}{\Omega} . \tag{376}\\
-\frac{q}{m}\left[-\frac{\partial\left\langle\delta A_{\|}\right\rangle_{\alpha}}{\partial t}-\left(\mathbf{e}_{\|}+\frac{\mathbf{V}_{D}}{v_{\|}}+\frac{q}{m} \nabla_{X}\left\langle A_{\|}\right\rangle_{\alpha} \times \frac{\mathbf{e}_{\|}}{\Omega}\right) \cdot \nabla_{X}\langle\delta \phi\rangle_{\alpha}\right] \frac{\partial F_{0}}{\partial v_{\|}} . \\
-\frac{q}{m}\left[-\frac{\partial\left\langle\delta A_{\|}^{(h)}\right\rangle_{\alpha}}{\partial t}-\left(\frac{\mathbf{V}_{D}}{v_{\|}}+\frac{q}{m} \nabla_{X}\left\langle A_{\|}\right\rangle_{\alpha} \times \frac{\mathbf{e}_{\|}}{\Omega}\right) \cdot \nabla_{X}\langle\delta \phi\rangle_{\alpha}\right] \frac{\partial F_{0}}{\partial v_{\|}} .
\end{gather*}
$$

H. 1 Recover equation in W. Deng's 2011 NF paper

The guiding-center velocity in the equilibrium field is given by
where

$$
\begin{equation*}
v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}=\frac{\mathbf{B}_{0}^{\star}}{B_{\| 0}^{\star}} v_{\|}+\frac{\mu}{\Omega B_{\| 0}^{\star}} \mathbf{B}_{0} \times \nabla B_{0}+\frac{1}{B_{0} B_{\| 0}^{\star}} \mathbf{E}_{0} \times \mathbf{B}_{0} \tag{377}
\end{equation*}
$$

$$
\begin{gather*}
\mathbf{B}_{0}^{\star}=\mathbf{B}_{0}+B_{0} \frac{v_{\|}}{\Omega} \nabla \times \mathbf{b}, \tag{378}\\
B_{\|}^{\star} \equiv \mathbf{b} \cdot \mathbf{B}^{\star}=B\left(1+\frac{v_{\|}}{\Omega} \mathbf{b} \cdot \nabla \times \mathbf{b}\right), \tag{379}
\end{gather*}
$$

Using $B_{\| 0}^{\star} \approx B_{0}$, then expression (377) is written as

$$
\begin{equation*}
v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}=v_{\|} \mathbf{b}+\underbrace{\frac{v_{\|}^{2}}{\Omega} \nabla \times \mathbf{b}}_{\text {curvaturedrift }}+\underbrace{\frac{\mu}{\Omega B_{0}} \mathbf{B}_{0} \times \nabla B_{0}}_{\nabla B \text { drift }}+\underbrace{\frac{1}{B_{0}^{2}} \mathbf{E}_{0} \times \mathbf{B}_{0}}_{E \times B \text { drift }}, \tag{380}
\end{equation*}
$$

where the curvature drift, ∇B drift, and $\mathbf{E}_{0} \times \mathbf{B}_{0}$ drift can be identified. Note that the perturbed guiding-center velocity $\delta \mathbf{V}_{D}$ is given by (refer to Sec. C.3)

$$
\begin{equation*}
\delta \mathbf{V}_{D}=\frac{\mathbf{e}_{\|} \times \nabla_{X}\langle\delta \phi\rangle_{\alpha}}{B_{0}}+v_{\|} \frac{\left\langle\delta \mathbf{B}_{\perp}\right\rangle_{\alpha}}{B_{0}} \tag{381}
\end{equation*}
$$

Using the above results, equation (375) is written as

$$
\begin{align*}
& {\left[\frac{\partial}{\partial t}+\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\delta \mathbf{V}_{D}\right) \cdot \frac{\partial}{\partial \mathbf{X}^{\prime}}\right] \delta f-\mathbf{e}_{\|} \cdot \mu \nabla B_{0} \frac{\partial \delta f}{\partial v_{\|}}} \\
& =-\delta \mathbf{V}_{D} \cdot\left(\frac{\partial F_{0}}{\partial \mathbf{X}^{\prime}}\right)+\left(\frac{\mathbf{e}_{\|} \times \nabla \nabla_{X}\langle\delta \phi\rangle_{\alpha}}{B_{0}}+v_{\|} \frac{\left\langle\delta \mathbf{B}_{\perp}\right\rangle_{\alpha}}{B_{0}}\right) \cdot\left(\frac{\mu}{v_{\|}} \nabla B_{0} \frac{\partial F_{0}}{\partial v_{\|}}\right) \\
& -\frac{q}{m}\left[-\frac{\partial\langle\mathbf{v} \cdot \delta \mathbf{A}\rangle_{\alpha}}{\partial t}-\left(v_{\|} \mathbf{e}_{\|}+\frac{v_{\|}^{2}}{\Omega} \nabla \times \mathbf{b}+\frac{\mu}{\Omega B_{0}} \mathbf{B}_{0} \times \nabla B_{0}+\frac{1}{B_{0}^{2}} \mathbf{E}_{0} \times \mathbf{B}_{0}+v_{\|} \frac{\left\langle\delta \mathbf{B}_{\perp}\right\rangle_{\alpha}}{B_{0}}\right) .\right. \\
& \left.\nabla_{X}\langle\delta \phi\rangle_{\alpha}\right] \frac{\partial F_{0}}{\partial v_{\|}} \frac{1}{v_{\|}}, \tag{382}
\end{align*}
$$

Collecting coefficients before $\partial F_{0} / \partial v_{\|}$, we find that the two terms involving ∇B_{0} (terms in blue and red) cancel each other, yielding

$$
\begin{align*}
& {\left[\frac{\partial}{\partial t}+\left(v_{\|} \mathbf{e}_{\|}+\mathbf{V}_{D}+\delta \mathbf{V}_{D}\right) \cdot \frac{\partial}{\partial \mathbf{X}^{\prime}}\right] \delta f-\mathbf{e}_{\|} \cdot \mu \nabla B_{0} \frac{\partial \delta f}{\partial v_{\|}}} \\
& =-\delta \mathbf{V}_{D} \cdot\left(\frac{\partial F_{0}}{\partial \mathbf{X}}\right) \\
& +\frac{q}{m}\left[\frac{m}{q} v_{\|} \frac{\left\langle\delta \mathbf{B}_{\perp}\right\rangle_{\alpha}}{B_{0}} \cdot\left(\mu \nabla B_{0}\right)+\frac{\partial\langle\mathbf{v} \cdot \delta \mathbf{A}\rangle_{\alpha}}{\partial t}+\left(v_{\|} \mathbf{b}+\frac{v_{\|}^{2}}{\Omega} \nabla \times \mathbf{b}+\frac{1}{B_{0}^{2}} \mathbf{E}_{0} \times \mathbf{B}_{0}+v_{\|} \frac{\left\langle\delta \mathbf{B}_{\perp}\right\rangle_{\alpha}}{B_{0}}\right) .\right. \\
& \left.\nabla_{X}\langle\delta \phi\rangle_{\alpha}\right] \frac{\partial F_{0}}{\partial v_{\|}} \frac{1}{v_{\|}} \tag{383}
\end{align*}
$$

This equation agrees with Eq. (8) in I. Holod's 2009 pop paper (gyro-averaging is wrongly omitted in that paper) and W. Deng's 2011 NF paper.

Appendix I Drift-kinetic limit

In the drift-kinetic limit, $\left\langle\mathbf{v}_{\perp} \cdot \delta \mathbf{E}\right\rangle_{\alpha}=0,\left\langle\delta B_{\|} \mathbf{v}_{\perp}\right\rangle_{\alpha}=0$, and $\langle\delta h\rangle_{\alpha}=\delta h$, where δh is an arbitrary field quantity. Using these, gyrokinetic equation (334) is written as

$$
\begin{align*}
& {\left[\frac{\partial}{\partial t}+\left(v_{\|} \mathbf{e}_{\|}+\mathbf{v}_{D}+\mathbf{v}_{E}+v_{\|} \frac{\delta \mathbf{B}_{\perp}}{B_{0}}\right) \cdot \nabla_{X}\right] \delta f} \\
& =-\left(\mathbf{v}_{E}+v_{\|} \frac{\delta \mathbf{B}_{\perp}}{B_{0}}\right) \cdot \nabla_{X} F_{0}-\frac{q}{m}\left[\left(v_{\|} \mathbf{e}_{\|}+\mathbf{v}_{D}+v_{\|} \frac{\delta \mathbf{B}_{\perp}}{B_{0}}\right) \cdot \delta \mathbf{E}\right] \frac{\partial F_{0}}{\partial \varepsilon} . \tag{384}
\end{align*}
$$

I. 1 Linear case

Neglecting the nonlinear terms, drift-kinetic equation (384) is written

$$
\begin{align*}
& {\left[\frac{\partial}{\partial t}+\left(v_{\|} \mathbf{e}_{\|}+\mathbf{v}_{D}\right) \cdot \nabla_{X}\right] \delta f} \\
& =-\left(\mathbf{v}_{E}+v_{\|} \frac{\delta \mathbf{B}_{\perp}}{B_{0}}\right) \cdot \nabla_{X} F_{0}-\frac{q}{m}\left[\left(v_{\|} \mathbf{e}_{\|}+\mathbf{v}_{D}\right) \cdot \delta \mathbf{E}\right] \frac{\partial F_{0}}{\partial \varepsilon} . \tag{385}
\end{align*}
$$

Next let us derive the parallel momentum equation from the linear drift kinetic equation (this is needed in my simulation). Multiplying the linear drift kinetic equation (385) by $q v_{\|}$and then integrating over velocity space, we obtain

$$
\begin{align*}
\frac{\partial \delta j_{\|}}{\partial t} & =-q \int d \mathbf{v} v_{\|}\left(v_{\|} \mathbf{e}_{\|}+\mathbf{v}_{D}\right) \cdot \nabla_{X} \delta f \\
& -q \int d \mathbf{v} v_{\|}\left(\mathbf{v}_{E}+v_{\|} \frac{\delta \mathbf{B}_{\perp}}{B_{0}}\right) \cdot \nabla_{X} F_{0}-\frac{q}{m} q \int d \mathbf{v} v_{\|}\left[\left(v_{\|} \mathbf{e}_{\|}+\mathbf{v}_{D}\right) \cdot \delta \mathbf{E}\right] \frac{\partial F_{0}}{\partial \varepsilon} \tag{386}
\end{align*}
$$

Equation (386) involve $\nabla_{X} \delta f$ and this should be avoided in particle methods whose goal is to avoid directly evaluating the derivatives of δf over phase-space coordinates. On the other hand, the partial derivatives of velocity moment of δf are allowed. Therefore, we would like to make the velocity integration of δf appear. Note that $\nabla_{X} \delta f$ here is taken by holding (ε, μ) constant and thus $v_{\|}$is not a constant and thus can not be moved inside ∇_{X}. Next, to facilitate performing the integration over $v_{\|}$, we transform the linear drift kinetic equation (385) into variable ($\mathbf{X}, \mu, v_{\|}$).

I. 2 Transform from $(\mathrm{X}, \mu, \varepsilon)$ to $\left(\mathrm{X}, \boldsymbol{\mu}, \boldsymbol{v}_{\|}\right)$coordinates

The kinetic equation given above is written in terms of variable $(\mathbf{X}, \mu, \varepsilon)$. Next, we transform it into coordinates $\left(\mathbf{X}^{\prime}, \mu^{\prime}, v_{\|}\right)$which is defined by

$$
\begin{align*}
\mathbf{X}^{\prime}(\mathbf{X}, \mu, \varepsilon) & =\mathbf{X} \tag{387}\\
\mu^{\prime}(\mathbf{X}, \mu, \varepsilon) & =\mu \tag{388}
\end{align*}
$$

and

$$
\begin{equation*}
v_{\|}(\mathbf{X}, \mu, \varepsilon)=\sqrt{2\left(\varepsilon-\mu B_{0}(\mathbf{X})\right)} . \tag{389}
\end{equation*}
$$

Use this, we have

$$
\begin{align*}
\left.\frac{\partial \delta G_{0}}{\partial \mathbf{X}}\right|_{\mu, \varepsilon} & =\frac{\partial \mathbf{X}^{\prime}}{\partial \mathbf{X}} \frac{\partial \delta G_{0}}{\partial \mathbf{X}^{\prime}}+\frac{\partial \mu^{\prime}}{\partial \mathbf{X}} \frac{\partial \delta G_{0}}{\partial \mu^{\prime}}+\frac{\partial v_{\|}}{\partial \mathbf{X}} \frac{\partial \delta G_{0}}{\partial v_{\|}} \\
& =\left.\frac{\partial \delta G_{0}}{\partial \mathbf{X}^{\prime}}\right|_{\mu, v_{\|}}+0 \frac{\partial \delta G_{0}}{\partial \mu^{\prime}}-\frac{\mu}{v_{\|}} \frac{\partial B_{0}}{d \mathbf{X}} \frac{\partial \delta G_{0}}{\partial v_{\|}} \tag{390}
\end{align*}
$$

and

$$
\begin{align*}
\frac{\partial F_{0}}{\partial \varepsilon} & =\frac{\partial F_{0}}{\partial \mu^{\prime}} \frac{\partial \mu^{\prime}}{\partial \varepsilon}+\frac{\partial F_{0}}{\partial v_{\|}} \frac{\partial v_{\|}}{\partial \varepsilon} \\
& =0 \frac{\partial F_{0}}{\partial \mu^{\prime}}+\frac{\partial F_{0}}{\partial v_{\|}} \frac{\partial v_{\|}}{\partial \varepsilon} \\
& =\frac{\partial F_{0}}{\partial v_{\|}} \frac{1}{v_{\|}} \tag{391}
\end{align*}
$$

Then, in terms of variable $\left(\mathbf{X}^{\prime}, \mu, v_{\|}\right)$, equation (385) is written

$$
\begin{align*}
& \frac{\partial \delta f}{\partial t}+\left(v_{\|} \mathbf{e}_{\|}+\mathbf{v}_{D}\right) \cdot \nabla \delta f-\mathbf{e}_{\|} \cdot \mu \nabla B \frac{\partial \delta f}{\partial v_{\|}} \\
& =-\left(\mathbf{v}_{E}+v_{\|} \frac{\delta \mathbf{B}_{\perp}}{B_{0}}\right) \cdot \nabla F_{0}+\left(\frac{\mathbf{v}_{E}}{v_{\|}}+\frac{\delta \mathbf{B}_{\perp}}{B_{0}}\right) \cdot \mu \nabla B \frac{\partial F_{0}}{\partial v_{\|}}-\frac{q}{m}\left[\left(\mathbf{e}_{\|}+\frac{\mathbf{v}_{D}}{v_{\|}}\right) \cdot \delta \mathbf{E}\right] \frac{\partial F_{0}}{\partial v_{\|}}, \tag{392}
\end{align*}
$$

where $\nabla \equiv \partial /\left.\partial \mathbf{X}^{\prime}\right|_{\mu, v_{\|}}$.

I. 3 Parallel momentum equation

Multiplying the linear drift kinetic equation (392) by $q v_{\|}$and then integrating over velocity space, we obtain

$$
\begin{align*}
& \frac{\partial \delta j_{\|}}{\partial t}+q \int d \mathbf{v} v_{\|}\left(v_{\|} \mathbf{e}_{\|}+\mathbf{v}_{D}\right) \cdot \nabla_{X} \delta f-q \int d \mathbf{v} v_{\|} \mathbf{e}_{\|} \cdot \mu \nabla B \frac{\partial \delta f}{\partial v_{\|}} \\
& =-q \int d \mathbf{v} v_{\|}\left(\mathbf{v}_{E}+v_{\|} \frac{\delta \mathbf{B}_{\perp}}{B_{0}}\right) \cdot \nabla_{X} F_{0}+q \int d \mathbf{v} v_{\|}\left(\frac{\mathbf{v}_{E}}{v_{\|}}+\frac{\delta \mathbf{B}_{\perp}}{B_{0}}\right) \cdot \mu \nabla B \frac{\partial F_{0}}{\partial v_{\|}} \\
& -\frac{q}{m} q \int d \mathbf{v} v_{\|}\left[\left(\mathbf{e}_{\|}+\frac{\mathbf{v}_{D}}{v_{\|}}\right) \cdot \delta \mathbf{E}\right] \frac{\partial F_{0}}{\partial v_{\|}} . \tag{393}
\end{align*}
$$

Consider the simple case that F_{0} does not carry current, i.e., $F_{0}\left(\mathbf{X}, \mu, v_{\|}\right)$is an even function about $v_{\|}$. Then it is obvious that the integration of the terms in red in Eq. (393) are all zero. Among the rest terms, only the following term

$$
\begin{equation*}
-\frac{q}{m} q \int d \mathbf{v} v_{\|}\left[\left(v_{\|} \mathbf{e}_{\|}\right) \cdot \delta \mathbf{E}\right] \frac{\partial F_{0}}{\partial v_{\|}} \frac{1}{v_{\|}} \tag{394}
\end{equation*}
$$

explicitly depends on $\delta \mathbf{E}$. Using $d \mathbf{v}=2 \pi B d v_{\|} d \mu$, the integration in the above expression can be analytically performed, giving

$$
\begin{align*}
& -\frac{q}{m} q \int d \mathbf{v} v_{\|}\left[\left(v_{\|} \mathbf{e}_{\|}\right) \cdot \delta \mathbf{E}\right] \frac{\partial F_{0}}{\partial v_{\|}} \frac{1}{v_{\|}} \\
& =-\frac{q^{2}}{m} \int 2 \pi B d v_{\|} d \mu v_{\|} \delta E_{\|} \frac{\partial F_{0}}{\partial v_{\|}} \\
& =-\frac{q^{2}}{m} \int 2 \pi B d \mu \delta E_{\|} \int v_{\|} \frac{\partial F_{0}}{\partial v_{\|}} d v_{\|} \\
& =-\frac{q^{2}}{m} \int 2 \pi B d \mu \delta E_{\|}\left(0-\int F_{0} d v_{\|}\right) \\
& =\frac{q^{2}}{m} \delta E_{\|} n_{0} . \tag{395}
\end{align*}
$$

Using these results, the parallel momentum equation (393) is written

$$
\begin{align*}
\frac{\partial \delta j_{\|}}{\partial t}= & \frac{q^{2}}{m} \delta E_{\|} n_{0}-q \int d \mathbf{v} v_{\|}\left(v_{\|} \mathbf{e}_{\|}+\mathbf{v}_{D}\right) \cdot \nabla_{X} \delta f+q \int d \mathbf{v} v_{\|} \mathbf{e}_{\|} \cdot \mu \nabla B \frac{\partial \delta f}{\partial v_{\|}} \\
& -q \int d \mathbf{v} v_{\|}\left(v_{\|} \frac{\delta \mathbf{B}_{\perp}}{B_{0}}\right) \cdot \nabla F_{0}+q \int d \mathbf{v} v_{\|}\left(\frac{\delta \mathbf{B}_{\perp}}{B_{0}}\right) \cdot \mu \nabla B \frac{\partial F_{0}}{\partial v_{\|}} \tag{396}
\end{align*}
$$

where the explicit dependence on $\delta \mathbf{E}$ is via the first term $q^{2} n_{0} \delta E_{\|} / m$, with all the the other terms being explicitly independent of $\delta \mathbf{E}(\delta f$ and $\delta \mathbf{B}$ implicitly depend on $\delta \mathbf{E})$.

Equation (396) involve derivatives of δf with respect to space and $v_{\|}$and these should be avoided in the particle method whose goal is to avoid directly evaluating these derivatives. Using integration by parts, the terms involving $\partial / \partial v_{\|}$can be simplified, yielding

$$
\begin{align*}
\frac{\partial \delta j_{\|}}{\partial t}= & \frac{q^{2}}{m} \delta E_{\|} n_{0}-q \int d \mathbf{v} v_{\|}\left(v_{\|} \mathbf{e}_{\|}+\mathbf{v}_{D}\right) \cdot \nabla_{X} \delta f-q\left(\mathbf{e}_{\|} \cdot \nabla B_{0}\right) \int \mu \delta f d \mathbf{v} \\
& -q \int d \mathbf{v} v_{\|}\left(v_{\|} \frac{\delta \mathbf{B}_{\perp}}{B_{0}}\right) \cdot \nabla F_{0}-q\left(\frac{\delta \mathbf{B}_{\perp}}{B_{0}}\right) \cdot\left(\nabla B_{0}\right) \int \mu F_{0} d \mathbf{v} \tag{397}
\end{align*}
$$

Define $p_{\perp 0}=\int m v_{\perp}^{2} F_{0} / 2 d \mathbf{v}$ and $\delta p_{\perp}=\int m v_{\perp}^{2} \delta f / 2 d \mathbf{v}$, then the above equation is written

$$
\begin{align*}
\frac{\partial \delta j_{\|}}{\partial t}= & \frac{q^{2}}{m} \delta E_{\|} n_{0}-q \int d \mathbf{v} v_{\|}\left(v_{\|} \mathbf{e}_{\|}+\mathbf{v}_{D}\right) \cdot \nabla_{X} \delta f-q\left(\mathbf{e}_{\|} \cdot \nabla B_{0}\right) \frac{\delta p_{\perp}}{m B_{0}} \\
& -q \int d \mathbf{v} v_{\|}\left(v_{\|} \frac{\delta \mathbf{B}_{\perp}}{B_{0}}\right) \cdot \nabla F_{0}-q\left(\frac{\delta \mathbf{B}_{\perp}}{B_{0}}\right) \cdot\left(\nabla B_{0}\right) \frac{p_{\perp 0}}{m B_{0}} \tag{398}
\end{align*}
$$

Next, we try to eliminate the spatial gradient of δf by changing the order of integration. The second term on the right-hand side of Eq. (398) is written

$$
\begin{align*}
& -q \int d \mathbf{v} v_{\|}\left(v_{\|} \mathbf{e}_{\|}\right) \cdot \nabla_{X} \delta f \\
& =-q \int 2 \pi B_{0} d v_{\|} d \mu v_{\|}^{2} \mathbf{e}_{\|} \cdot \nabla_{X} \delta f \\
& =-q 2 \pi B_{0} \mathbf{e}_{\|} \cdot \nabla_{X} \int v_{\|}^{2} \delta f d v_{\|} d \mu \\
& =-q B_{0} \mathbf{e}_{\|} \cdot \nabla_{X}\left(\frac{1}{m B_{0}} \int m v_{\|}^{2} \delta f d \mathbf{v}\right) \\
& =-q B_{0} \mathbf{e}_{\|} \cdot \nabla_{X}\left(\frac{\delta p_{\|}}{m B_{0}}\right), \tag{399}
\end{align*}
$$

where $\delta p_{\|}=\int m v_{\|}^{2} \delta f d \mathbf{v}$. Similarly, the term $-q \int d \mathbf{v} v_{\|}\left(v_{\|} \frac{\delta \mathbf{B}_{\perp}}{B_{0}}\right) \cdot \nabla_{X} F_{0}$ is written as

$$
\begin{align*}
& -q \int d \mathbf{v} v_{\|}\left(v_{\|} \frac{\delta \mathbf{B}_{\perp}}{B_{0}}\right) \cdot \nabla_{X} F_{0} \\
& =-q \int 2 \pi B_{0} d v_{\|} d \mu\left(v_{\|}^{2} \delta \frac{\delta \mathbf{B}_{\perp}}{B_{0}}\right) \cdot \nabla_{X} F_{0} \\
& =-q\left(\frac{\delta \mathbf{B}_{\perp}}{B_{0}}\right) \cdot B_{0} \nabla_{X} \int\left(v_{\|}^{2} F_{0} 2 \pi d v_{\|} d \mu\right) \\
& =-q\left(\frac{\delta \mathbf{B}_{\perp}}{B_{0}}\right) \cdot B_{0} \nabla_{X}\left[\frac{1}{B} \int\left(m v_{\|}^{2} F_{0} d \mathbf{v}\right)\right] \\
& =-q \delta \mathbf{B}_{\perp} \cdot \nabla_{X}\left(\frac{p_{\| 0}}{m B_{0}}\right) \tag{400}
\end{align*}
$$

where $p_{\| 0}=\int m v_{\|}^{2} F_{0} d \mathbf{v}$. Similarly, the term $-q \int d \mathbf{v} v_{\|} \mathbf{v}_{D} \cdot \nabla_{X} \delta f$ can be written as the gradient of moments of δf. Let us work on this. The drift \mathbf{v}_{D} is given by

$$
\begin{equation*}
\mathbf{v}_{D}=\frac{B_{0} \frac{v_{\|}}{\Omega} \nabla \times \mathbf{b}}{B_{\|}^{\star}} v_{\|}+\frac{\mu}{\Omega B_{\|}^{\star}} \mathbf{B}_{0} \times \nabla B_{0} . \tag{401}
\end{equation*}
$$

where $B_{\|}^{\star}=B_{0}\left(1+\frac{v_{\|}}{\Omega} \mathbf{b} \cdot \nabla \times \mathbf{b}\right)$ (refer to my another notes). Using $\mathbf{b} \cdot \nabla \times \mathbf{b} \approx 0$, we obtain $B_{\|}^{\star} \approx B$. Then \mathbf{v}_{D} is written

$$
\mathbf{v}_{D}=\frac{v_{\|}^{2}}{\Omega} \nabla \times \mathbf{b}+\frac{\mu}{\Omega} \mathbf{b} \times \nabla B_{0} .
$$

Using this and $d \mathbf{v}=2 \pi B_{0} d v_{\|} d \mu$, the term $-q \int d \mathbf{v} v_{\|} \mathbf{v}_{D} \cdot \nabla_{X} \delta f$ is written as

$$
\begin{align*}
-q \int d \mathbf{v} v_{\|} \mathbf{v}_{D} \cdot \nabla_{X} \delta f= & -q \int 2 \pi B_{0} d v_{\|} d \mu v_{\|}\left(\frac{v_{\|}^{2}}{\Omega} \nabla \times \mathbf{b}+\frac{\mu}{\Omega} \mathbf{b} \times \nabla B_{0}\right) \cdot \nabla_{X} \delta f \\
= & -q 2 \pi B_{0} \frac{1}{\Omega}(\nabla \times \mathbf{b}) \cdot \nabla_{X} \int v_{\|}^{3} \delta f d v_{\|} d \mu-q 2 \pi B_{0} \frac{1}{\Omega}\left(\mathbf{b} \times \nabla B_{0}\right) \cdot \nabla_{X} \int \\
& v_{\|} \mu \delta f d v_{\|} d \mu \\
= & -q B_{0} \frac{1}{\Omega}(\nabla \times \mathbf{b}) \cdot \nabla_{X}\left(\frac{1}{B_{0}} \int v_{\|}^{3} \delta f d \mathbf{v}\right)-q B_{0} \frac{1}{\Omega}\left(\mathbf{b} \times \nabla B_{0}\right) \cdot \nabla_{X}\left(\frac{1}{B_{0}} \int\right. \\
& \left.v_{\|} \mu \delta f d \mathbf{v}\right) \\
= & -m(\nabla \times \mathbf{b}) \cdot \nabla_{X}\left(\frac{1}{B_{0}} \int v_{\|}^{3} \delta f d \mathbf{v}\right)-m\left(\mathbf{b} \times \nabla B_{0}\right) \cdot \nabla_{X}\left(\frac{1}{B_{0}} \int v_{\|} \mu \delta f d \mathbf{v}\right) \tag{402}
\end{align*}
$$

which are the third order moments of δf and may be neglect-able (a guess, not verified). Using the above results, the linear parallel momentum equation is finally written

$$
\begin{align*}
\frac{\partial \delta j_{\|}}{\partial t}= & \frac{e^{2} n_{e 0}}{m} \delta E_{\|}+e B_{0} \mathbf{b} \cdot \nabla_{X}\left(\frac{\delta p_{\|}}{m B_{0}}\right)+e\left(\mathbf{b} \cdot \nabla B_{0}\right) \frac{\delta p_{\perp}}{m B_{0}} \\
& +e \delta \mathbf{B}_{\perp} \cdot \nabla_{X}\left(\frac{p_{\| 0}}{m B_{0}}\right)+e\left(\frac{\delta \mathbf{B}_{\perp}}{B_{0}}\right) \cdot\left(\nabla B_{0}\right) \frac{p_{\perp 0}}{m B_{0}} . \\
& -m(\nabla \times \mathbf{b}) \cdot \nabla_{X}\left(\frac{1}{B_{0}} \int v_{\|}^{3} \delta f d \mathbf{v}\right)-m\left(\mathbf{b} \times \nabla B_{0}\right) \cdot \nabla_{X}\left(\frac{1}{B_{0}} \int v_{\|} \mu \delta f d \mathbf{v}\right) \tag{403}
\end{align*}
$$

Define

$$
\begin{equation*}
\mathbf{D}_{0}=\nabla\left(\frac{p_{\| 0}}{m B_{0}}\right)+\frac{\nabla B_{0}}{B_{0}} \frac{p_{\perp 0}}{m B_{0}} \tag{404}
\end{equation*}
$$

which, for the isotropic case $\left(p_{\| 0}=p_{\perp 0}=p_{0}\right)$, is simplified to

$$
\begin{equation*}
\mathbf{D}_{0}=\frac{\nabla p_{0}}{m B_{0}} \tag{405}
\end{equation*}
$$

then Eq. (403) is written as

$$
\begin{align*}
\frac{\partial \delta j_{\|}}{\partial t} & =\frac{e^{2} n_{0}}{m} \delta E_{\|}+e \delta \mathbf{B}_{\perp} \cdot \mathbf{D}_{0} \\
& +e B_{0} \mathbf{b} \cdot \nabla_{X}\left(\frac{\delta p_{\|}}{m B_{0}}\right)+e\left(\mathbf{b} \cdot \nabla B_{0}\right) \frac{\delta p_{\perp}}{m B_{0}} \\
& -m(\nabla \times \mathbf{b}) \cdot \nabla_{X}\left(\frac{1}{B_{0}} \int v_{\|}^{3} \delta f d \mathbf{v}\right)-m\left(\mathbf{b} \times \nabla B_{0}\right) \cdot \nabla_{X}\left(\frac{1}{B_{0}} \int v_{\|} \mu \delta f d \mathbf{v}\right) \tag{406}
\end{align*}
$$

I. 4 Special case in uniform magnetic field

In the case of uniform magnetic field, the parallel momentum equation (403) is written as

$$
\begin{equation*}
\frac{\partial \delta j_{\|}}{\partial t}=\frac{q}{m} q E_{\|} n_{e 0}-q \mathbf{e}_{\|} \cdot \nabla_{X}\left(\delta p_{\|}\right)-q \frac{\delta \mathbf{B}_{\perp}}{B_{0}} \cdot \nabla_{X} p_{\| 0} . \tag{407}
\end{equation*}
$$

I. 5 Electron perpendicular flow

Using the gyrokinetic theory and taking the drift-kinetic limit, the perturbed perpendicular electron flow, $\delta \mathbf{V}_{e \perp}$, is written (see Sec. G or Appendix in Yang Chen's paper[2])

$$
\begin{equation*}
n_{e 0} \delta \mathbf{V}_{e \perp}=\underbrace{\frac{n_{e 0}}{B_{0}} \delta \mathbf{E} \times \mathbf{b}}_{E \times B \text { flow }}-\underbrace{\frac{1}{e B_{0}} \mathbf{b} \times \nabla \delta p_{\perp e}}_{\text {diamagneticflow }} \tag{408}
\end{equation*}
$$

where $n_{e 0}$ is the equilibrium electron number density, $\delta p_{e \perp}$ is the perturbed perpendicular pressure of electrons.

I.5.1 Drift kinetic equation

Drift kinetic equation is written

$$
\begin{equation*}
\frac{\partial f}{\partial t}+\left(v_{\|} \tilde{\mathbf{b}}+\mathbf{v}_{D}+\frac{\delta \mathbf{E} \times \mathbf{b}}{B_{0}}\right) \cdot \nabla f+\left(-\frac{e}{m} \delta E_{\|}-\mu \tilde{\mathbf{b}} \cdot \nabla B\right) \frac{\partial f}{\partial v_{\|}}=0 \tag{409}
\end{equation*}
$$

where $f=f\left(\mathbf{x}, \mu, v_{\|}, t\right), \mu=m v_{\perp}^{2} / B_{0}$ is the magnetic moment, $\tilde{\mathbf{b}}=\mathbf{b}+\delta \mathbf{B}_{\perp} / B_{0}, \mathbf{b}=\mathbf{B}_{0} / B_{0}$ is the unit vector along the equilibrium magnetic field, $\mathbf{v}_{D}=\mathbf{v}_{D}\left(\mathbf{x}, \mu, v_{\|}\right)$is the guiding-center drift in the equilibrium magnetic field. $\delta \mathbf{E}$ and $\delta \mathbf{B}$ are the perturbed electric field and magnetic field, respectively.

I.5.2 Parallel momentum equation

Multiplying the drift kinetic equation () by $v_{\|}$and then integrating over velocity space, we obtain

$$
\begin{equation*}
\int \frac{\partial f_{e} v_{\|}}{\partial t} d \mathbf{v}+\int v_{\|}\left(v_{\|} \tilde{\mathbf{b}}+\mathbf{v}_{D}+\frac{\delta \mathbf{E} \times \mathbf{b}}{B_{0}}\right) \cdot \nabla f_{e} d \mathbf{v}+\int v_{\|}\left(-\frac{e}{m} \delta E_{\|}-\mu \tilde{\mathbf{b}} \cdot \nabla B\right) \frac{\partial f_{e}}{\partial v_{\|}} d \mathbf{v}=0 \tag{410}
\end{equation*}
$$

which can be written as

$$
\begin{equation*}
\frac{\partial J_{\| e}}{\partial t}+\int v_{\|}\left(v_{\|} \tilde{\mathbf{b}}+\mathbf{v}_{D}+\frac{\delta \mathbf{E} \times \mathbf{e}_{\|}}{B_{0}}\right) \cdot \nabla f_{e} d \mathbf{v}+\int v_{\|}\left(-\frac{e}{m} \delta E_{\|}-\mu \tilde{\mathbf{b}} \cdot \nabla B\right) \frac{\partial f_{e}}{\partial v_{\|}} d \mathbf{v}=0 \tag{411}
\end{equation*}
$$

Using $d \mathbf{v}=B^{-1} 2 \pi m d v_{\|} d \mu$, the last term on the RHS of the above equation is written

$$
\begin{align*}
& \iint v_{\|}\left(-\frac{e}{m} \delta E_{\|}-\mu \tilde{\mathbf{b}} \cdot \nabla B\right) \frac{\partial f_{e}}{\partial v_{\|}} d \mathbf{v} \\
& =\iint v_{\|}\left(-\frac{e}{m} \delta E_{\|}-\mu \tilde{\mathbf{b}} \cdot \nabla B\right) \frac{\partial f_{e}}{\partial v_{\|}} 2 \pi \frac{B}{m} d v_{\|} d \mu \\
& =-\frac{e}{m} \delta E_{\|} 2 \pi \frac{B}{m} \iint v_{\|} \frac{\partial f_{e}}{\partial v_{\|}} d v_{\|} d \mu-(\tilde{\mathbf{b}} \cdot \nabla B) 2 \pi \frac{B}{m} \int \mu \int v_{\|} \frac{\partial f_{e}}{\partial v_{\|}} d v_{\|} d \mu \\
& =-\frac{e}{m} \delta E_{\|} 2 \pi \frac{B}{m} \int\left(\left.v_{\|} f_{e}\right|_{-\infty} ^{+\infty}-\int f_{e} d v_{\|}\right) d \mu-(\tilde{\mathbf{b}} \cdot \nabla B) 2 \pi \frac{B}{m} \int \mu\left(\left.v_{\|} f_{e}\right|_{-\infty} ^{+\infty}-\int f_{e} d v_{\|}\right) d \mu \\
& =\frac{e}{m} \delta E_{\|} 2 \pi \frac{B}{m} \iint f_{e} d v_{\|} d \mu+(\tilde{\mathbf{b}} \cdot \nabla B) 2 \pi \frac{B}{m} \int \mu \int f_{e} d v_{\|} d \mu \\
& =\frac{e}{m} \delta E_{\|} n_{e}+\iint \mu(\tilde{\mathbf{b}} \cdot \nabla B) f_{e} d \mathbf{v} \tag{412}\\
& \approx \frac{e}{m} \delta E_{\|} n_{e}
\end{align*}
$$

$$
\begin{aligned}
& \iint v_{\|}\left(v_{\|} \tilde{\mathbf{b}}\right) \cdot \nabla f_{e} d \mathbf{v} \\
& =\iint \tilde{\mathbf{b}} \cdot \nabla\left(v_{\|}^{2} f_{e}\right) d \mathbf{v} \\
& =\iint \tilde{\mathbf{b}} \cdot \nabla\left(v_{\|}^{2} f_{e}\right) 2 \pi \frac{B}{m} d v_{\|} d \mu
\end{aligned}
$$

$$
\begin{align*}
& =\tilde{\mathbf{b}} \cdot \nabla\left(\iint v_{\|}^{2} f e_{e} 2 \pi \frac{1}{m} d v_{\|} d \mu\right) B_{0} \\
& =\tilde{\mathbf{b}} \cdot \nabla\left(\frac{p_{\|}}{B_{0}}\right) B_{0} \\
& =\tilde{\mathbf{b}} \cdot \nabla\left(\frac{p_{\| 0}+\delta p_{\|}}{B_{0}}\right) B_{0} \\
& =\tilde{\mathbf{b}} \cdot \nabla\left(\frac{p_{\| 0}}{B_{0}}\right) B_{0}+\tilde{\mathbf{b}} \cdot \nabla\left(\frac{\delta p_{\|}}{B_{0}}\right) B_{0} \\
& \approx \mathbf{b} \cdot \nabla\left(\frac{p_{\| 0}}{B_{0}}\right) B_{0}+\frac{\delta \mathbf{B}_{\perp}}{B_{0}} \cdot \nabla\left(\frac{p_{\| 0}}{B_{0}}\right) B_{0}+\mathbf{b} \cdot \nabla\left(\frac{\delta p_{\|}}{B_{0}}\right) B_{0} \\
& \approx \mathbf{b} \cdot \nabla\left(p_{\| 0}\right)+\frac{\delta \mathbf{B}_{\perp}}{B_{0}} \cdot \nabla\left(p_{\| 0}\right)+\mathbf{b} \cdot \nabla\left(\delta p_{\|}\right) \tag{413}\\
& =\frac{\delta \mathbf{B}_{\perp}}{B_{0}} \cdot \nabla\left(p_{\| 0}\right)+\mathbf{b} \cdot \nabla\left(\delta p_{\|}\right)
\end{align*}
$$

where use has been made of $\mathbf{b} \cdot \nabla p_{\| 0}=0$.

$$
\begin{equation*}
\frac{\partial \delta J_{e \|}}{\partial t}=-\frac{e}{m} \delta E_{\|} n_{e}-\frac{\delta \mathbf{B}_{\perp}}{B_{0}} \cdot \nabla\left(p_{\| 0}\right)-\mathbf{b} \cdot \nabla\left(\delta p_{\|}\right) \tag{414}
\end{equation*}
$$

Using Eq. () in Eq. (), we obtain

$$
\begin{equation*}
\mu_{0} e \frac{e}{m} \delta E_{\|} n_{e}+\mathbf{b} \cdot \nabla \times \nabla \times \delta \mathbf{E}=-\mu_{0} e\left[\frac{\delta \mathbf{B}_{\perp}}{B_{0}} \cdot \nabla\left(p_{e \| 0}\right)+\mathbf{b} \cdot \nabla\left(\delta p_{e \|}\right)\right] \tag{415}
\end{equation*}
$$

$$
\begin{equation*}
-\mathbf{b} \cdot \nabla \times \nabla \times \delta \mathbf{E}=-\mu_{0} e\left(-q \frac{\delta \mathbf{B}_{\perp}}{B_{0}} \cdot \nabla_{X} p_{\| 0}+\frac{q}{m} q E_{\|} n_{e 0}-q \mathbf{e}_{\|} \cdot \nabla_{X}\left(\delta p_{\|}\right)\right) \tag{416}
\end{equation*}
$$

ddddd

$$
\begin{aligned}
& \iint v_{\|}\left(v_{\|} \tilde{\mathbf{b}}+\mathbf{v}_{D}+\frac{\delta \mathbf{E} \times \mathbf{b}}{B_{0}}\right) \cdot \nabla f_{e} d \mathbf{v} \\
& =\iint\left(v_{\|} \tilde{\mathbf{b}}+\mathbf{v}_{D}+\frac{\delta \mathbf{E} \times \mathbf{b}}{B_{0}}\right) \cdot \nabla\left(v_{\|} f_{e}\right) d \mathbf{v} \\
& =\iint v_{\|} \tilde{\mathbf{b}} \cdot \nabla\left(v_{\|} f_{e}\right) d \mathbf{v}+\iint \mathbf{v}_{D} \cdot \nabla\left(v_{\|} f_{e}\right) d \mathbf{v}+\iint \frac{\delta \mathbf{E} \times \mathbf{b}}{B_{0}} \cdot \nabla\left(v_{\|} f_{e}\right) d \mathbf{v} \\
& =\iint \tilde{\mathbf{b}} \cdot \nabla\left(v_{\|}^{2} f_{e}\right) d \mathbf{v}+\iint \mathbf{v}_{D} \cdot \nabla\left(v_{\|} f_{e}\right) d \mathbf{v}+\iint \frac{\delta \mathbf{E} \times \mathbf{b}}{B_{0}} \cdot \nabla\left(v_{\|} f_{e}\right) d \mathbf{v} \\
& =\iint \tilde{\mathbf{b}} \cdot \nabla\left(v_{\|}^{2} f_{e}\right) 2 \pi \frac{B}{m} d v_{\|} d \mu+\iint \mathbf{v}_{D} \cdot \nabla\left(v_{\|} f f_{e}\right) 2 \pi \frac{B}{m} d v_{\|} d \mu+\iint \frac{\delta \mathbf{E} \times \mathbf{b}}{B_{0}} \cdot \nabla\left(v_{\|} f_{e}\right) 2 \pi \frac{B}{m} d v_{\|} d \mu \\
& =\int \tilde{\mathbf{b}} \cdot \nabla\left(v_{\|}^{2} f_{e} 2 \pi \frac{1}{m} d v_{\|} d \mu\right) B+\iint \mathbf{v}_{D} \cdot \nabla\left(v_{\|} f_{e}\right) 2 \pi \frac{B}{m} d v_{\|} d \mu+\iint \frac{\delta \mathbf{E} \times \mathbf{b}}{B_{0}} \cdot \nabla\left(v_{\|} f_{e}\right) 2 \pi \frac{B}{m} d v_{\|} d \mu \\
& =\tilde{\mathbf{b}} \cdot \nabla\left(\frac{p_{\|}}{B}\right) B+\iint \mathbf{v}_{D} \cdot \nabla\left(v_{\|} f f_{e}\right) 2 \pi \frac{B}{m} d v_{\|} d \mu+\iint \frac{\delta \mathbf{E} \times \mathbf{b}}{B_{0}} \cdot \nabla\left(v_{\|} f e\right) 2 \pi \frac{B}{m} d v_{\|} d \mu \\
& =\tilde{\mathbf{b}} \cdot \nabla\left(\frac{p_{\|}}{B}\right) B+\iint \frac{1}{m \Omega} \mathbf{b} \times(\mu \nabla B) \cdot \nabla\left(v_{\|} f e_{e}\right) 2 \pi \frac{B}{m} d v_{\|} d \mu+\iint \frac{1}{m \Omega} \mathbf{b} \times\left(m v_{\|}^{2} \boldsymbol{\kappa}\right) . \\
& \nabla\left(v_{\|} f e\right) 2 \pi \frac{B}{m} d v_{\|} d \mu \\
& +\iint \frac{\delta \mathbf{E} \times \mathbf{b}}{B_{0}} \cdot \nabla\left(v_{\|} f f_{e}\right) 2 \pi \frac{B}{m} d v_{\|} d \mu
\end{aligned}
$$

Appendix J Derivation of Eq. (123), not finished

From the definition of μ, we obtain

$$
\begin{equation*}
\frac{\partial \mu}{\partial \mathbf{x}}=-\frac{v_{\perp}^{2}}{2 B_{0}^{2}} \frac{\partial B_{0}}{\partial \mathbf{x}}+\frac{1}{2 B_{0}} \frac{\partial v_{\perp}^{2}}{\partial \mathbf{x}}=-\frac{\mu}{B_{0}} \frac{\partial B_{0}}{\partial \mathbf{x}}+\frac{\partial \mathbf{v}_{\perp}}{\partial \mathbf{x}} \cdot \frac{\mathbf{v}_{\perp}}{B_{0}} \tag{417}
\end{equation*}
$$

Using

$$
\begin{equation*}
\frac{\partial \mathbf{v}_{\perp}}{\partial \mathbf{x}}=\frac{\partial\left[\mathbf{v}-v_{\|} \mathbf{e}_{\|}\right]}{\partial \mathbf{x}}=-v_{\|} \frac{\partial \mathbf{e}_{\|}}{\partial \mathbf{x}}-\frac{\partial v_{\|}}{\partial \mathbf{x}} \mathbf{e}_{\|}, \tag{418}
\end{equation*}
$$

expression (417) is written as

$$
\begin{equation*}
\frac{\partial \mu}{\partial \mathbf{x}}=-\frac{\mu}{B_{0}} \frac{\partial B_{0}}{\partial \mathbf{x}}-v_{\|} \frac{\partial \mathbf{e}_{\|}}{\partial \mathbf{x}} \cdot \frac{\mathbf{v}_{\perp}}{B_{0}} \tag{419}
\end{equation*}
$$

which agrees with Eq. (10) in Frieman-Chen's paper[3].

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} d \alpha \mathbf{v} \cdot \frac{\partial \mu}{\partial \mathbf{x}} \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} d \alpha \mathbf{v} \cdot\left(-\frac{\mu}{B_{0}} \frac{\partial B_{0}}{\partial \mathbf{x}}-v_{\|} \frac{\partial \mathbf{e}_{\|}}{\partial \mathbf{x}} \cdot \frac{\mathbf{v}_{\perp}}{B_{0}}\right) \\
& =? 0 \\
& \quad \frac{1}{2 \pi} \int_{0}^{2 \pi} d \alpha \mathbf{v} \cdot\left[\mathbf{v} \times \frac{\partial}{\partial \mathbf{x}}\left(\frac{\boldsymbol{e}_{\|}}{\Omega}\right)\right] \cdot \frac{\partial \delta G_{0}}{\partial \mathbf{X}} \\
& \quad=
\end{aligned}
$$

Using the fact that δG_{0} is independent of α, the left-hand side of Eq. (123) is written as

$$
\begin{aligned}
& \left\langle\mathbf{v} \cdot\left[\boldsymbol{\lambda}_{B 1}+\boldsymbol{\lambda}_{B 2}\right] \delta G_{0}\right\rangle_{\alpha} \\
= & \frac{1}{2 \pi} \int_{0}^{2 \pi} d \alpha \mathbf{v} \cdot\left\{\left[\mathbf{v} \times \frac{\partial}{\partial \mathbf{x}}\left(\frac{\boldsymbol{e}_{\|}}{\Omega}\right)\right] \cdot \frac{\partial \delta G_{0}}{\partial \mathbf{X}}+\frac{\partial \mu}{\partial \mathbf{x}} \frac{\partial \delta G_{0}}{\partial \mu}+\frac{\partial \alpha}{\partial \mathbf{x}} \frac{\partial \delta G_{0}}{\partial \alpha}\right\} \\
= & \frac{1}{2 \pi} \int_{0}^{2 \pi} d \alpha \mathbf{v} \cdot\left\{\left[\mathbf{v} \times \frac{\partial}{\partial \mathbf{x}}\left(\frac{\boldsymbol{e}_{\|}}{\Omega}\right)\right] \cdot \frac{\partial \delta G_{0}}{\partial \mathbf{X}}+\frac{\partial \mu}{\partial \mathbf{x}} \frac{\partial \delta G_{0}}{\partial \mu}\right\}
\end{aligned}
$$

Appendix K Modern view of gyrokinetic equation

Frimain-Chen equation was obtained by first transforming to the guiding-center coordinates and then using the classical perturbation expansion for the distribution function (to separate gyro-phase independent part form the gyro-phase dependent one). Note that the guiding-center transform does not involve the perturbed field.

The modern form of the nonlinear gyrokinetic equation is in the total-f form. This way of deriving the gyrokinetic equation is to use coordinate transforms to eliminate gyro-phase dependence of the total distribution function (rather than splitting the distribution function itself) and thus obtain an equation for the resulting gyro-phase independent distribution function (called gyrocenter distribution function). The coordinate transform involves the perturbed fields besides the equilibrium field.

The resulting equation for the gyro-center distribution function is given by (see Baojian's paper)

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}+\dot{\mathbf{X}} \cdot \nabla+\dot{v}_{\|} \frac{\partial}{\partial v_{\|}}\right) f\left(\mathbf{X}, v_{\|}, \mu, t\right)=0 \tag{420}
\end{equation*}
$$

where

$$
\begin{gather*}
\dot{\mathbf{R}}=\mathbf{V}_{D}+\frac{\mathbf{e}_{\|}}{B_{0}} \times\langle\nabla \delta \Phi\rangle_{\alpha}+v_{\|} \frac{\left\langle\delta \mathbf{B}_{\perp}\right\rangle_{\alpha}}{B_{0}} \tag{421}\\
\dot{v}_{\|}=-\frac{1}{m} \frac{\mathbf{B}^{\star}}{B_{\|}^{\star}} \cdot\left(q \nabla\langle\delta \Phi\rangle+\mu \nabla B_{0}\right)-\frac{q}{m} \frac{\partial\left\langle\delta A_{\|}\right\rangle_{\alpha}}{\partial t} . \tag{422}
\end{gather*}
$$

Here the independent variables are gyro-center position \mathbf{X}, magnetic moment μ and parallel velocity $v_{\|}$.

The gyro-phase dependence of the particle distribution can be recovered by the inverse transformation of the transformation used before. The pull-back transformation (inverse gyro-center transform) gives rise to the polarization density term. (phase-space-Lagrangian Lie perturbation method (Littlejohn, 1982a, 1983), I need to read these two papers.).

The learning curve of modern Lie tansform gyrokinetic is steep: the name Lie transform itself is already very scaring.

To derive the Frieman-Chen equation, you just need some patience.

9 About this document

These notes were initially written when I visited University of Colorado at Boulder (Sept.-Nov. 2016), where I worked with Dr. Yang Chen, who said that most gyrokinetic simulations essentially employ Frieman-Chen's nonlinear gyrokinetic equation. Therefore a careful re-derivation of the equation to get familiar to the gyrokinetic orderings and physics included in the model is highly desirable, which motivates me to write this note.

This document was written by using TeXmacs[5], a structured wysiwyw (what you see is what you want) editor for scientists. The HTML version of this document is generated by first converting the TeXmacs file to TeX format and then using htlatex to convert the TeX file to HTML format.

Bibliography

[1] P J Catto. Linearized gyro-kinetics. Plasma Physics, 20(7):719, 1978.
[2] Yang Chen and Scott E. Parker. Particle-in-cell simulation with vlasov ions and drift kinetic electrons. Phys. Plasmas, 16:52305, 2009.
[3] E. A. Frieman and Liu Chen. Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria. Physics of Fluids, 25(3):502-508, 1982.
[4] A. Mishchenko, A. Bottino, A. Biancalani, R. Hatzky, T. Hayward-Schneider, N. Ohana, E. Lanti, S. Brunner, L. Villard, M. Borchardt, R. Kleiber, and A. Könies. Pullback scheme implementation in orb5. Computer Physics Communications, 238:194-202, 2019.
[5] Joris van der Hoeven. Gnu texmacs, a structured wysiwyw (what you see is what you want) editor for scientists. http://www.texmacs.org/, 2007. [Online].

