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Abstract

The nonlinear gyrokinetic equation in Frieman-Chen’s paper[3] is re-derived in this note,
with more details. Numerical implementation of the gyrokinetic model using the PIC method
is also discussed.

1 Introduction

1.1 Gyrokinetic?

It is widely believed that low-frequency (lower than ion cyclotron frequency) electromagnetic
perturbations are more important than high-frequency ones in transporting plasma in tokamaks,
based on some non-conclusive observations and analytical theories. (This assumption can be
verified numerically when we are able to do a full simulation including both low-frequency and
high-frequency perturbations. This kind of verification is not possible at present due to the
difficulties in doing a full simulation.) If we assume that only low-frequency perturbations are
present, the Vlasov equation can be simplified. Specifically, symmetry of the perturbed particle
distribution function in the phase space can be established if we choose suitable coordinates
(independent variables) and split the distribution function in a proper way. The symmetry is
along the so-called gyro-angle α in the guiding-center coordinates (X, µ, v‖, α). In obtaining the
equation for the gyro-angle independent part of the distribution function, we need to average the
coefficients of the equation over the gyro-angle α and thus this model is called “gyrokinetic”.

In deriving the gyrokinetic equation, the perturbed electromagnetic field is assumed to be
known and of low-frequency. To do a kinetic simulation, we need to solve the field equation to
obtain the perturbed electromagnetic field. It is still possible that high frequency modes (e.g.,
compressional Alfven waves and ΩH modes) appear in a gyrokinetic simulation. If the amplitude
of high frequency modes is large, then the simulation is not valid since the gyrokinetic model is
invalid in this case.

1.2 Vlasov equation and guiding-center coordinates

The Vlasov equation in terms of particle coordinates (x,v) is written

∂f

∂t
+ v · ∂f

∂x
+

q

m
(E + v ×B) · ∂f

∂v
= 0, (1)

where f = f(t,x,v) is the particle distribution function, x and v are the location and velocity
of particles. The distribution function f depends on 6 phase-space variables (x,v), in addition
to the time t.
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Choose Cartesian coordinates (x, y, z) for the configuration space x. Consider a simple case
where the electromagnetic field is a time-independent field given by B = B0(x, y, z)ẑ and E = 0.
Let us examine the Vlasov equation in this case and look whether there is any coordinate system
that can reduce the dimensionality of the Vlasov equation.

Describe the velocity space using a right-handed cylindrical coordinates (v⊥, α, v‖), where
v‖ = v · e‖, e‖ = ez is the unit vector along the magnetic field, α is the azimuthal angle of the
velocity relative to ex.

In (x, y, z, v⊥, α, v‖) coordinates, the gradient in velocity space, ∂f/∂v, is written as

∂f

∂v
=

∂f

∂v⊥
e1 +

∂f

∂v‖
ez +

1

v⊥

∂f

∂α
eα, (2)

where e1 = v⊥/|v⊥|, v⊥ = v − (v · ez)ez, and eα = ez × e1. Using Eq. (2), q
m (v ×B) · ∂f∂v is

written as

q

m
(v ×B) · ∂f

∂v
=

q

m
(v⊥e1 ×B) ·

(
∂f

∂v⊥
e1 +

∂f

∂v‖
ez +

1

v⊥

∂f

∂α
eα

)
=

q

m
(v⊥e1 ×B) ·

(
1

v⊥

∂f

∂α
eα

)
=

B0q

m

∂f

∂α
(e1 × ez) · eα

= −Ω

(
∂f

∂α

)
, (3)

where Ω = B0q/m is the gyro-frequency. Then the Vlasov equation (1) is written as

∂f

∂t
+ v · ∂f

∂x
− Ω

∂f

∂α
= 0, (4)

i.e.,
∂f

∂t
+ v‖

∂f

∂z
+ v⊥ cosα

∂f

∂x
+ v⊥ sinα

∂f

∂y
− Ω

∂f

∂α
= 0. (5)

Define the following coordinates transform (guiding-center transform):

x′ = x+ v⊥ sinα
Ω ,

y′ = y − v⊥ cosα
Ω ,

z′ = z,
α′ = α,
v′‖ = v‖,
v′⊥ = v⊥,
t′ = t

its inverse⇒



x = x′ − v′⊥ sinα′

Ω ,

y = y′ + v′⊥ cosα′

Ω ,
z = z′,
α = α′,
v‖ = v′‖,
v⊥ = v⊥′ ,
t = t′

(6)

Then the partial derivative ∂f/∂α′ in the new coordinates (x′, y′, z′, v′‖, v
′
⊥, α

′, t′) is written as

∂f

∂α′

∣∣∣∣
x′,y′,z′,v′‖,v

′
⊥

=
∂f

∂x

∂x

∂α′
+
∂f

∂y

∂y

∂α′
+
∂f

∂α

∂α

∂α′
(7)

Note that in the new coordinate system, Ω depends on α′. Here we assume that the magnetic
field B0 is weakly inhomogeneous. Specifically, we assume that the scale length of B0 is much
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larger than the gyro-radius |v⊥/Ω|. Using this assumption, Ω is then approximately independent
of α′ (this corresponds to neglecting the gradient drift). Then expression (7) is written as

∂f

∂α′

∣∣∣∣
x′,y′,z′,v′‖,v

′
⊥

= −∂f
∂x

1

Ω
v′⊥ cosα′ − ∂f

∂y

1

Ω
v′⊥ sinα′ +

∂f

∂α

= −∂f
∂x

1

Ω
v⊥ cosα− ∂f

∂y

1

Ω
v⊥ sinα+

∂f

∂α
. (8)

Similarly, we get
∂f

∂v′‖
=

∂f

∂v‖
, (9)

and
∂f

∂t′
=
∂f

∂t
. (10)

Use expressions (8), (9), and (10), then Eq. (5) is written, in the new coordinate system, as

∂f

∂t′
+ v′‖

∂f

∂z′
− Ω

(
∂f

∂α′

)
= 0. (11)

(Note that the derivative ∂f/∂α′ in the new coordinate system incorporate three derivatives in
the original coordinate system, namely, ∂f/∂x, ∂f/∂y, and ∂f/∂α.)

Define gyro-phase averaging operator

〈. . .〉 ≡ (2π)−1

∫ 2π

0

(. . .)dα. (12)

Then averaging Eq. (11) over α, we get

∂〈f〉α
∂t′

+ v′‖
∂〈f〉α
∂z′

− (2π)−1

∫ 2π

0

Ω

(
∂f

∂α′

)
dα = 0. (13)

As is assumed above, Ω is approximately independent of α′ and thus Ω in Eq. (13) can be moved
outside of the gyro-angle integration, giving

∂〈f〉α
∂t′

+ v′‖
∂〈f〉α
∂z′

− Ω(2π)−1

∫ 2π

0

(
∂f

∂α′

)
dα = 0. (14)

Peforming the integration, we get

∂〈f〉α
∂t′

+ v′‖
∂〈f〉α
∂z′

− Ω(2π)−1[f(α′ = 2π)− f(α′ = 0)] = 0. (15)

Since α′ = 2π and α′ = 0 correspond to the same phase space location, the corresponding values
of the distribution function must be equal. Then the above equation reduces to

∂〈f〉α
∂t′

+ v′‖
∂〈f〉α
∂z′

= 0, (16)

which is an equation for the gyro-angle independent part of the distribution function.
Next let us investigate whether the guiding-center transform can be made use of to simplify the

kinetic equation for more general cases where we have a (weakly) non-uniform static magnetic
field of varying direction, plus electromagnetic perturbations of low frequency (and of small
amplitude and k‖ρi � 1). And we will include the effect that B0 depends on α′, i.e., grad-B and
curvature drift.
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2 Transform Vlasov equation from particle coordinates to
guiding-center coordinates

Next, we define the guiding-center transform and then we transform the Vlasov equation from the
particle coordinates (x,v) to the guiding-center coordinates, i.e., express the gradient operators
∂/∂x and ∂/∂v in terms of the guiding-center coordinates.

2.1 Guiding-center transformation

In a magnetic field, given a particle location and velocity (x,v), we know how to calculate its
guiding-center location X, i.e.,

X(x,v) = x + v × e‖(x)

Ω(x)
, (17)

where e‖ = B0/B0, Ω = qB0/m, B0 = B0(x) is the equilibrium (macroscopic) magnetic field
at the particle position. We will consider Eq. (17) as a transform and call it guiding-center
transform[1]. Note that the transform (17) involves both position and velocity of particles.

For later use, define ρ ≡ −v × e‖/Ω, which is the vector gyro-radius pointing from the the
guiding-center to the particle position.

Given (x,v), it is straightforward to obtain X by using Eq. (17). On the other hand, the
inverse transform, i.e., given (X,v), to find x, which is in principle not easy because Ω and e‖
depend on x, which usually requires solving for the root of a nonlinear equation. Numerically,
one can use

xn+1 = X− v × e‖(xn)

Ω(xn)
, (18)

as an iteration scheme to compute x, with the initial guess chosen as x0 = X. The equilibrium
magnetic field we will consider has spatial scale length much larger than the thermal gyro radius
ρ. In this case the difference between the values of e‖(x)/Ω(x) and e‖(X)/Ω(X) is small and
thus can be neglected. Then the inverse guiding-center transform can be written as

x ≈ X− v × e‖(X)

Ω(X)
, (19)

which can also be considered as using the iterative scheme (18) to computer x with initial guess
of x being X and stopping at the first iteration. [The difference between equilibrium field values
evaluated at X and x is usually neglected in gyrokinetic theory. Therefore it does not matter
whether the above e‖/Ω is evaluated at x or X. What matters is where the perturbed fields are
evaluated: at x or at X. The values of perturbed fields at x or at X are different and this is
called the finite Larmor radius (FLR) effect, which is almost all that the gyrokinetic theory is
about.]

The inverse guiding-center transformation (19) needs to be performed numerically in gyroki-
netic PIC simulations when we deposit markers to grids or when we calculate the gyro-averaged
field to be used in pushing guiding-centers.

2.2 Choosing velocity coordinates

The guiding-center transformations (17) and (19) involve the particle velocity v. It is the cross
product between v and e‖(x) or e‖(X) that is actually used. Therefore, only the perpendicular
velocity (which is defined by v⊥ = v−v·e‖) enters the transform. A natural choice of coordinates
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for the perpendicular velocity is (v⊥, α), where v⊥ = |v⊥| and α is the azimuthal angle of the
perpendicular velocity in the local perpendicular plane.

The parallel direction is fully determined by B0(x), but there are degrees of freedom in
choosing one of the two perpendicular basis vectors. In order to make the azimuthal angle α
fully defined, we need to choose a way to define one of the two perpendicular directions. In
GEM simulations, one of the perpendicular direction is chosen as the direction perpendicular to
the magnetic surface, which is fully determined at each spatial point. (We need to define the
perpendicular direction at each spatial location to make ∂α/∂x|v defined, which is needed in
the Vlasov differential operators. However, it seems that terms related to ∂α/∂x|v are finally
dropped due to that they are of higher order**check.)

In the following, α will be called the “gyro-angle” . [Note that, in the guiding-center coor-
dinates (X, v‖, v⊥, α), α is a velocity coordinate rather than a spatial coordinate. When trans-
formed back to particle coordinates, α is both a velocity coordinate and a spatial coordinate.
Consider a series of points in terms of guiding-center coordinates (X, v‖, v⊥, α) with (X, v‖, v⊥)
fixed but with α changing. Using the inverse guiding-center transform (19), we know that the
above points form a gyro-ring in space, i.e., α influences both particle velocity and location.]

The gyro-angle is an important variable we will stick to because we need to directly perform
averaging over this variable (with X fixed) in deriving the gyrokinetic equation. We have more
than one choice for the remaining velocity coordinates , such as (v, v‖), or (v, v⊥), or (v‖, v⊥).
In Frieman-Chen’s paper, the velocity coordinates other than α are chosen to be (ε, µ) defined
by

ε = ε(v,x) ≡ v2

2
+
qΦ0(x)

m
, (20)

and

µ = µ(v⊥,x) ≡ v2
⊥

2B0(x)
, (21)

where Φ0(x) is the equilibrium (macroscopic) electrical potential. Choosing µ as one of the
phase space coordinates is nontrivial because it turns out a constant of motion. And this choice
is important in sucessfully getting the final gyrokinetic equation (I need to think about this).

Note that (ε, µ, α) is not sufficient in uniquely determining a velocity vector. An additional
parameter σ = sign(v‖) is needed to determine the sign of v‖ = v · e‖. In the following, the
dependence of the distribution function on σ is often not explicitly shown in the variable list
(i.e., σ is hidden/suppressed), which, however, does not mean that the distribution function is
independent of σ.

Another frequently used velocity coordinates are (µ, v‖, α). In the following, I will derive the
gyrokinetic equation in (ε, µ, α) coordinates. After that, I transform it to (µ, v‖, α) coordinates.

One important thing to note about the above velocity coordinates is that they are defined
relative to the local magnetic field. If the field itself is spatially varying (such as in tokamaks),
the above velocity coordinates are also spatially varying for a fixed velocity v. Specifically, the
following derivatives are nonzero:

∂α

∂x
|v,

∂v⊥
∂x
|v,

∂v‖
∂x
|v,

∂µ

∂x
|v. (22)
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2.3 Summary of the phase-space coordinate transform

The transform from particle variables (x,v) to guiding-center variables (X, ε, µ, α, σ) is given by

X(x,v) = x + v × e‖(x)

Ω(x)

ε(x,v) = |v|2
2 + qΦ0(x)

m

µ(x,v) =
|v−v·e‖(x)|2

2B0(x)

α(x,v) = (angle between v⊥ and local e⊥)
σ(x,v) = sign(v · e‖(x))

(23)

As mentioned above, the dependence of the distribution function on σ will not be explicitly
indicated in the following.

2.4 Distribution function in terms of guiding-center variables

Denote the particle distribution function expressed in particle coordinates (x,v) by fp, and the
same distribution expressed in the guiding-center variables (X, ε, µ, α) by fg. Then

fg(X, ε, µ, α) = fp(x,v), (24)

where (x,v) and (X, ε, µ, α) are related to each other by the guiding-center transform (19).
Equation (24) along the guiding-center transform can be considered as the definition of fg. (If fg
is independent of α, then, using the inverse guiding-center transform, we know that fp is constant
along the spatial gyro-ring with velocity direction changing according to the gyro-phase.)

As is conventionally adopted in multi-variables calculus, both fp and fg are often denoted by
the same symbol, say f . Which set of independent variables (particle variables or guiding-center
variables) are actually assumed is inferred from the context. This is one of the subtle things
needed to note for gyrokinetic theory in particular and for multi-variables calculus in general.
(Sometimes, it may be better to use subscript notation on f to identify which coordinates are
assumed. One example where this distinguishing is important is encountered when we try to
express the diamagnetic flow in terms of fg, which is discussed in Appendix B.)

In practice, fg is often called the guiding-center distribution function whereas fp is called
the particle distribution function. However, they are actually the same distribution function
expressed in different variables. The name “guiding-center distribution function” is misleading
because it may imply that we can count the number of guiding-centers to obtain this distribution
function but this implication is wrong.

2.5 Spatial gradient operator in guiding-center coordinates

Using the chain-rule, the spatial gradient ∂fp/∂x is written

∂fp
∂x
|v =

∂X

∂x
· ∂fg
∂X

+
∂ε

∂x

∂fg
∂ε

+
∂µ

∂x

∂fg
∂µ

+
∂α

∂x

∂fg
∂α

. (25)

From the definition of X, Eq. (17), we obtain

∂X

∂x
= I + v × ∂

∂x

(e‖
Ω

)
, (26)

where I is the unit dyad. From the definition of ε, we obtain

∂ε

∂x
= − q

m
E0, (27)
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where E0 = −∂Φ0/∂x. Using the above results, equation (25) is written as

∂fp
∂x
|v =

∂fg
∂X

+

[
v × ∂

∂x

(e‖
Ω

)]
· ∂fg
∂X
− q

m
E0

∂fg
∂ε

+
∂µ

∂x

∂fg
∂µ

+
∂α

∂x

∂fg
∂α

. (28)

As mentioned above, the partial derivative ∂/∂x is taken by holding v constant. Since B0 is
spatially varying, v⊥ is spatially varying when holding v constant. Therefore ∂µ

∂x and ∂α
∂x are

generally nonzero. The explicit expressions of these two derivatives are needed later in the
derivation of the gyrokinetic equation and is discussed in Appendix F. For notation ease, define

λB1 =

[
v × ∂

∂x

(e‖
Ω

)]
· ∂
∂X

, (29)

and

λB2 =
∂µ

∂x

∂

∂µ
+
∂α

∂x

∂

∂α
, (30)

then expression (28) is written as

∂fp
∂x
|v =

∂fg
∂X

+ [λB1 + λB2]fg −
q

m
E0

∂fg
∂ε

. (31)

2.6 Velocity gradient operator in guiding-center coordinates

Next, consider the form of the velocity gradient ∂f/∂v in terms of the guiding-center variables.
Using the chain rule, ∂f/∂v is written

∂fp
∂v
|x =

∂X

∂v
· ∂fg
∂X

+
∂ε

∂v

∂fg
∂ε

+
∂µ

∂v

∂fg
∂µ

+
∂α

∂v

∂fg
∂α

. (32)

From the definition of X, we obtain

∂X

∂v
=

∂

∂v

(
v × e‖

Ω

)
=

∂v

∂v
× e‖

Ω

= I× e‖
Ω
. (33)

From the definition of ε, we obtain
∂ε

∂v
= v, (34)

From the definition of µ, we obtain
∂µ

∂v
=

v⊥
B0

, (35)

From the definition of α, we obtain

∂α

∂v
=

1

v⊥

(
e‖ ×

v⊥
v⊥

)
=
eα
v⊥
, (36)

where eα is defined by

eα = e‖ ×
v⊥
v⊥

. (37)

Using the above results, expression (32) is written

∂fp
∂v
|x =

I× e‖
Ω

· ∂fg
∂X

+ v
∂fg
∂ε

+
v⊥
B0

∂fg
∂µ

+
eα
v⊥

∂fg
∂α

. (38)
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2.7 Time derivatives in guiding-center coordinates

In terms of the guiding-center variables, the time partial derivative ∂fp/∂t appearing in Vlasov
equation is written as

∂fp
∂t
|x,v =

∂fg
∂t
|X,V +

∂X

∂t
· ∂fg
∂X

+
∂V

∂t
· ∂fg
∂V

, (39)

where V = (ε, µ, α). Here ∂X/∂t and ∂V/∂t are not necessarily zero because the equilibrium
quantities involved in the definition of the guiding-center transformation are in general time
dependent. This time dependence is assumed to be very slow in the gyrokinetic ordering discussed
later. In the following, ∂X/∂t and ∂V/∂t will be dropped, i.e.,

∂fp
∂t
≈ ∂fg

∂t
. (40)

2.8 Final form of Vlasov equation in guiding-center coordinates

Using the above results, the Vlasov equation in guiding-center coordinates is written

∂fg
∂t

+ v ·
[
∂fg
∂X

+ [λB1 + λB2]fg −
q

m
E0

∂fg
∂ε

]
+

q

m
(E + v ×B) ·

(
I× e‖

Ω
· ∂fg
∂X

+ v
∂fg
∂ε

+
v⊥
B0

∂fg
∂µ

+
eα
v⊥

∂fg
∂α

)
= 0 (41)

Using tensor identity a · I× b = a× b, equation (41) is written as

∂fg
∂t

+ v ·
[
∂fg
∂X

+ [λB1 + λB2]fg −
q

m
E0

∂fg
∂ε

]
+

q

m
(E + v ×B)×

(e‖
Ω

)
· ∂fg
∂X

+
q

m
(v ×B) ·

(
eα
v⊥

∂fg
∂α

)
+

q

m
E ·
(

v
∂fg
∂ε

+
v⊥
B0

∂fg
∂µ

+
eα
v⊥

∂fg
∂α

)
= 0, (42)

This is the Vlasov equation in guiding-center coordinates.

3 Perturbed Vlasov equation in guiding-center variables

3.1 Electromagnetic field perturbation

Since the definition of the guiding-center variables (X, ε, µ, α) involves the macroscopic (equilib-
rium) fields B0 and E0, to further simplify Eq. (42), we need to separate electromagnetic field
into equilibrium and perturbation parts. Writing the electromagnetic field as

E = E0 + δE (43)

and
B = B0 + δB, (44)
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then substituting these expressions into equation (42) and moving all terms involving the per-
turbed fields to the right-hand side, we obtain

∂fg
∂t

+ v · ∂fg
∂X

+ v ·
[
[λB1 + λB2]fg −

q

m
E0

∂fg
∂ε

]
+

q

m
(E0 + v ×B0)×

(e‖
Ω

)
· ∂fg
∂X

+
q

m
(v ×B0) ·

(
eα
v⊥

∂fg
∂α

)
+

q

m
E0 ·

(
v
∂fg
∂ε

+
v⊥
B0

∂fg
∂µ

+
eα
v⊥

∂fg
∂α

)
= δRfg, (45)

where δR is defined by

δR = − q

m
(δE + v × δB)×

(e‖
Ω

)
· ∂
∂X
− q

m
(v × δB) ·

(
eα
v⊥

∂

∂α

)
− q

m
δE ·

(
v
∂

∂ε
+

v⊥
B0

∂

∂µ
+
eα
v⊥

∂

∂α

)
. (46)

Next, let us simplify the left-hand side of Eq. (45). Note that

q

m
(v ×B0) ·

(
eα
v⊥

∂fg
∂α

)
=

q

m
(v ×B0) · e‖ × v⊥

v2
⊥

∂fg
∂α

= −Ω
∂fg
∂α

. (47)

Note that
q

m
E0 ×

(e‖
Ω

)
· ∂fg
∂X

= c

(
E0 × e‖
B0

)
· ∂fg
∂X

= vE0 ·
∂fg
∂X

, (48)

where vE0 is defined by vE0 = cE0 × e‖/B0, which is the E0 ×B0 drift. Further note that

q

m

v ×B0

c
×
(e‖

Ω

)
· ∂fg
∂X

= [(v × e‖)× e‖] ·
∂fg
∂X

= [v‖e‖ − v] · ∂fg
∂X

, (49)

which can be combined with v · ∂fg/∂X term, yielding v‖e‖ · ∂fg/∂X.
Using Eqs. (48), (49), and (47), the left-hand side of equation (45) is written as

∂fg
∂t

+ (v‖e‖ + VE0) · ∂fg
∂X

+ v · [λB1 + λB2]fg − Ω
∂fg
∂α

+
q

m
E0 ·

(
v⊥
B0

∂fg
∂µ

+
eα
v⊥

∂fg
∂α

)
≡ Lgfg, (50)

where Lg is often called the unperturbed Vlasov propagator in guiding-center coordinates (X, ε, µ, α).
[Equation (50), corresponds to Eq. (7) in Frieman-Chen’s paper[3]. In Frieman-Chen’s

equation (7), there is a term
q

m
(E−E0) · v ∂

∂ε
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where E is the macroscopic electric field and is in general different from the E0 introduced when
defining the guiding-center transformation. In my derivation E0 is chosen to be equal to the
macroscopic electric field, and thus the above term is zero.]

Using the above results, Eq. (45) is written as

Lgfg = δRfg, (51)

i.e.

∂fg
∂t

+ (v‖e‖ + VE0) · ∂fg
∂X
− Ω

∂fg
∂α

+v ·
[
v × ∂

∂x

(e‖
Ω

)
· ∂fg
∂X

+
∂µ

∂x

∂fg
∂µ

+
∂α

∂x

∂fg
∂α

]
+
q

m
E0 ·

(
v⊥
B0

∂fg
∂µ

+
eα
v⊥

∂fg
∂α

)
= − q

m
(δE + v × δB)×

(e‖
Ω

)
· ∂fg
∂X
− q

m
(v × δB) ·

(
eα
v⊥

∂fg
∂α

)
− q

m
δE ·

(
v
∂fg
∂ε

+
v⊥
B0

∂fg
∂µ

+
eα
v⊥

∂fg
∂α

)
. (52)

It is instructive to consider some special cases of the above complicated equation. Consider the
case that the equilibrium magnetic field B0 is uniform and time-independent, E0 = 0, and the
electrostatic limit δB = 0, then equation (52) is simplified as

∂fg
∂t

+ v‖e‖ ·
∂fg
∂X
− Ω

∂fg
∂α

= − q

m
(δE)×

(e‖
Ω

)
· ∂fg
∂X

(53)

− q

m
δE ·

(
v
∂fg
∂ε

+
v⊥
B0

∂fg
∂µ

+
eα
v⊥

∂fg
∂α

)
(54)

If neglecting the δE perturbation, the above equation reduces to

∂fg
∂t

+ v‖e‖ ·
∂fg
∂X
− Ω

∂fg
∂α

= 0, (55)

which agrees with Eq. (11) discussed in Sec. 1.2.

3.2 Distribution function perturbation

Expand the distribution function fg as

fg = Fg + δFg, (56)

where Fg is assumed to be an equilibrium distribution function, i.e.,

LgFg = 0. (57)

Using Eqs. (56) and (57) in Eq. (51), we obtain an equation for δFg:

LgδFg = δRFg + δRδFg. (58)

11



3.3 Gyrokinetic orderings

To facilitate the simplification of the Vlasov equation in the low-frequency regime, we assume
the following orderings (some of which are roughly based on experiment measure of fluctuations
responsible for tokamak plasma transport, some of which can be invalid in some interesting
cases.) These ordering are often called the standard gyrokinetic orderings.

3.3.1 Assumptions for macroscopic quantities

Define the spatial scale length L0 of equilibrium quantities by L0 ≈ Fg/|∇XFg|. Assume that
L0 is much larger than the thermal gyro-radius ρi ≡ vt/Ω, i.e., λ ≡ ρi/L0 is a small parameter,
where vt =

√
2T/m is the thermal velocity. That is

1

Fg
ρi|∇XFg| ∼ O(λ1). (59)

The equilibrium (macroscopic) E0 ×B0 flow, i.e.,

vE0 = E0 × e‖/B0 = −∇Φ0 × e‖/B0, (60)

is assumed to be weak with
|vE0|
vt
∼ O(λ1), (61)

3.3.2 Assumptions for microscopic quantities

We consider low frequency perturbations with ω/Ω ∼ O(λ1), then

1

δFg

1

Ω

∂δFg
∂t
∼ O(λ1). (62)

We assume that the amplitudes of perturbations are small. Specifically, we assume

δFg
Fg
∼ qδΦ

T
∼ |δB|

B0
∼ O(λ1), (63)

where δΦ is the perturbed scalar potential defined later in Eq. (68).
The perturbation is assumed to have a long wavelength (much longer than ρi) in the parallel

direction
1

δFg
|ρie‖ · ∇XδFg| ∼ O(λ1), (64)

and have a short wavelength comparable to the thermal gyro-radius in the perpendicular direction

1

δFg
|ρi∇X⊥δFg| ∼ O(λ0). (65)

Combining Eq. (64) and (65), we obtain

k‖
k⊥
≈ e‖ · ∇X
∇X⊥

∼ O(λ), (66)

i.e., the parallel wave number is one order smaller than the perpendicular wave-number.]
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In terms of the scalar and vector potentials δΦ and δA, the perturbed electromagnetic field
is written as

δB = ∇x × δA, (67)

and

δE = −∇xδΦ−
∂δA

∂t
. (68)

Then

δE‖ = −∇‖δΦ−
(
∂δA

∂t

)
‖

(69)

δE⊥ = −∇⊥δΦ−
(
∂δA

∂t

)
⊥
, (70)

Using the above orderings, it is ready see that δE‖ is one order smaller than δE⊥, i.e.,

δE‖
δE⊥

= O(λ1). (71)

3.4 Equation for macroscopic distribution function Fg

The evolution of the macroscopic quantity Fg is governed by Eq. (57), i.e.,

LgFg = 0, (72)

where the left-hand side is written as

LgFg =
∂Fg
∂t

+
∂X

∂t
· ∂Fg
∂X

+
∂V

∂t
· ∂Fg
∂V

+ (v‖e‖ + VE0) · ∂Fg
∂X

+ v · [(λB1 + λB2)Fg]− Ω
∂Fg
∂α

+
q

m
E0 ·

(
v⊥
B0

∂Fg
∂µ

+
eα
v⊥

∂Fg
∂α

)
Expand Fg as Fg = Fg0 + Fg1 + . . .., where Fgi ∼ Fg0O(λi). Then, the balance on order O(λ0)
gives

∂Fg0
∂α

= 0 (73)

i.e., Fg0 is independent of the gyro-angle α. The balance on O(λ1) gives

v‖e‖ ·
∂Fg0
∂X

+
q

m
E0 ·

(
v⊥
B0

∂Fg0
∂µ

)
= Ω

∂Fg1
∂α

. (74)

Performing averaging over α,
∫ 2π

0
(. . .)dα, on the above equation and noting that Fg0 is indepen-

dent of α, we obtain(∫ 2π

0

dαv‖e‖

)
· ∂Fg0
∂X

+
q

m

∂Fg0
∂µ

∫ 2π

0

dαE0 ·
(

v⊥
B0

)
=

∫ 2π

0

dαΩ
∂Fg1
∂α

(75)

Note that a quantity A = A(x) that is independent of v will depend on v when transformed
to guiding-center coordinates, i.e., A(x) = Ag(X,v). Therefore Ag depends on gyro-angle α.
However, since ρi/L� 1 for equilibrium quantities, the gyro-angle dependence of the equilibrium
quantities can be neglected. Specifically, e‖, B0 and Ω can be considered to be independent of
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α. As to v‖, we have v‖ = ±
√

2(ε−B0µ). Since B0 is considered independent of α, so does v‖.
Using these results, equation (75) is written

v‖e‖ ·
∂Fg0
∂X

+
q

m

∂Fg0
∂µ

∫ 2π

0

dαE0 ·
(

v⊥
B0

)
= 0. (76)

Using E0 = −∇Φ0, the above equation is written as

v‖e‖ ·
∂Fg0
∂X

+
q

m

∂Fg0
∂µ

∫ 2π

0

dα

(−v⊥ · ∇Φ0

B0

)
= 0, (77)

Note that ∫ 2π

0

dα
1

B0
v⊥ · ∇XΦ0 ≈ 0, (78)

where the error is of O(λ2)Φ0, and thus, accurate to O(λ), the last term of equation (77) is zero.
Then equation (77) is written as

v‖e‖ ·
∂Fg0
∂X

= 0, (79)

which implies that Fg0 is constant along a magnetic field line.

3.5 Equation for perturbed distribution function δFg

Using Fg ≈ Fg0, equation (58) is written as

LgδFg = δRFg0 + δRδFg︸ ︷︷ ︸
Nonlinear Term∼O(λ2)

, (80)

where δRδFg is a nonlinear term which is of order O(λ2) or higher, LgδFg and δRFg0 are linear
terms which are of order O(λ1) or higher. The linear term δRFg0 is given by

δRFg0 = − q

m

(
δE +

v × δB
c

)
×
(e‖

Ω

)
· ∂Fg0
∂X︸ ︷︷ ︸

O(λ2)

− q

m
δE ·

(
v
∂Fg0
∂ε

+
v⊥
B0

∂Fg0
∂µ

)
︸ ︷︷ ︸

O(λ1)

, (81)

In obtaining (81), use has been made of ∂Fg0/∂α = 0. Another linear term LgδFg is written as

LgδFg =
∂δFg
∂t

+ (v‖e‖ + VE0) · ∂δFg
∂X

+ v · [λB1 + λB2]δFg − Ω
∂δFg
∂α︸ ︷︷ ︸

O(λ1)

+
q

m
E0 ·

(
v⊥
B0

∂δFg
∂µ

+
eα
v⊥

∂δFg
∂α

)
, (82)

where Ω∂δFg/∂α is of order O(λ1) and all the other terms are of order O(λ2).
Next, to reduce the complexity of algebra, we consider the easier case in which ∂Fg0/∂µ = 0.

3.5.1 Balance on order O(λ1): adiabatic response

The balance between the leading terms (terms of O(λ)) in Eq. (80) requires that

Ω
∂δFa
∂α

=
q

m
δE ·

(
v
∂Fg0
∂ε

)
, (83)
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where δFa is a unknown distribution function to be solved from the above equation. It is ready
to verify that

δFa =
q

m
δΦ

∂Fg0
∂ε

, (84)

is a solution to the above equation, accurate to O(λ). [Proof: Substitute expression (84) into
the left-hand side of Eq. (83), we obtain

Ω
∂δFa
∂α

= Ω
∂

∂α

(
q

m
δΦ

∂Fg0
∂ε

)
=

q

m

∂Fg0
∂ε

Ω
∂

∂α
(δΦ)

=
q

m

∂Fg0
∂ε

Ω(∇xδΦ) · ∂x

∂α
(85)

Using

∂x

∂α
=

∂

∂α

[
−v × e‖(X)

Ω(X)

]
=

∂

∂α
[−v]× e‖(X)

Ω(X)

= −v⊥
Ω

(86)

Eq. (85) is written as

Ω
∂δFa
∂α

= − q

m

∂Fg0
∂ε

Ω(∇xδΦ) · v⊥
Ω

=
q

m

∂Fg0
∂ε

(
δE +

∂δA

∂t

)
· v⊥ (87)

≈ q

m

∂Fg0
∂ε

(δE) · v⊥, (88)

where terms of O(λ2) have been dropped. Similarly, dropping the parallel electric field term
(which is of O(λ2)) on the right-hand side of Eq. (83), we find it is identical to the right-hand
side of Eq. (88)]

3.5.2 Separate δFg into adiabatic and non-adiabatic part

As is discussed above, the terms of O(λ) can be eliminated by splitting a so-called adiabatic term
form δFg. Specifically, write δFg as

δFg = δFa + δG, (89)

where δFa is given by (84), i.e.,

δFa =
q

m
δΦ

∂Fg0
∂ε

, (90)

which depends on the gyro-angle via δΦ and this term is often called adiabatic term. Plugging
expression (89) into equation (80), we obtain

LgδG = δRFg0 − LgδFa︸ ︷︷ ︸
LinearTerms

+ δRδFg︸ ︷︷ ︸
NonlinearTerms

. (91)
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Next, let us simplify the linear term on the right-hand side, i.e, δRFg0 − LgfδFa, (which should
be of O(λ2) or higher because Ω∂δFa/∂α cancels all the O(λ1) terms in δRFg0).

LgδFa is written

LgδFa =
q

m

∂Fg0
∂ε

LgδΦ +
q

m
δΦLg

∂Fg0
∂ε

≈ q

m

∂Fg0
∂ε

LgδΦ, (92)

where the error is of order O(λ3). In obtaining the above expression, use has been made of
e‖ · ∂Fg0/∂X = 0, ∂Fg0/∂X = O(λ1)Fg0, ∂Fg0/∂α = 0, ∂Fg0/∂µ = 0, and the definition of
λB1 and λB2 given in expressions (29) and (30). The expression (92) involves δΦ operated by
the Vlasov propagator Lg. Since δΦ takes the most simple form when expressed in particle
coordinates (if in guiding-center coordinates, δΦ(x) = δΦ(X − v × e‖/Ω), which depends on
velocity coordinates and thus more complicated), it is convenient to use the Vlasov propagator Lg
expressed in particle coordinates. Transforming Lg back to the particle coordinates, expression
(92) is written

LgδFa =
q

m

∂Fg0
∂ε

[
∂δΦ

∂t
|x,v + v · ∇xδΦ +

q

m
(E0 + v ×B0) · ∂Φ

∂v
|x
]

=
q

m

∂Fg0
∂ε

[
∂δΦ

∂t
|x,v + v · ∇xδΦ

]
(93)

=
q

m

∂Fg0
∂ε

[
∂δΦ

∂t
|x,v + v ·

(
−δE− ∂δA

∂t
|x,v
)]

=
q

m

∂Fg0
∂ε

[
∂δΦ

∂t
|x,v − v · δE− ∂v · δA

∂t
|x,v
]
. (94)

=
q

m

∂Fg0
∂ε

[
∂δΦ

∂t
− v · δE− ∂v · δA

∂t

]
. (95)

Using this and expression (81), δRFg0 − LgδFa is written as

δRFg0 − LgδFa = − q

m
(δE + v × δB)×

(e‖
Ω

)
· ∂Fg0
∂X

− q

m
δE ·

(
v
∂Fg0
∂ε

)
− q

m

∂Fg0
∂ε

[
∂δΦ

∂t
− v · δE− ∂v · δA

∂t

]
= − q

m
(δE + v × δB)×

(e‖
Ω

)
· ∂Fg0
∂X

− q

m

∂Fg0
∂ε

[
∂Φ

∂t
− ∂v · δA

∂t

]
, (96)

where the two terms of O(λ1) (the terms in blue and red) cancel each other, with the remain
terms being all of O(λ2), i.e, the contribution of the adiabatic term cancels the leading order
terms of O(λ1) on the RHS of Eq. (91).

The consequence of this is that, as we will see in Sec. 3.6.1, δG is independent of the gyro-
angle, accurate to order O(λ1). Therefore, separating δF into adiabatic and non-adiabatic parts
also corresponds to separating δF into gyro-angle dependent and gyro-angle independent parts.

3.5.3 Linear term expressed in terms of δΦ and δA

Let us rewrite the linear term (96) in terms of δΦ and δA. The δE + v× δB term in expression
(96) is written as

δE + v × δB = −∇xδΦ−
∂δA

∂t
+ v ×∇x × δA. (97)
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Note that this term needs to be accurate to only O(λ). Then

δE + v × δB ≈ −∇xδΦ + v ×∇x × δA, (98)

where the error is of O(λ2). Using the vector identity v×∇x× δA = (∇δA) ·v− (v · ∇)δA and
noting v is constant for ∇x operator, the above equation is written

δE + v × δB = −∇xδΦ +∇x(δA · v)− (v · ∇x)δA (99)

Note that Eq. (31) indicates that ∇xδΦ ≈ ∇XδΦ, where the error is of O(λ2), then the above
equation is written

δE + v × δB = −∇XδΦ +∇X(δA · v)− (v · ∇X)δA (100)

Further note that the parallel gradients in the above equation are of O(λ2) and thus can be
dropped. Then expression (100) is written

δE + v × δB
= −∇X⊥δΦ +∇X⊥(δA · v)− (v⊥ · ∇X⊥)δA.

= −∇X⊥δL− v⊥ · ∇X⊥δA, (101)

where δL is defined by
δL = δΦ− v · δA. (102)

Using expression (101), equation (96) is written

δRF0 − LgδFa = − q

m

[
(−∇X⊥δL− v⊥ · ∇X⊥δA)× e‖

Ω

]
· ∂Fg0
∂X

− q

m

∂δL

∂t

∂Fg0
∂ε

, (103)

where all terms are of O(λ2).

3.6 Equation for the non-adiabatic part δG

Plugging expression (103) into Eq. (91), we obtain

LgδG = − q

m

[
(−∇X⊥δL− v⊥ · ∇X⊥δA)× e‖

Ω

]
· ∂Fg0
∂X

− q

m

∂δL

∂t

∂Fg0
∂ε

+ δRδFg, (104)

where Lg is given by Eq. (82), i.e.,

Lg =
∂

∂t
+ (v‖e‖ + VE0) · ∂

∂X
+ v · [λB1 + λB2]− Ω

∂

∂α

+
q

m
E0 ·

(
v⊥
B0

∂

∂µ
+
eα
v⊥

∂

∂α

)
, (105)

3.6.1 Expansion of δG

Expand δG as
δG = δG0 + δG1 + . . . ,

where δGi ∼ O(λi+1)Fg0, and note that the right-hand side of Eq. (104) is of O(λ2), then, the
balance on order O(λ1) requires

∂δG0

∂α
= 0, (106)
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i.e., δG0 is gyro-phase independent.
The balance on order O(λ2) requires (for the special case of E0 = 0):

∂δG0

∂t
+ v‖e‖ ·

∂δG0

∂X
+ v · [λB1 + λB2]δG0

= − q

m

[
(−∇X⊥δL− v⊥ · ∇XδA)× e‖

Ω

]
· ∂Fg0
∂X

− q

m

∂δL

∂t

∂Fg0
∂ε

+ δRδFg. (107)

3.6.2 Gyro-averaging

Define the gyro-average operator 〈. . .〉α by

〈h〉α = (2π)−1

∫ 2π

0

hdα, (108)

where h = h(X, α, ε, µ) is an arbitrary function of guiding-center variables. The gyro-averaging
is an integration in the velocity space. [For a field quantity, which is independent of the velocity
in particle coordinates, i.e., h = h(x), it is ready to see that the above averaging is a spatial
averaging over a gyro-ring.]

Gyro-averaging Eq. (107), we obtain

∂δG0

∂t
+

〈
v‖e‖ ·

∂δG0

∂X

〉
+ 〈v · [λB1 + λB2]δG0〉α

= − q

m

[
−∇X⊥〈δL〉α ×

e‖
Ω

]
· ∂Fg0
∂X

− q

m

∂〈δL〉α
∂t

∂Fg0
∂ε

+ 〈δRδFg〉α, (109)

where use has been made of 〈(v⊥ · ∇X)δA〉α ≈ 0, where the error is of order higher than O(λ2).
Note that v‖ = ±

√
2(ε−B0µ). Since B0 is approximately independent of α, so does v‖. Using

this, the first gyro-averaging on the left-hand side of the above equation is written〈
v‖e‖ ·

∂δG0

∂X

〉
α

= 〈v‖e‖〉 ·
∂δG0

∂X
= v‖e‖ ·

∂δG0

∂X
(110)

The second gyro-averaging on the left-hand side of Eq. (109) can be written as

〈v · [λB1 + λB2]δG0〉α = VD · ∇XδG0, (111)

where VD is the magnetic curvature and gradient drift (Eq. (111) is derived in Appendix xx, to
do later). Then Eq. (109) is written[

∂

∂t
+ (v‖e‖ + VD) · ∇X

]
δG0

= − q

m

[
−∇X⊥〈δL〉α ×

e‖
Ω

]
· ∂Fg0
∂X

− q

m

∂〈δL〉α
∂t

∂Fg0
∂ε

+ 〈δRδFg〉α. (112)

3.6.3 Simplification of the nonlinear term

Next, we try to simplify the nonlinear term 〈δRδFg〉α appearing in Eq. (112), which is written
as

〈δRδFg〉α =

〈
δR

(
q

m
δΦ

∂Fg0
∂ε

+ δG0

)〉
α

=

〈
q

m
δR

(
δΦ

∂Fg0
∂ε

)〉
α

+ 〈δRδG0〉α (113)
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First, let us focus on the first term, which can be written as

δR

(
δΦ

∂Fg0
∂ε

)
≈ − q

m

∂Fg0
∂ε

(
δE +

v × δB
c

)
×
(e‖

Ω

)
· ∂δΦ
∂X
− q

m

∂Fg0
∂ε

(
v × δB

c

)
·
(
eα
v⊥

∂δΦ

∂α

)
− q

m

∂Fg0
∂ε

δE ·
(

v
∂δΦ

∂ε
+

v⊥
B0

∂δΦ

∂µ
+
eα
v⊥

∂δΦ

∂α

)
+

q

m
δΦδE · v∂

2Fg0
∂ε2

= − q

m

(
δE +

v × δB
c

)
· ∇vδΦ +

q

m
δΦδE · v∂

2Fg0
∂ε2

=
q

m
δΦδE · v∂

2Fg0
∂ε2

(114)

Using the above results, the nonlinear term 〈δRδF 〉α is written as

〈δRδF 〉α =
q

m

〈
δΦδE · v∂

2Fg0
∂ε2

〉
α

+ 〈δRδG0〉α (115)

Accurate to O(λ2),the first term on the right-hand side of the above is zero. [Proof:〈
δΦδE · v∂

2Fg0
∂ε2

〉
α

=

〈
∂2Fg0
∂ε2

δΦ∇δΦ · v
〉
α

=
∂2Fg0
∂ε2

〈v · ∇(δΦ)2〉α

≈ ∂2Fg0
∂ε2

〈v⊥ · ∇(δΦ)2〉α
≈ 0, (116)

where use has been made of 〈v⊥ · ∇XδΦ〉α ≈ 0, where the error is of O(λ2). Using the above
results, expression (115) is written as

〈δRδFg〉α = 〈δRδG0〉α. (117)

Using the expression of δR given by Eq. (46), the above expression is written as

〈δRδG0〉α = − q

m

〈(
δE +

v × δB
c

)
×
(e‖

Ω

)〉
α

· ∂δG0

∂X

− q

m

∂δG0

∂ε
〈δE · v〉α −

q

m

∂δG0

∂µ

〈
δE · v⊥

B0

〉
α

(118)

where use has been made of ∂δG0/∂α = 0. Using Eq. (101), we obtain

− q

m

〈
(δE + v × δB)×

(e‖
Ω

)〉
α

=
q

m
∇X⊥〈δL〉α ×

e‖
Ω
. (119)

The other two terms in Eq. (118) can be proved to be zero. [Proof:

− q

m

∂δG0

∂ε
〈δE · v〉α =

q

m

∂δG0

∂ε
〈v · ∇xΦ〉α

≈ q

m

∂δG0

∂ε
〈v⊥ · ∇xΦ〉α

≈ q

m

∂δG0

∂ε
〈v⊥ · ∇XΦ〉α

≈ 0 (120)
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− q

m

∂δG0

∂µ

〈
δE · v⊥

B0

〉
α

=
q

m

∂δG0

∂µ

〈
1

B0
v⊥ · ∇xΦ

〉
α

≈ q

m

∂δG0

∂µ

〈
1

B0
v⊥ · ∇XΦ

〉
α

≈ 0 (121)

] Using the above results, the nonlinear term is finally written as

〈δRδG0〉α =
q

m

[
∇X⊥〈δL〉α ×

e‖
Ω

]
· ∇XδG0. (122)

Using this in Eq. (117), we obtain

〈δRδFg〉α =
q

m

[
∇X⊥〈δL〉α ×

e‖
Ω

]
· ∇XδG0, (123)

which is of O(λ2).

3.6.4 Final equation for the non-adiabatic part of the perturbed distribution func-
tion

Using the above results, the gyro-averaged kinetic equation for δG0 is finally written as

∂δG0

∂t
+

v‖e‖ + VD −
q

m
∇X〈δL〉α ×

e‖
Ω︸ ︷︷ ︸

nonlinear

 · ∇XδG0

=
( q
m
∇X〈δL〉α ×

e‖
Ω

)
· ∇XFg0︸ ︷︷ ︸

spatial− drive

− q

m

∂〈δL〉α
∂t

∂Fg0
∂ε︸ ︷︷ ︸

velocit− space− damp

. (124)

where VD is the equilibrium guiding-center drift velocity, 〈. . .〉α is the gyro-phase averaging
operator, δL = δΦ − v · δA, and δG0 = δG0(X, ε, µ, t) is gyro-angle independent and is related
to the perturbed distribution function δFg by

δFg =
q

m
δΦ

∂Fg0
∂ε

+ δG0, (125)

where the first term is called “adiabatic term”, which depends on the gyro-phase α via δΦ.
Equation (124) is the special case (∂Fg0/∂µ|ε = 0) of the Frieman-Chen nonlinear gyrokinetic
equation given in Ref. [3]. Note that the nonlinear terms only appear on the left-hand side of
Eq. (124) and all the terms on the right-hand side are linear. The term

− q

m
∇X〈δL〉α ×

e‖
Ω
, (126)

consists of the perturbed E ×B drift and magnetic fluttering term (refer to Sec. D.3).
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4 Characteristic curves of Frieman-Chen nonlinear gyroki-
netic equation

The Frieman-Chen nonlinear gyrokinetic equation takes the following form:

∂δG0

∂t
+
(
v‖e‖ + VD −

q

m
∇X〈δL〉α ×

e‖
Ω

)
· ∇XδG0

=
( q
m
∇X〈δL〉α ×

e‖
Ω

)
· ∇XFg0 −

q

m

∂〈δL〉α
∂t

∂Fg0
∂ε
− q

m
Sl2, (127)

where Sl2 is due to the µ dependence of Fg0, which is not considered in this note. Dropping Sl2
term, equation (127) agrees with Eq. (124) derived above.

Examining the left-hand side of Eq. (127), it is ready to find that the characteristic curves
of this equation are given by the following equations:

dX

dt
= v‖e‖ + VD −

q

m
∇X〈δL〉α ×

e‖
Ω
, (128)

dε

dt
= 0, (129)

dµ

dt
= 0. (130)

(It is instructive to notice that the kinetic energy ε is conserved along the characteristic curves
while the real kinetic energy of a particle is usually not conserved in a perturbed electromag-
netic field. This may be an indication that Frieman-Chen equation neglects the velocity space
nonlinearity.) For notation ease, we denote the perturbed drift by δVD, i.e.,

δVD = − q

m
∇X〈δL〉α ×

e‖
Ω
, (131)

(this drift can be written as expression (315)), and the total guiding-center velocity by VG, i.e.,

VG =
dX

dt
= v‖e‖ + VD + δVD. (132)

The characteristic curve equations (128)-(130), however, is not in the form that can be readily
evolved numerically because there is no time evolution equation for v‖, which appears explicitly in
Eq. (128). It is ready to realize that the equation for v‖ is implicitly contained in the combination
of the equations for ε and µ. Next, we derive the equation for v‖.

4.1 Time evolution equation for v‖

Using the definition µ = v2
⊥/(2B0), equation (130), i.e., dµ/dt = 0, is written as

d

dt

(
v2
⊥

2B0

)
= 0, (133)

which is written as
1

B

d

dt
(v2
⊥) + v2

⊥
d

dt
(

1

B0
) = 0, (134)

which can be further written as
d

dt
(v2
⊥) = 2µ

d

dt
(B0). (135)
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Using the definition of the characteristics, the right-hand side of the above equation can be
expanded, giving

d

dt
(v2
⊥) = 2µ

(
∂B0

∂t
+
dX

dt
· ∇XB0 +

dε

dt

∂B0

∂ε
+
dµ

dt

∂B0

∂µ

)
, (136)

where dX/dt, dε/dt, and dµ/dt are given by Eq. (128), (129), and (130), respectively. Using
Eqs. (128)-(130) and ∂B0/∂t = 0, equation (136) is reduced to

d

dt
(v2
⊥) = 2µ

(
dX

dt
· ∇XB0

)
. (137)

On the other hand, equation (129), i.e., dε/dt = 0, is written as

d

dt
(v2) = 0, (138)

which can be further written as
d

dt
(v2
‖) = − d

dt
(v2
⊥). (139)

Using Eq. (137), the above equation is written as

d

dt
(v‖) = − µ

v‖

(
dX

dt
· ∇XB0

)
, (140)

which is the equation for the time evolution of v‖. This equation involves dX/dt, i,e., the
guiding-center drift, which is given by Eq. (128). Equation (140) for v‖ can be simplified by
noting that the Frieman-Chen equation is correct only to the second order, O(λ2), and thus the
characteristics need to be correct only to the first order O(λ) and higher order terms can be
dropped. Note that, in the guiding-center drift dX/dt given by Eq. (128), only the v‖e‖ term in
is of order O(λ0), all the other terms are of O(λ1). Using this, accurate to order O(λ1), equation
(140) is written as

d

dt
(v‖) = −µe‖ · ∇XB0, (141)

which is the time evolution equation ready to be used for numerically advancing v‖. Note that
only the mirror force −µe‖ · ∇B appears in Eq. (141) and there is no parallel acceleration
term qv‖δE‖/m in Eq. (141). This is because δE‖ = −b · ∇δΦ − ∂δA‖/∂t is of order O(λ2)
and (**check** the terms involving E‖ are of O(λ3) or higher and thus have been dropped in
deriving Frieman-Chen equation.)

5 Gyrokinetic equation in forms amenable to numerical
computation

In the case of F0(ε, µ, α,X) being isotropic (∂F0/∂µ = 0 and ∂F0/∂α = 0 in guiding-center
coordinates), Frieman-Chen’s gyrokinetic equation (127) is written as[

∂

∂t
+ (v‖e‖ + VD + δVD) · ∇X

]
δG0

= −δVD · ∇XF0−
q

m

∂〈δL〉α
∂t

∂F0

∂ε
, (142)
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where δG0 is the gyro-phase independent part of the perturbed distribution δF , and is related
to δF by

δF =
q

m
δΦ

∂F0

∂ε
+ δG0, (143)

where the first term is called “the adiabatic term”, which depends on gyro-phase α via δΦ. In
Eq. (142), δL = δΦ− v · δA.

5.1 Eliminate ∂〈δφ〉α/∂t term on the right-hand side of Eq. (142)

Note that the coefficient before ∂F0/∂ε in Eq. (142) involves the time derivative of 〈δφ〉α, which
is problematic if treated by using explicit finite difference in particle simulations (I test the
algorithm that treats this term by implicit scheme, the result roughly agrees with the standard
method discussed in Sec. 7). It turns out that ∂〈δΦ〉α/∂t can be eliminated by defining another
gyro-phase independent function δf by

δf =
q

m
〈δΦ〉α

∂F0

∂ε
+ δG0. (144)

Then, in terms of δf , the perturbed distribution function δF is written as

δF =
q

m
(δΦ− 〈δΦ〉α)

∂F0

∂ε
+ δf. (145)

Using Eq. (144) and Eq. (142), the equation for δf is written as[
∂

∂t
+ (v‖e‖ + VD + δVD) · ∇X

]
δf

− q

m

∂F0

∂ε

[
∂

∂t
+ (v‖e‖ + VD + δVD) · ∇X

]
〈δφ〉α

− q

m
〈δφ〉α

[
∂

∂t
+ (v‖e‖ + VD + δVD) · ∇X

]
∂F0

∂ε

= −δVD · ∇XF0 −
q

m

∂〈δL〉α
∂t

∂F0

∂ε
(146)

Noting that ∂F0/∂t = 0, e‖ · ∇F0 = 0, ∇F0 ∼ O(λ1)F0, we find that the third line of the above
equation is of order O(λ3) and thus can be dropped. Moving the second line to the right-hand
side and noting that 〈δL〉α = 〈δφ− v · δA〉α, the above equation is written as[

∂

∂t
+ (v‖e‖ + VD + δVD) · ∇X

]
δf

= −δVD · ∇XF0

− q

m

[
−∂〈v · δA〉α

∂t
− (v‖e‖ + VD + δVD) · ∇X〈δΦ〉α

]
∂F0

∂ε
, (147)

where two ∂〈φ〉α/∂t terms cancel each other. Note that the right-hand side of Eq. (147) contains
a nonlinear term δVD · ∇X〈δΦ〉α. This is different from the original Frieman-Chen equation,
where all nonlinear terms appear on the left-hand side. [Equation (147) corresponds to Eq. (A8)
in Yang Chen’s paper[2] (where the first minus on the right-hand side is wrong and should be
replaced with q/m; one q is missing before ∂(v · δA)/∂t in A9).]

The blue term in expression (145) gives “the polarization density” when integrated in the
velocity space (discussed in Sec. 7). The reason for the name “polarization” is that (δΦ−〈δΦ〉α)
is the difference between the local value and the averaged value on a gyro-ring, expressing a kind
of “separation”.
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5.2 Eliminate ∂〈δv·δA〉α/∂t term on the right-hand side of GK equation

Similar to the method of eliminating ∂〈δφ〉α/∂t, we define another gyro-phase independent func-
tion δh by

δh = δf − q

m
〈v · δA〉α

∂F0

∂ε
. (148)

then Eq. (147) is written in terms of δh as[
∂

∂t
+ (v‖e‖ + VD + δVD) · ∇X

]
δh

+
q

m

∂F0

∂ε

[(
∂

∂t
+ v‖e‖ + VD + δVD

)
· ∇X

]
〈v · δA〉α

+
q

m
〈v · δA〉α

[(
∂

∂t
+ v‖e‖ + VD + δVD

)
· ∇X

](
∂F0

∂ε

)
= −δVD · ∇XF0

− q

m

[
−∂〈v · δA〉α

∂t
− (v‖e‖ + VD + δVD) · ∇X〈δΦ〉α

]
∂F0

∂ε
, (149)

Noting that ∂F0/∂t = 0, e‖ · ∇F0 = 0, ∇F0 ∼ O(λ1)F0, we find that the third line of the above
equation is of order O(λ3) and thus can be dropped. Moving the second line to the right-hand
side and noting that 〈δL〉α = 〈δφ− v · δA〉α, the above equation is written as[

∂

∂t
+ (v‖e‖ + VD + δVD) · ∇X

]
δh

= −δVD · ∇XF0

− q

m
[(v‖e‖ + VD + δVD)·∇X(〈v · δA− δΦ〉α)]

∂F0

∂ε
, (150)

where two ∂〈v · δA〉α/∂t terms cancel each other and no time derivatives of the perturbed
fields appear on the right-hand side. Noting that δVD given by Eq. (131) is perpendicular to
∇X〈v · δA− δΦ〉α and thus the blue term in Eq. (150) is zero, then Eq. (150) simplifies to[

∂

∂t
+ (v‖e‖ + VD + δVD) · ∇X

]
δh

= −δVD · ∇XF0

− q

m
[(v‖e‖ + VD) · ∇X〈v · δA− δΦ〉α]

∂F0

∂ε
. (151)

Using VG = v‖e‖ + VD + δVD, equation (150) can also be written as[
∂

∂t
+ VG · ∇X

]
δh

= −δVD · ∇XF0 −
q

m
[VG · ∇X〈v · δA− δΦ〉α]

∂F0

∂ε
. (152)

5.2.1 For special case δA ≈ δA‖e‖
Most gyrokinetic simulations approximate the vector potential as δA ≈ δA‖e‖. Let us simplify
Eq. (151) for this case. Then 〈v · δA〉α is written as

〈v · δA〉α ≈ 〈v‖δA‖〉α. (153)
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Note that in terms of (X, ε, µ, α, σ) coordinates, v‖ is written as

v‖ = σ
√

2ε− 2µB0, (154)

where B0(x) = B0(X + ρ) with ρ = ρ(X, ε, µ, α). Since the scale length of B0 is much larger
than the thermal Larmor radius, B0(x) ≈ B0(X) and hence v‖ of thermal particles can be
approximately considered to be independent of the gyro-angle α. Then v‖ can be taken out of
the gyro-averaging in expression (153), yielding

〈v · δA〉α ≈ v‖〈δA‖〉α. (155)

Using this, the term related to δA in (151) is written as

(v‖e‖ + VD) · ∇X〈v · δA〉α = (v‖e‖ + VD) · ∇X(v‖〈δA‖〉α)

= 〈δA‖〉α(v‖e‖ + VD) · ∇X(v‖) + v‖(v‖e‖ + VD) · ∇X〈δA‖〉α.(156)

Using expression (154), (v‖e‖ + VD) · ∇X(v‖) is written as

(v‖e‖ + VD) · ∇X(v‖) ≈ (v‖e‖) · ∇X(v‖)

= (v‖e‖) · ∇X
(
σ
√

2ε− 2µB0

)
= σ(v‖e‖) · ∇X

(√
2ε− 2µB0

)
= σv‖

−2µe‖ · ∇XB0

2
√

2ε− 2µB0

= v‖
−2µe‖ · ∇XB0

2v‖
= −µe‖ · ∇XB0. (157)

(We can also obtain ∇X(v‖) = −µ(∇B0)/v‖ by using Eq. (285)). Using the above results,
equation (151) is written as[

∂

∂t
+ (v‖e‖ + VD + δVD) · ∇X

]
δh

= −δVD · ∇XF0

− q

m
[−(v‖e‖ + VD) · ∇X〈δΦ〉α]

∂F0

∂ε
,

− q

m
[v‖(v‖e‖ + VD) · ∇X〈δA‖〉α − 〈δA‖〉α(µe‖ · ∇B0)]

∂F0

∂ε
, (158)

which agrees with the so-called p‖ formulation given in GEM code manual (the first line of Eq.
28), which uses p‖ = v‖ + q〈A‖〉α/m as an independent variable.

In simulations, I use Eq. (158) and set δA‖ to zero to get the electrostatic version, rather
than using Eq. (147) as the electrostatic version (the latter contains a nonlinear term on the
right-hand side, which seems strange.)

5.3 Summary of split of the distribution function

In the above, the perturbed part of the distribution function, δF , is split at least three times
in order to (1) simplify the gyrokinetic equation by splitting out the adiabatic response and (2)
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eliminate the time derivatives, ∂δφ/∂t and (3) ∂δA/∂t, on the right-hand. To avoid confusion, I
summarize the split of the distribution function here. The total distribution function F is split
as

F = F0 + δF, (159)

where F0 is the equilibrium distribution function and δF is the perturbed part of the total
distribution function. δF is further split as

δF = δh+
q

m
(δΦ− 〈δΦ〉α)

∂F0

∂ε
+

q

m
〈v · δA〉α

∂F0

∂ε
, (160)

where δh satisfies the gyrokinetic equation (151) or (158). In Eq. (160), the red term gives rise
to the so-called polarization density (discussed in Sec. 7), which explicitly depends on δΦ. This
term is moved to the left-hand side of the Poisson equation and is utilized in solving the Poisson
equation. The blue term also has an explicit dependence on δA, which, however, will cause
numerical problems in particle simulations if it is moved to the left-hand side of the Ampere
equation, giving rise to the so-called “cancellation problem” in gyrokinetic simulations.

5.4 Velocity space moment of q
m
〈v · δA〉α ∂F0

∂ε

Consider the approximation δA ≈ δA‖e‖, then the blue term in Eq. (160) is written as

q

m
〈v‖δA‖〉α

∂F0

∂ε
. (161)

Notice that v‖ can be taken out of the gyro-averaging. Then the above equation is written

q

m
v‖〈δA‖〉α

∂F0

∂ε
. (162)

If we neglect the FLR effect, then the above expression is written

q

m
v‖δA‖

∂F0

∂ε
. (163)

The zeroth order moment (number density) is then written as

δn =
q

m
δA‖

∫
v‖
∂F0

∂ε
dv, (164)

which is zero if F0 is Maxwellian. Next, consider the parallel current carried by distribution
(163), which is written

δj‖ =
q2

m
δA‖

∫
v2
‖
∂F0

∂ε
dv. (165)

If F0 is a Maxwellian distribution given by

F0 = n0

( m

2πT

)3/2

exp

(
−mv

2

2T

)
. (166)

then
∂F0

∂ε
= −m

T
F0. (167)

Then expression (165) is written

δj‖ = −q
2

T
n0

( m

2πT

)3/2

δA‖

∫
v2
‖ exp

(
−mv

2

2T

)
dv. (168)
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Working in the spherical coordinates, then v‖ = v cos θ and dv = v2 sin θdvdθdφ. Then expression
(168) is written

δj‖ = −q
2

T
n0

( m

2πT

)3/2

δA‖

∫
v2 cos2 θ exp

(
−mv

2

2T

)
v2 sin θdvdθdφ

= −q
2

T
n0

( m

2πT

)3/2

δA‖
4π

3

∫
v4 exp

(
−mv

2

2T

)
dv (169)

= −q
2

T
n0

(
1

π

)3/2
2T

m
δA‖

4π

3

∫
x4 exp(−x2)dx

= −q
2

T
n0

(
1

π

)3/2
2T

m
δA‖

4π

3

3
√
π

8

= −q
2

m
n0δA‖. (170)

5.4.1 Parallel Ampere’s Law

−∇2
⊥δA

(n+1)
‖ = µ0(δJ

(n+1)
||i + δJ

(n+1)
||e ). (171)

The parallel currents are given by

δJ
(n+1)
||i = δJ ′||i(δφ

(n), δA
(n)
‖ ) +

∫
(v

(n+1)
‖ )2 q

2
i

mi
〈δA(n+1)

‖ 〉α
∂Fi0
∂ε

dv, (172)

δJ||e = δJ ′||e(δφ
(n), δA

(n)
‖ ) +

∫
(v

(n+1)
‖ )2 q

2
e

me
〈δA(n+1)

‖ 〉α
∂Fe0
∂ε

dv, (173)

where δJ ′‖i and δJ ′‖e is the parallel current carried by the distribution function δh in Eq. (160),

which are updated from the value at the n th time step to the (n + 1) th time step using an
explicit scheme and therefore does not depends on the field at the (n + 1) th step. The blue
terms in Eqs. (172) and (173) depend on the unknown field at the (n+ 1) th step and thus need
to be moved to the left-hand side of Ampere’s law (171) if we want to solve this equation by
direct methods. In this case, equation (171) is written as

−∇2
⊥δA

(n+1)
‖ − µ0

∫
(v

(n+1)
‖ )2 q

2
i

mi
〈δA(n+1)

‖ 〉α
∂Fi0
∂ε

dv

−µ0

∫
(v

(n+1)
‖ )2 q

2
e

me
〈δA(n+1)

‖ 〉α
∂Fe0
∂ε

dv.

= µ0(δJ ′‖i(δφ
(n), δA

(n)
‖ ) + δJ ′||e(δφ

(n), δA
(n)
‖ )) (174)

Then we need to put the blue terms into matrix form. If we put the bule terms into martrix form
by using numerical spatial grid integration (as we do for the polarization density), then there
arises the cancellation propblem (i.e., the two parts of the distribution are evaluated by different
methods,one is grid-based and the other is MC marker based, there is risk that the sum of the
two terms will be inaccurate when the two terms are of opposite signs and large amplitudes, and
the final result amplitude is expected to be much smaller than the amplituded of the two terms).
If we get the matrix form by evaluating it numerically using MC markers (which can avoid the
cancellation problem), the corresponding matrix will depends on markers and thus needs to be
re-constructed and inverted each time-step, which is computationally expensive.

27



Therefore we go back to Eq. (171) and try to solve it using iterative methods. However, it is
found numerically that directly using Eq. (171) as an iterative scheme is usually divergent. To
obtain a convergent iterative scheme, we need to have an approximate form for the blue terms,
which is independent of markers and so that it is easy to construct its matrix, and then subtract
this approximate form from both sides. After doing this, the iterative scheme has better chance
to be convergent. An approximate form is that derived by neglecting the FLR effect given in
Sec. 5.4. Using this, the iterative scheme for solving Eq. (171) is written as

−∇2
⊥δA

(n+1)
‖ − µ0

(
− q

2
i

mi
ni0δA

(n+1)
‖ − q2

e

me
ne0δA

(n+1)
‖

)
= µ0[δJ ′‖i(δφ

(n), δA
(n)
‖ ) + δJ ′||e(δφ

(n), δA
(n)
‖ )]

+µ0

∫
(v

(n+1)
‖ )2 q

2
i

mi
〈δA(n+1)

‖ 〉α
∂Fi0
∂ε

dv

+µ0

∫
(v

(n+1)
‖ )2 q

2
e

me
〈δA(n+1)

‖ 〉α
∂Fe0
∂ε

dv

−µ0

(
− q

2
i

mi
ni0δA

(n+1)
‖ − q2

e

me
ne0δA

(n+1)
‖

)
. (175)

In the drift-kinetic limit (i.e., neglecting the FLR effect), the blue and red terms on the right-hand
side of the above equation cancel each other exactly. Even in this case, it is found numerically
that these terms need to be retained and the blue terms are evaluated using markers. Otherwise,
numerical inaccuracy can give numerical instabilities, which is the so-called cancellation problem.
The explanation for this is as follows. The blue terms are part of the current. The remained part
of the current carried by δh is computed by using Monte-Carlo integration over markers. If the
blue terms are evaluated analytically, rather than using Monte-Carlo integration over markers,
then the cancellation between this analytical part and Monte-Carlo part can have large error
(assume that there are two large contribution that have opposite signs in the two parts) because
the two parts are evaluated using different methods and thus have different accuracy, which
makes the cancellation less accurate.

The blue terms are sometimes called “adiabatic current”. The red terms are approximation
to the “adiabatic current” obtained by neglecting the FLR effect. Because the ion adiabatic
current is less than the electron adiabatic current by a factor of me/mi, its accuracy is not
important, and is approximated by the drift-kinetic limit in GEM. And the cancellation error is
not a problem and hence can be neglected. In this case, equation (175) is simplified as

−∇2
⊥δA
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e
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‖
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(n), δA
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‖ ) + δJ ′||e(δφ

(n), δA
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+µ0

∫
(v
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‖ )2 q
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e

me
〈δA(n+1)

‖ 〉α
∂Fe0
∂ε

dv

−µ0

(
− q2

e

me
ne0δA

(n+1)
‖

)
. (176)

5.5 Split-weight scheme for electrons

The perturbed distribution function is decomposed as given by Eq. (160), i.e.,

δF = δh+
q

m
(δΦ− 〈δΦ〉α)

∂F0

∂ε
+

q

m
〈v · δA〉α

∂F0

∂ε
, (177)
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where the term in blue is the so-called adiabatic response, which depends on the gyro-angle.
Recall that the red term 〈δΦ〉α, which is independent of the gyro-angle, is introduced in order to
eliminate the time derivative ∂〈δΦ〉α/∂t term on the right-hand side of the original Frieman-Chen
gyrokinetic equation.

The so-called generalized split-weight scheme corresponds to going back to the original
Frieman-Chen gyrokinetic equation by introducing another 〈δΦ〉α term with a free small pa-
rameter εg. Specifically, δh in the above is split as

δh = δhs + εg
q

m
〈δΦ〉α

∂F0

∂ε
. (178)

(If εg = 1, then the two 〈δΦ〉α terms in Eq. (177) and (178) cancel each other.) Substituting
this expression into Eq. (152), we obtain the following equation for δhs:[

∂

∂t
+ (v‖e‖ + VD + δVD) · ∇X

]
δhs

+εg
q

m

∂F0

∂ε

[
∂

∂t
+ (v‖e‖ + VD + δVD) · ∇X

]
〈δΦ〉α

+εg
q

m
〈δΦ〉α

[
∂

∂t
+ (v‖e‖ + VD + δVD) · ∇X

]
∂F0

∂ε

= −δVD · ∇XF0

− q

m
[(v‖e‖ + VD + δVD) · ∇X(〈v · δA− δΦ〉α)]

∂F0

∂ε
. (179)

Noting that ∂F0/∂t = 0, e‖ · ∇F0 = 0, ∇F0 ∼ O(λ1)F0, we find that the third line of the above
equation is of order O(λ3) and thus can be dropped. Moving the second line to the right-hand
side, the above equation is written as[

∂

∂t
+ (v‖e‖ + VD + δVD) · ∇X

]
δhs

= −δVD · ∇XF0

− q

m

{
(v‖e‖ + VD + δVD) · ∇X [〈v · δA〉α − 〈δΦ〉α] + εg

[
∂〈δΦ〉α
∂t

+ VG · ∇X〈δΦ〉α
]}

∂F0

∂ε
.(180)

5.5.1 special case of εg = 1

For the special case of εg = 1 (the default and most used case in GEM code, Yang Chen said
εg < 1 cases are sometimes not accurate, so he gave up using it since 2009), equation (180) can
be simplified as: [

∂

∂t
+ (v‖e‖ + VD + δVD) · ∇X

]
δhs

= −δVD · ∇XF0

− q

m

[
VG · ∇X〈v · δA〉α +

∂〈δΦ〉α
∂t

]
∂F0

∂ε
, (181)

where two VG · 〈δΦ〉α terms cancel each other. Because the v‖E‖ term is one of the factors that
make kinetic electron simulations difficult, eliminating VG · 〈δΦ〉α term may be beneficial for
obtaining stable algorithms.
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For εg = 1, δF is written as

δF = δhs + εg
q

m
〈δΦ〉α

∂Fg0
∂ε

+
q

m
(δΦ− 〈δΦ〉α)

∂F0

∂ε
+

q

m
〈v · δA〉α

∂F0

∂ε

= δhs +
q

m
δΦ

∂Fg0
∂ε

+
q

m
〈v · δA〉α

∂F0

∂ε
, (182)

where the adiabatic term will be moved to the left-hand side of the Poisson’s equation. The
descretization of this term is much easier than the polarization density. This term is already in
GEM.

Equation (181) actually goes back to the original Frieman-Chen equation. The only difference
is that q

m 〈v ·δA〉α ∂F0

∂ε is further split from the perturbed distribution function. Considering this,
equation (181) can also be obtained from the original Frieman-Chen equation (142) by writing
δG0 as

δG0 = δhs +
q

m
〈v · δA〉α

∂F0

∂ε
, (183)

In this case, δF is written as

δF = δhs +
q

m
δΦ

∂Fg0
∂ε

+
q

m
〈v · δA〉α

∂F0

∂ε
, (184)

Substituting expression (183) into equation (142), we obtain the following equation for δhs:[
∂

∂t
+ (v‖e‖ + VD + δVD) · ∇X

]
δhs

+
q

m

∂F0

∂ε

[
∂

∂t
+ (v‖e‖ + VD + δVD) · ∇X

]
〈v · δA〉α

+
q

m
〈v · δA〉α

[
∂

∂t
+ (v‖e‖ + VD + δVD) · ∇X

]
∂F0

∂ε

= −δVD · ∇XF0−
q

m

∂〈δΦ− v · δA〉α
∂t

∂F0

∂ε
, (185)

Noting that ∂F0/∂t = 0, e‖ · ∇F0 = 0, ∇F0 ∼ O(λ1)F0, we find that the third line of the above
equation is of order O(λ3) and thus can be dropped. Moving the second line to the right-hand
side, the above equation is written as[

∂

∂t
+ (v‖e‖ + VD + δVD) · ∇X

]
δhs

= −δVD · ∇XF0

− q

m

[
∂〈δΦ〉α
∂t

+ [(v‖e‖ + VD + δVD) · ∇X ]〈v · δA〉α
]
∂F0

∂ε
, (186)

which agrees with Eq. (181).
In GEM, the split weight method is used only for electrons and the ∂〈δΦ〉α/∂t is approximated

by ∂δΦ/∂t and this term is obtained from the vorticity equation (rather than from an implicit
iteration).

5.6 Comments on how to split the distribution function

In particle simulations, the seemingly trivial thing on how to split the distribution function is
often considered to be a big deal. Separating the perturbed part from the equilibrium part is
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considered to be a big deal and got the famous name “δf particle method”, in contrast to the
conventional particle method which is now called full-f particle method. Summarizing the above
result, the total distribution function F is split in the following form:

F = F0 + δF

= F0 + δh+
q

m
(δΦ− 〈δΦ〉α)

∂F0

∂ε
+

q

m
〈v · δA〉α

∂F0

∂ε
, (187)

and only δh is actually evolved by using markers and its moment in the phase-space is evaluated
via Monte-Carlo integration. The blue and red terms in the above expression explicitly depends
on the perturbed field. The velocity integrations of these two terms can be performed analyti-
cally. However, in some cases, the phase space integration of the blue terms must be evaluated
using markers, i.e., using Monte-Carlo method, to avoid the inaccurate cancellation between the
integration of these parts and the integration of δh (the latter is computed using Monte-Carlo
method). When will the inaccurate cancellation is significant depends on the problem being
investigated and thus can only be determined by actual numerical experiments. Many electro-
magnetic particle simulation experiments indicate that the parallel current carried by the blue
term must be evaluated via Monte-Carlo method, otherwise inaccurate cancellation between this
term and δh will give rise to numerical instabilities.

6 Coordinate system and grid in TEK code

In the magnetic coordinates (ψ, θ, φ) used in TEK code, ψ is the normalized poloidal magnetic
flux, which is increasing from the magnetic axis to the plasma boundary, θ is increasing along
the anti-clockwise direction when viewed along ∇φ direction, φ is the toroidal angle of the
right-handed cylindrical coordinates (R,φ, Z). In this convention the Jacobian of the (ψ, θ, φ)
coordinate system, J = (∇ψ · ∇θ × ∇φ) is negative, i.e., (ψ, θ, φ) is a left-handed system.
The field-line-following coordinate system (ψ, θ, α) is also a left-handed system. The coordinate
system (x = ψ, y = α, z = θ) is a right-handed system.

1 2 3

(nth+1) points

mpol-1 mpol

��=2�

0 1 nth¡ 1 nth2

Figure 1: Poloidal grid for equilibrium quantities used in my code and GEM code. My array
index starts from 1 whereas GEM array index starts from 0. Hence mpol=nth+1. nth is denoted
by ntheta in GEM. The array starts at θ = −π and ends at θ = +π (θ = ±π is chosen to be at
the high-field side in both the codes) I do not need to make connection with GEM’s equilibrium
poloidal array because there is no coupling of equilibrium quantities between the code written
by me and the original code in GEM. The coupling happens for the perturbed quanties, whose
poloidal grids need to be consistent. Poloidal grid-points for perturbation are indexed as 0:mpol2
with the index 0 corresponding to θ = −π and the index mpol2 corresponding to θ = +π. Field
equation is solved at 0 : mpol 2−1, and the field at mpol2, i.e., θ = +π, is obtained by inerpolating
the field at θ = −π. mpol2 is determined by mpol2=numproc/ntube. mpol and mpol2 must be
chosen in a way that makes (mpol-1)/mpol2 be an integer.
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1 2 3 n

nt points

n-1

m points
m points

1 2 nt-1 nt

n points

m m+1

Figure 2: Radial grid used in my code. Two radial arrays are used in the code,
radcor 1d array(1:nt) and radcor 1d array2(1:n), respctively corresponding to the nt points
and n points indicated in the figure. Here nt = n + 2m and m is the number of grid points in
one of the two buffer regions (regions in blue color). The index of the two arrays both begin at
1 (rather than 0). In the code n is denoted by nflux2 and nt is denoted by nflux, m is denoted
by points in buffer. In GEM the radial array does no include the buffer regions and the index
starts at 0 and ends at imx. Hence n=imx+1.

1 2 3

(jm+1) points

mtor points

mtor mtor+1

∆φ=
2π

nseg

0 1 jm− 1 jm2

Figure 3: Toroidal grid used in my code and GEM code. My array index starts at 1 whereas
GEM array index starts from 0. The last grid is at φ = 2π/nseq and is indexed as mtor+1 in my
grid system. The last grid point for density and potential arrays in my code is at mtor rather
than mtor+1. GEM array ends at jm. It follows that mtor=jm.

My array index system is bad and GEM array index system is good because my system is not
consistent: sometimes I use 0-based index and sometimes I use 1-based index, sometimes the in-
dex ends at n and sometimes ends at n+1. It is important to know accurately the transformation
between the two systems.

7 Poisson’s equation and polarization density

Poisson’s equation is written as

− ε0∇2δΦ = qiδni + qeδne, (188)

where −ε0∇2δΦ is called the space-charge term. Since we consider modes with k‖ � k⊥, the
space-charge term is approximated as ∇2δΦ ≡ ∇2

⊥δΦ + ∇2
‖δΦ ≈ ∇2

⊥δΦ. Then Eq. (188) is
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written as
− ε0∇2

⊥δΦ = qiδni + qeδne. (189)

This approximation eliminates the parallel plasma oscillation from the system. The perpendicular
plasma oscillations seem to be only partially eliminated in the system consisting of gyrokinetic
ions and drift-kinetic electrons. There are the so-called ΩH modes (also called electrostatic shear
Alfven wave) that appear in the gyrokinetic system which have some similarity with the plasma
oscillations but with a much smaller frequency, ΩH ∼ (k‖/k⊥)(λD/ρs)ωpe.

Using expression (160), the perturbed number density δn is written as

δn =

∫
δFdv

=

∫
δhdv +

∫ [
q

m
(δΦ− 〈δΦ〉α)

∂F0

∂ε

]
dv +

∫ [
q

m
〈v · δA〉α

∂F0

∂ε

]
dv, (190)

where the blue term is approximately zero for isotropic F0 and this term is usually dropped in
simulations that assume isotropic F0 and approximate δA as δA‖e‖. The red term in expression
(190) is the so-called the polarization density np, i.e.,

δnp(x) =

∫
q

m
(δΦ− 〈δΦ〉α)

∂F0

∂ε
dv, (191)

which has an explicit dependence on δΦ and is usually moved to the left hand of Poisson’s
equation when constructing the numerical solver of the Poisson equation, i.e., equation (189) is
written as

− ε0∇2
⊥δΦ− qi

∫
qi
mi

(δΦ− 〈δΦ〉α)
∂Fi0
∂ε

dv = qiδn
′
i + qeδne, (192)

where δn′i = δni − δnpi =
∫
δhidv, which is evaluated by using Monte-Carlo markers. Since

some parts depending on δΦ are moved from the right-hand side to the left-hand side of the field
equation, numerical solvers (for δΦ) based on the left-hand side of Eq. (192) probably behaves
better than the one that is based on the left-hand side of Eq. (189), i.e., −ε0∇2

⊥δΦ.

7.1 Discussion on cancellation scheme

The polarization density is part of the perturbed density that is extracted from the source
term and moved to the left-hand side of the Poisson equation. The polarization density will be
evaluated without using Monte-Carlo markers, whereas the remained density on the right-hand
side will be evaluated using Mote-Carlo markers. The two different methods of evaluating two
parts of the total perturbed density can possibly introduce significant errors if the two terms are
expected to cancel each other and give a small quantity that is much smaller than either of the
two terms. This is one pitfall for PIC simulations that extract some parts from the source term
and move them to the left-hand side. To remedy this, rather than directly moving a part of
the distribution function to the left-hand side, we subtract an (approximate) analytic expression
from both sides of Eq. (189). The analytical expressions on both sides are evaluated based on
grid values of perturbed electromagnetic fields and are independent of makers. All the original
parts of the distribution functions are kept on the right-hand side and are still evaluated by using
markers, which hopefully avoids the possible cancellation problem. This strategy is often called
a cancellation scheme. Since unknown perturbed electromagnetic fields appear on the right-hand
side, iteration is needed to solve the field equation.

Note that two things appear here: What motivates us to move parts of the distribution
function to the left? It is the goal of hopefully making the left-hand side matrix more well-
behaved (such as good condition number, etc.) Why do we need the cancellation scheme?
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Because we want to avoid the numerical inaccuracy that appears when large terms cancels each
other. Note that iteration is needed when the cancellation scheme is used because the right-hand
side explicitly contains unknown electromagnetic fields.

It turns out that the cancellation scheme is not necessary for Eq. (192), but for the field
solver for Ampere’s equation (discussed later), this cancellation scheme is necessary in order to
obtain stable results.

7.2 Adiabatic electron response ** need to check the derivation

Assume that the total electron density satisfies the Boltzmann distribution in the presence of
the perturbed potential, i.e.,

ne = Ne exp

(
−qeδΦ

Te

)
≈ Ne

(
1− qeδΦ

Te

)
, (193)

where Ne is a radial function. Note that this does not that imply the equilibrium density is Ne
(it just implies that the total density is Ne at the location where δΦ = 0, which can still be
different from the equilibrium density).

Further assume that the magnetic surface average of δne = ne − ne0 is zero, i.e.,

〈ne − ne0〉 = 0, (194)

where ne0 is the equilibrium electron density. Using Eq. (193) in the above condition, we get

Ne = ne0
1

1− qe〈δΦ〉
Te

≈ ne0
(

1 +
qe〈δΦ〉
Te

)
. (195)

Then ne in expression (193) is written as

ne = ne0

(
1 +

qe〈δΦ〉
Te

)(
1− qeδΦ

Te

)
≈ ne0

(
1 +

qe〈δΦ〉
Te

− qeδΦ

Te

)
(196)

Then δne = ne − ne0 is written as

δne = −n0e
qe(δΦ− 〈δΦ〉)

Te
. (197)

7.3 Poisson’s equation with adiabatic electron response

Pluging expression (197) into the Poisson equation (192), we get

− ε0∇2
⊥δΦ− qi

∫
qi
mi

(δΦ− 〈δΦ〉α)
∂Fi0
∂ε

dv + n0e
q2
e(δΦ− 〈δΦ〉)

Te
= qiδn

′
i (198)

When solving the Poisson equation, the equation is Fourier expanded in toroidal harmonics and
each harmonic is independent of each other, so that they can be solved independently. For n 6= 0
harmonics, the 〈δΦ〉 terms is zero and thus it is trivial to treat the electron term. Only for
the n = 0 harmonic, the 〈δΦ〉 term is nonzero and needs special treatment. I use the following
method to obtain 〈δΦ〉. First slove the n = 0 harmonic of the following equation

− ε0∇2
⊥δΦ

′ − qi
∫

qi
mi

(δΦ′ − 〈δΦ′〉α)
∂Fi0
∂ε

dv = qiδn
′
i, (199)

(i.e., Eq. (198) with electron term dropped), and then take the magnetic surface average of the
solution δΦ′ to get 〈δΦ′〉. It can be proved that 〈δΦ′〉 is equal to 〈δΦ〉. Then solving Eq. (198)
becomes easier since 〈δΦ〉 term can be moved to the right-hand side and be treated as a known
source term.
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8 Polarization density with the velocity integration per-
formed

Since δΦ is independent of the velocity in the particle coaordinates, the first term (adiabatic
term) in expression (191) is trivial and the velocity integration can be readily performed (assume
F0 is Maxwellian), giving

δnad =

∫
q

m
(δΦ)

∂F0

∂ε
dv.

=
q

m
(δΦ)

∫ (
−m
T
fM

)
dv.

= −qδΦ
T

n0, (200)

which is called adiabatic response. Next, let us perform the gyro-averaging and the velocity
integration of the second term in expression (191), i.e.,

−
∫

q

m
〈δΦ〉α

∂F0

∂ε
dv, (201)

8.1 Gyro-averaging of δΦ in guiding-center coordinates

In order to perform the gyro-averaging of δΦ, we Fourier expand δΦ in space as

δΦ(x) =

∫
δΦk exp(ik · x)

dk

(2π)3
, (202)

and then express x in terms of the guiding center variables (X,v) since the gyro-averaging is
taken by holding X rather than x constant. The guiding-center transformation gives

x = X + ρ(x,v) ≈ X− v × e‖(X)

Ω(X)
. (203)

Using expressions (202) and (203), the gyro-average of δΦ is written as

〈δΦ〉α =

〈∫
δΦk exp(ik · x)

dk

(2π)3

〉
α

=

〈∫
δΦk exp

(
ik ·

(
X− v × e‖(X)

Ω(X)

))
dk

(2π)3

〉
α

=

∫
δΦk exp(ik ·X)

〈
exp

(
−ik · v × e‖(X)

Ω(X)

)〉
α

dk

(2π)3
. (204)

When doing the gyro-averaging, X is hold constant and thus e‖(X) is also constant. Then it
is straightforward to define the gyro-angle α. Let k⊥ define one of the perpendicular direction
ê1, i.e., k⊥ = k⊥ê1. Then another perpendicular basis vector is defined by ê2 = e‖ × ê1. Then
v⊥ is written as v⊥ = v⊥(ê1 cosα + ê2 sinα), which defines the gyro-angle α. Then the blue
expression in Eq. (204) is written as

−ik · v × e‖(X)

Ω(X)
= −ik · v⊥(ê1 cosα+ ê2 sinα)× e‖(X)

Ω(X)

= −ik · v⊥
Ω(X)

(−ê2 cosα+ ê1 sinα)

= −ik⊥v⊥
Ω

sinα. (205)
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Then the gyro-averaging in expression (204) is written as〈
exp

(
−ik · v × e‖(X)

Ω(X)

)〉
α

=

〈
exp

(
−ik⊥v⊥

Ω
sinα

)〉
α

=
1

2π

∫ 2π

0

exp

(
−ik⊥v⊥

Ω
sinα

)
dα

= J0

(
k⊥v⊥

Ω

)
. (206)

where use has been made of the definition of the zeroth Bessel function of the first kind. Then
〈δΦ〉α in expression (204) is written as

〈δΦ〉α =

∫
δΦk exp(ik ·X)J0

(
k⊥v⊥

Ω

)
dk

(2π)3
. (207)

8.2 Gryo-angle integration in particle coordinates

Next, we need to perform the integration in velocity space, which is done by holding x (rather
than X) constant. Therefore, it is convenient to transform back to particle coordinates. Using

X = x + v × e‖(x)

Ω(x) , expression (207) is written as

〈δΦ〉α =

∫
δΦk exp(ik · x)J0

(
k⊥v⊥

Ω

)
exp

(
ik · v × e‖

Ω

) dk

(2π)3
. (208)

Then the velocity integration is written as∫
〈δΦ〉α

∂F0

∂ε
dv

=

∫
δΦk exp(ik · x)

[∫
J0

(
k⊥v⊥

Ω

)
exp

(
ik · v × e‖

Ω

) ∂F0

∂ε
dv

]
dk

(2π)3
. (209)

Similar to Eq. (205), except for now at x rather than X, ik · v × e‖
Ω is written as

ik · v × e‖
Ω

= i
k⊥v⊥

Ω
sinα. (210)

Since this is at x rather than X, k⊥, v⊥, and Ω are different from those appearing in expression
(205). However, since this difference is due to the variation of the equilibrium quantity e‖/Ω in
a Larmor radius, and thus is small and is ignored in the following.

Plugging expression (210) into expression (209) and using dv = v⊥dv⊥dv‖dα, we get∫
〈δΦ〉α

∂F0

∂ε
dv

=

∫
δΦk exp(ik · x)

[∫
J0

(
k⊥v⊥

Ω

)
exp

(
i
k⊥v⊥

Ω
sinα

)
∂F0

∂ε
v⊥dv⊥dv‖dα

]
dk

(2π)3
.(211)

Note that ∂F0/∂ε is independent of the gyro-angle α in terms of guiding-center variables. When
transformed back to particle coordinates, X contained in ∂F0/∂ε will introduce α dependence
via X = x + v × e‖

Ω . This dependence on α is weak since the equilibrium quantities can be
considered constant over a Larmor radius distance evaluated at the thermal velocity. Therefore
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this dependence can be ignored when performing the integration over α, i.e., in terms of particle
coordinates, ∂F0/∂ε is approximately independent of the gyro-angle α. Then the integration
over α in Eq. (211) can be performed, yielding∫

〈δΦ〉α
∂F0

∂ε
dv

=

∫
δΦk exp(ik · x)

∫ ∫
J0

(
k⊥v⊥

Ω

)[∫ 2π

0

exp

(
i
k⊥v⊥

Ω
sinα

)
dα

]
∂F0

∂ε
v⊥dv⊥dv‖

dk

(2π)3

=

∫
δΦk exp(ik · x)

[∫ ∫
J0

(
k⊥v⊥

Ω

)
2πJ0

(
k⊥v⊥

Ω

)
∂F0

∂ε
v⊥dv⊥dv‖

]
dk

(2π)3
, (212)

where again use has been made of the definition of the Bessel function.

8.2.1 The remaining velocity integration can be performed analytically if F0 is
Maxwellian

In order to perform the remaining velocity integration in expression (212), we assume that F0 is
a Maxwellian distribution given by

F0 = fM =
n0(X)

(2πT (X)/m)3/2
exp

( −mv2

2T (X)

)
(213)

=
n0

(2π)3/2v3
t

exp

(−v2

2v2
t

)
, (214)

where vt =
√
T/m, then

∂F0

∂ε
= −m

T
fM . (215)

Again we will ignore the weak dependence of n0(X) and T (X) on v introduced by X = x +
v × e‖/Ω when transformed back to particle coordinates. (For sufficiently large velocity, the
corresponding Larmor radius will be large enough to make the equilibrium undergo substantial
variation. Since the velocity integration limit is to infinite, this will definitely occur. However,
F0 is exponentially decreasing with velocity, making those particles with velocity much larger
than the thermal velocity negligibly few and thus can be neglected.)

Parallel integration Using Eq. (215), the expression in the square brackets of Eq. (212) is
written as

2π

∫ ∫
J2

0

(
k⊥v⊥

Ω

)
∂F0

∂ε
v⊥dv⊥dv‖

= −m
T

n0

(2π)1/2

∫ ∫
J2

0

(
k⊥v⊥

Ω

)
1

v3
t

exp

(
−
v2
‖ + v2

⊥
2v2
t

)
v⊥dv⊥dv‖ (216)

= −m
T

n0

(2π)1/2

∫ ∫
J2

0

(
k⊥v⊥

Ω

)
exp

(
−
v2
‖ + v2

⊥
2

)
v⊥dv⊥dv‖, (217)

where v‖ = v‖/vt, v⊥ = v⊥/vt. Using∫ ∞
−∞

exp

(
−x

2

2

)
dx =

√
2π, (218)
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the integration over v‖ in expression (217) can be performed, yielding

− m

T
n0

∫ ∞
0

J2
0

(
k⊥v⊥

Ω

)
exp

(
−v

2
⊥
2

)
v⊥dv⊥ (219)

Perpendicular integration Using (I verified this by using Sympy)∫ ∞
0

J2
0 (ax) exp

(
−x

2

2

)
xdx = exp(−a2)I0(a2), (220)

where I0(a) is the zeroth modified Bessel function of the first kind, expression (219) is written

− m

T
n0 exp(−b)I0(b) (221)

where b = k2
⊥v

2
t /Ω

2 = k2
⊥ρ

2
t . Then the corresponding density (201) is written as

− q

m

∫
〈δΦ〉α

∂F0

∂ε
dv =

qn0

T

∫
δΦk exp(ik · x) exp(−b)I0(b)

dk

(2π)3
. (222)

8.2.2 Final form of polarization density

In Fourier space, the adiabatic term in expression (200) is written as∫
q

m
(δΦ)

∂F0

∂ε
dv = −qn0

T
δΦ = −qn0

T

∫
δΦk exp(ik · x)

dk

(2π)3
. (223)

Plugging expression (222) and (223) into expression (191), the polarization density np is written
as

np = −qn0

T

∫
δΦk exp(ik · x)[1− exp(−b)I0(b)]

dk

(2π)3
. (224)

Define
Γ0 = exp(−b)I0(b), (225)

then Eq. (224) is written as

np = −qn0

T

∫
δΦk exp(ik · x)[1− Γ0]

dk

(2π)3
, (226)

Expression (226) agrees with the result given in Yang Chen’s notes. Note that the dependence
on species mass enters the formula through the Larmor radius ρt in Γ0.

8.3 Pade approximation

Γ0 defined in Eq. (225) can be approximated by the Pade approximation as

Γ0 ≈
1

1 + b
. (227)

The comparison between the exact value of Γ0 and the above Pade approximation is shown in
Fig. 4.
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Figure 4: Comparison between the exact value of Γ0 = exp(−(k⊥ρ)2)I0((k⊥ρ)2) and the corre-
sponding Pade approximation 1/(1 + (k⊥ρ)2).

Using the Pade approximation (227), the polarization density np in expression (226) can be
written as

np ≈ −qn0

T

∫
δΦk exp(ik · x)

k2
⊥ρ

2

1 + k2
⊥ρ

2

dk

(2π)3
. (228)

(Pade approximate is the “best” approximation of a function by a rational function of given
order – under this technique, the approximant’s power series agrees with the power series of the
function it is approximating.)

8.3.1 Long wavelength approximation of the polarization density

In the long wavelength limit, k⊥ρ� 1, expression (228) can be further approximated as

np ≈ −qn0

T

∫
δΦk exp(ik · x)k2

⊥ρ
2 dk

(2π)3
,

=
qn0

T
ρ2∇2

⊥δΦ. (229)

Then the corresponding term in the Poisson equation is written as

q

ε0
np =

q2n0

ε0T
ρ2∇2

⊥δΦ

=
ρ2

λ2
D

∇2
⊥δΦ, (230)

where λD is the Debye length defined by λ2
D = Tε0/(n0q

2). For typical tokamak plasmas, the
thermal ion gyroradius ρi is much larger than λD. Therefore the term in expression (230) for
ions is much larger than the space charge term ∇2δΦ ≡ ∇2

⊥δΦ +∇2
‖δΦ ≈ ∇2

⊥δΦ in the Poisson
equation. Therefore the space charge term can be neglected in the long wavelength limit.
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Equation (230) also shows that electron polarization density is smaller than the ion polar-
ization density by a factor of ρe/ρi ≈ 1/60. Note that this conclusion is drawn in the long
wavelength limit. For short wavelength, the electron polarization and ion polarization density
can be of similar magnitude (to be discussed later).

8.3.2 Polarization density expressed in terms of Laplacian operator

The polarization density expression (229) is for the long wavelength limit, which partially neglects
FLR effect. Let us go back to the more general expression (228). The Poisson equation is written

− ε0∇2
⊥δΦ = qiδni + qeδne. (231)

Write δni = npi + δn′i, where δnpi is the ion polarization density, then the above expression is
written

− ε0∇2
⊥δΦ− qinpi = qiδn

′
i + qeδne. (232)

Fourier transforming in space, the above equation is written

− ε0k
2
⊥δΦ̂− qin̂pi = qiδn̂

′
i + qeδn̂e, (233)

where n̂pi is the Fourier transformation (in space) of the polarization density npi and similar

meanings for δΦ̂, δn̂′i, and δn̂e. Expression (228) implies that n̂pi is given by

n̂pi = −qini0
Ti

δΦ̂
k2
⊥ρ

2
i

1 + k2
⊥ρ

2
i

. (234)

Using this, equation (233) is written

− ε0k
2
⊥δΦ̂− qi

(
−qini0

Ti

k2
⊥ρ

2
i

1 + k2
⊥ρ

2
i

δΦ̂

)
= qiδn̂

′
i + qeδn̂e, (235)

Multiplying both sides by (1 + k2
⊥ρ

2
i )/ε0, the above equation is written

− (1 + k2
⊥ρ

2
i )k

2
⊥δΦ̂−

qi
ε0

(
−qini0

Ti
(k2
⊥ρ

2
i )δΦ̂

)
=

1

ε0
(1 + k2

⊥ρ
2
i )(qiδn̂

′
i + qeδn̂e). (236)

Next, transforming the above equation back to the real space, we obtain

− (1− ρ2
i∇2
⊥)∇2

⊥δΦ−
qi
ε0

(
qini0
Ti

ρ2
i∇2
⊥δΦ

)
=

1

ε0
(1− ρ2

i∇2
⊥)(qiδn

′
i + qeδne). (237)

Neglecting the Debye shielding term, the above equation is written

−
(
ρ2
i

λ2
Di

∇2
⊥δΦ

)
=

1

ε0
(1− ρ2

i∇2
⊥)(qiδn

′
i + qeδne), (238)

which is the equation actually solved in many gyrokinetic codes, where λ2
Di = ε0Ti/(q

2
i ni0).
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9 Polarization density matrix obtained by numerically in-
tegrating in phase space using grid

In Sec. 8, to evaluate the polarization density, the potential δΦ is Fourier expanded in space
using local Cartesian coordinates, and then the double gyro-angle integration of each harmonic
is expressed as the Bessel function. (It seems that the original motivation of using the Fourier
expansion here is to facilitate analytical treatment and is not designed for numerical use. GEM
code does make use of the local Fourier expansion in its numerical implementation, where the
local perpendicular wave number needs to be estimated numerically, which seems awkward.)

In this section, we avoid using the local Fourier expansion, and directly express the double
gyro-angle integral as linear combination of values of δΦ at spatial grid-points. The polarization
density is given by Eq. (191), i.e.,

np(x) =
q

m

∫
dv

(
(δΦ− 〈δΦ〉α)

∂F0

∂ε

)
. (239)

np = MδΦ (240)

9.1 Direct evaluation of the double gyrophase integration

Define

A(x) = − q

m

∫
dv

(
〈δΦ〉α

∂F0

∂ε

)
. (241)

Using dv = v⊥dv⊥dv‖dα, the above integration is written as

A(x) = − q

m

∫ ∞
−∞

dv‖

∫ ∞
0

v⊥dv⊥
∂F0

∂ε

∫ 2π

0

dα〈δΦ〉α, (242)

where use has been made of the assumption that ∂F0/∂ε is uniform in α in (x, v⊥, v‖, α) coor-
dinates, and thus is moved outside of the α integration. Using the definition of gyro-averaging

(2π)−1
∫ 2π

0
(. . .)dα′, the above integration is written as

A(x) = − q

m

∫ ∞
−∞

dv‖

∫ ∞
0

dv⊥
∂Fi0
∂ε

v⊥

∫ 2π

0

dα

(
1

2π

∫ 2π

0

δΦdα′
)
. (243)

Note that the gyro-averaging is performed in the guiding-center space, i.e., performed by vary-
ing the gyroangle α′ while keeping guiding-center position X, v⊥, and v‖ constant. Using the
definition of δΦg (i.e., its relation with δΦ):

δΦg(X, α
′, v⊥) = δΦ(x), (244)

where the particle location x is computed from the guiding-center location by

x = X + ρ(x,v) ≈ X− v × e‖(X)

Ω(X)
, (245)

then A(x) is written as

A(x)

= − q

m

∫ ∞
−∞

dv‖

∫ ∞
0

dv⊥
∂Fi0
∂ε

v⊥

∫ 2π

0

dα

[
1

2π

∫ 2π

0

δΦ

(
X− v⊥(v⊥, α

′)× e‖(X)

Ω(X)

)
dα′
]

≈ − q

m

∫ ∞
−∞

dv‖

∫ ∞
0

dv⊥
∂Fi0
∂ε

v⊥

∫ 2π

0

dα

 1

N2

N2∑
j=1

δΦ

(
X− v⊥(v⊥, α

′
j)×

e‖(X)

Ω(X)

)
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where v⊥ = v(v⊥, α′j) denotes a perpendicular velocity corresponding to a discrete gyro-angle
α′j .

Next, in order to perform the remaining velocity space integration, transform back to the
particle coordinates (because the velocity integration is performed in the particle coordinates,
i.e., it is performed by keeping the particle coordinate x constant):

A(x) = − q

m

∫ ∞
−∞

dv‖

∫ ∞
0

dv⊥
∂Fi0
∂ε

v⊥

×
∫ 2π

0

dα

 1

N2

N2∑
j=1

δΦ

(
x + v⊥(v⊥, α)× e‖(X)

Ω(X)
− v⊥(v⊥, α

′
j)×

e‖(X)

Ω(X)

)
≈ − q

m

∫ ∞
−∞

dv‖

∫ ∞
0

dv⊥
∂Fi0
∂ε

v⊥

×
∫ 2π

0

dα

 1

N2

N2∑
j=1

δΦ

(
x + v⊥(v⊥, α)× e‖(x)

Ω(x)
− v⊥(v⊥, α

′
j)×

e‖(x)

Ω(x)

)
≈ − q

m

∫ ∞
−∞

dv‖

∫ ∞
0

dv⊥
∂Fi0
∂ε

v⊥

× 2π

N1

N1∑
i=1

1

N2

N2∑
j=1

δΦ

(
x + v⊥(v⊥, αi)×

e‖(x)

Ω(x)
− v⊥(v⊥, α

′
j)×

e‖(x)

Ω(x)

)
. (246)

For notation ease, define

∆ρij = v⊥(v⊥, αi)×
e‖(x)

Ω(x)
− v⊥(v⊥, α

′
j)×

e‖(x)

Ω(x)
, (247)

where ∆ρij is a function of (x, v⊥, αi, α′j). Then Eq. (246) is written as

A(x) = − q

m

∫ ∞
−∞

dv‖

∫ ∞
0

dv⊥
∂Fi0
∂ε

v⊥
2π

N1

N1∑
i=1

1

N2

N2∑
j=1

δΦ(x + ∆ρij). (248)

The guiding-center transform and its inverse involved in the above are illustrated in Fig. 5. Then
the double gyro-angle integral appearing in the polarization density is approximated as∫ 2π

0

dα

(∫ 2π

0

δΦ(x)dα′
)
≈ (2π)2

N1N2

N1∑
i=1

N2∑
j=1

δΦ(xij), (249)

where N1 = 4, N2 = 4 for the case shown in Fig. 5. This gives how to evaluate the double
gyro-angle integration using the discrete values of δΦij .

The spatial points xij appearing in Eq. (249) are not necessarily grid points. Linear inter-
polations are used to express δΦ(xij) as linear combination of values of δΦ at grid-points.

9.2 Performing the parallel velocity integration

Assume that F0 is Maxwellian, then

∂F0

∂ε
= −m

T
fM = −m

T

n0

(2πT/m)3/2
exp

(
−mv2

‖
2T

)
exp

(−mv2
⊥

2T

)
. (250)
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Figure 5: Given a v⊥, then the double gyro-angle integration in Eq. (243) at a particle location
x is evaluated by the following steps: Use the guiding center transform to get guiding-center
locations (four locations are shown in this case, namely Xi with i = 1, 2, 3, 4, corresponding
gyro-angle αi with i = 1, 2, 3, 4; 2.) For each guiding-center location, use the inverse guiding-
center transform to calculate points on the corresponding gyro-ring (four points are shown for
each guiding-center Xi in this case, namely xij with j = 1, 2, 3, 4, corresponding gyro angle α′j
with j = 1, 2, 3, 4.)

Note that ∆ρij is independent of v‖. Then the integration over v‖ in Eq. (248) can be analytically
performed, yielding

A(x) =
q

T

∫ ∞
−∞

dv‖ exp

(
−v2
‖

2

)∫ ∞
0

dv⊥v⊥
n0

(2π)3/2
exp

(−v2
⊥

2

)

× 2π

N1

N1∑
i=1

1

N2

N2∑
j=1

δΦ(x + ∆ρij)

= n0

∫ ∞
0

dv⊥v⊥ exp

(−v2
⊥

2

)
1

N1

N1∑
i=1

1

N2

N2∑
j=1

q

T
δΦ(x + ∆ρij). (251)

where v‖ = v‖/vt, v⊥ = v⊥/vt, vt =
√
T/m, and use has been made of∫ ∞

−∞
exp

(
−x

2

2

)
dx =

√
2π. (252)
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9.3 Toroidal Fourier transform of polarization density in field-aligned
coordinates

In field-aligned coordinates (x, y, z), Fourier expansion of δΦ along y is written

δΦ(x) =

Nt∑
n=−Nt

exp

(
ιn

2π

Ly
y

)
δΦn(x, z), (253)

where ι =
√
−1, Nt is the number of toroidal harmonics included. Use this in Eq. (251), yielding

A(x) = n0

∫ ∞
0

dv⊥v⊥ exp

(−v2
⊥

2

)
× 1

N1

N1∑
i=1

1

N2

N2∑
j=1

[
q

T

Nt∑
n=−Nt

exp

(
ιn

2π

Ly
(y + ∆ρijy)

)
δΦn(x+ ∆ρijx, z + ∆ρijz)

]

= n0

Nt∑
n=−Nt

exp

(
ιn

2π

Ly
y

)∫ ∞
0

dv⊥v⊥ exp

(−v2
⊥

2

)

× 1

N1

N1∑
i=1

1

N2

N2∑
j=1

[
exp

(
ιn

2π

Ly
∆ρijy

)
q

T
δΦn(x+ ∆ρijx, z + ∆ρijz)

]
. (254)

From Eq. (254), the Fourier expansion coefficient of A(x) in y can be identified, which is

An(x, z) = n0

∫ ∞
0

dv⊥v⊥ exp

(−v2
⊥

2

)
× 1

N1

N1∑
i=1

1

N2

N2∑
j=1

[
exp

(
ιn

2π

Ly
∆ρijy

)
q

T
δΦn(x+ ∆ρijx, z + ∆ρijz)

]
. (255)

Let us make the following approximation

δΦn(x+ ∆ρijx, z + ∆ρijz) ≈ δΦn(x+ ∆ρijx, z), (256)

which should be a good approximation since the variation of δΦ along a field line over a distance
of a Larmor radius is small. Then expression (255) is written as

An(x, z) ≈ n0

∫ ∞
0

dv⊥v⊥ exp

(−v2
⊥

2

)
× 1

N1

N1∑
i=1

1

N2

N2∑
j=1

[
exp

(
ιn

2π

Ly
∆ρijy

)
q

T
δΦn(x+ ∆ρijx, z)

]
. (257)

The approximation (256) makes the operator An on δΦn become local in z direction, i.e., it
involves the value of δΦn at a single location z. This makes An(x, z) reduce to a 1D operator on
δΦn in the x direction.
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9.4 Using MC integration, to be continued, not necessary

The integration we try to express is given by

Aijk ≈ 1

Vijk

∫
Vijk

dxnp(x)

=
1

Vijk

∫
Vijk

dx

∫
dv

(
q

m
(δΦ− 〈δΦ〉α)

∂F0

∂ε

)
, (258)

where Aijk is the value of np(x) at a grid-point, which is approximated by the spatial averaging
of np(x) over the cell whose center is the grid-point, Vijk is the volume of the cell. We will use
Monte-Carlo guiding-center markers to compute the above cell average.

A
(1)
ijk = − q

m

1

Vijk

∑
p

∑
α

(
〈δΦ〉α

∂F0

∂ε

1

g

)
= − q

m

1

Vijk

∑
p

〈δΦ〉α
∑
α

(
∂F0

∂ε

1

g

)
Nearest neighbour interpolation

A
(2)
ijk = − q

m

1

Vijk

∑
p

∑
α

(
δΦ

∂F0

∂ε

1

g

)
= − q

m

δΦijk
Vijk

∑
p

∑
α

(
∂F0

∂ε

1

g

)
Later, I found that evaluating the polarization density using grid work well. Therefore there is
no need to evaluate it using MC markers, which is more complicated.

A Implementation of gyrokinetics in particle-in-cell (PIC)
codes

A.1 Monte-Carlo evaluation of distribution function moment at grid-
points

Suppose that the 6D guiding-center phase-space (X,v) is described by (ψ, θ, φ, v‖, α, v⊥) coordi-
nates. The Jacobian of the coordinate system is given by J = Jrv⊥, where Jr = J (ψ, θ) is the
Jacobian of the coordinates (ψ, θ, φ).

Suppose that we sample the 6D phase-space by using a probability function P (ψ, θ, φ, v⊥, α, v‖).
(Then the effecitive probability function used in rejection method is PJrv⊥.). We will sample a
distribution function δfg(X, v⊥, v‖, α) that happens to be independent of the gyro-angle α using
the above markers.

Since there is no indication that some values of α would be more important than others, it
is natural to smaple α using a uniform probability function, i.e., P (X, v⊥, α, v‖) can be chosen
to be independent of α.
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In terms of sampling δfg(X, v⊥, α, v‖), there is no need to specify α because both fg and
marker distribution g = NpP are indepedent of α, and thus the weight δfg/g is also independent
of α. It turns out that sampling α is necessary in simulations. The reason is as follows. The
density needed in solving the field equation is the moement of the particle distribution function
δfp(x, v

′
⊥
, α′, v′‖) at fixed x, and δfp(x, v

′
⊥
, α′, v′‖) is not uniform in α′. [Proof: δfp(x, v

′
⊥
, α′, v′‖)

with only α′ changing corresponds to both X and α changing in (X, v⊥, α, v‖) coordinates, and
thus the corresponding δfg(X, v⊥, α, v‖), which is equal to δfp(x, v

′
⊥
, α′, v′‖), is varying because

δfg is dependent on X and is independent of α.] Therefore α′ needs to be specified in (x, v′
⊥
, α′, v′‖)

coordinates, which can be achieved by specifying α in (X, v⊥, α, v‖) because of α′ = α.

From the perspective of programming, it is ready to understand why α needs to be specified.
When computing density at grid-points, we need to compute particle locations from the guiding-
center locations which requires us to specify the gyro-angle α for each marker.

Markers in guiding-center space (X, v⊥, α, v‖) with fixed (X, v⊥, v‖) but varying α correspond
to markers in particle space with varying locations and varying α′ (marker weights are constant
since marker weights in guiding-center space with only α varying are constant). In the PIC
method of computing the particle density at fixed x, the contribution of each particle marker
to the density is solely determined by the distance of the particle marker to the fixed x (the
gyro-angle α′ has not effect here). Therefore different values of α contributes differently to the
density, and thus the resolution of α matters.

For a marker with coordinators (X, v⊥, v‖, α), where α is the gyro-angle, the corresponding
particle position can be calculated by using the inverse guiding-center transformation (19). Then
we can deposit the marker weight to grid-points in the same way that we do in conventional PIC
simulations. Looping over all markers, we build the particle density at grids.

Compared with conventional PIC methods, where particle positions are directly sampled,
what is the benefit of sampling guiding-center positions and then transform them back to the
particle positions? More computations are involved since we need to numerically perform the
inverse guiding-center transformation. The answer lies in the important fact that the distribution
function fg(X, v⊥, v‖, α) that needs to be numerically evolved in gyrokinetic simulation is actually
independent of the gyro-angle α. Furthermore, we use a probability density function P that is
independent of α to sample the 6D phase space (X, v⊥, v‖, α). Then the marker weight w ≡
fg/(NpP ) is independent of α, where Np is number of markers loaded.

Suppose we have a concrete sampling of fg in the 6D phase-space (X, v⊥, v‖, α), i.e., (Xj , v⊥j , v‖j , αj , wj)
with j = 1, . . . , Np, then we can do the inverse guiding-center transform and then deposit parti-
cles to the grids to obtain a moment (e.g. density).

Since PJrv, where Jrv = Jrv⊥ is the Jacobian of (X, v⊥, v‖, α), is independent of α, the
sampling αj with j = 0, 1, . . . , Np are uniform distributed random numbers. Therefore we
can generate another sampling of α (denoted by α′j with j = 1, . . . , Np) using random num-
ber generators and combine α′j with the old sampling (Xj , v⊥j , v‖j) to obtain a new sampling
(Xj , v⊥j , v‖j , α′j , w

′
j). The values of w at the new sampling points are equal to the original

values, i.e., w′j = wj since the particle weight w = fg/(NpP ) is independent of α. Using the new
sampling and following the same procedures given above, we can estimate values of the moment
at grid-points again, which will differ from the estimation obtained using the old sampling. Tak-
ing the average of the two estimations will give a more accurate estimation because the resolution
in the gyro-angle is increased.

[Note that even if PJrv is dependent on α due to the possible dependence of Jrv on α, we
still can easily generate a new set of sampling which differs from the old sampling only in α.
Specifically, in the rejection method, we use the old sampling (Xj , v⊥j , v‖j) for each reject step
and only adjust α to satisfy the acceptance criteria.]
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We can also construct a new sampling by replacing αj by αj + ∆, where ∆ is a constant.
Then the new sampling is given by (Xj , v⊥j , v‖j , αj + ∆, w′j) with j = 1, . . . , Np. Since the
original sampling probability function PJrv⊥ is independent of α, then (Xj , v⊥j , v‖j , αj + ∆)
is still a consistent sampling that can be generated by the original probability function PJrv⊥.
Furthermore, since the particle weight w = fg/(NpP ) is independent of α, we infer that the
values of w at the new sampling points are equal to the original values, i.e., w′j = wj .

In doing the deposition, each marker has a single gyro-angle. Due to the independence of the
weight (w = fg/(NpP )) of the gyro-angle, the resolution over the gyro-angle can be increased
in a way that there can be several gyro-angles for a single (Xj , v⊥j , v‖j). This gives the wrong
impression that the gyro-angle of a guiding-center marker is arbitrary. The correct understanding
is that given above, i.e., we do 4 separate sampling of the phase space and then average the results.

In the code, the gyro-angle is defined relative to the direction ∇ψ/|∇ψ| at the guiding-
center position. Specifically, the gyro-angle is defined as the included angle between ∇ψ/|∇ψ|
and −v × e‖(x)/Ω(x), where e‖(x)/Ω(x) is approximated by the value at the guiding-center
location.

Then (Xj , v⊥j , v‖j) can be evolved by using the guiding-center motion equation. (It is obvious
how to evalute the gyro-averaging of the electromagnetic fields needed in pusing markers.)

Φ(x) =
∑
i,j

Φijcij(x). (259)

A.2 Monte-Carlo sampling of 6D guiding-center phase-space

Suppose that the 6D guiding-center phase-space (X,v) is described by (ψ, θ, φ, v‖, v⊥, α) coordi-
nates. The Jacobian of the coordinate system is given by J = Jrv⊥, where Jr = J (ψ, θ) is the
Jacobian of the coordinates (ψ, θ, φ). Suppose that we sample the 6D phase-space by using the
following probability density function:

P (ψ, θ, φ, v‖, v⊥, α) =
1

Vr

( m

2πT

)3/2

exp

[
−
m(v2

‖ + v2
⊥)

2T

]
, (260)

where Vr is the volume of the spatial simulation box, T is a constant temperature. P given above
is independent of ψ, θ, φ and α. It is ready to verify that the above P satisfies the following
normalization condition:∫

Vr

∫
PdvdX =

∫
Vr

∫ +∞

−∞

∫ ∞
0

∫ 2π

0

Pv⊥dαdv⊥dv‖Jrdψdθdφ = 1. (261)

I use the rejection method to numerically generate Np markers that satisfy the above probability
density function. [The effective probability density function actually used in the rejection method
is P ′, which is related to P by

P ′ = |JrJv|P = |Jr(ψ, θ)|v⊥P (262)

Note that P ′ does not depend on the gyro-angle α.]
Then the weight of a marker is written

w =
δfg(ψ, θ, φ, v‖, v⊥)

NpP
. (263)
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Since both fg and P is independent of the gyro-angle α, w is also independent of α.
The numerical representation of δfg is written

δf̃g =
1

Jrv⊥

Np∑
j

wjδ(ψ − ψj)δ(θ − θj)δ(φ− φj)δ(v‖ − v‖j)δ(v⊥ − v⊥j)δ(α− αj). (264)

Although the distribution function δfg to be sampled is independent of the gyro-angle α, we still
need to specify the gyro-angle because we need to use the inverse guiding-center transformation,
which needs the gyro-angle. Each marker needs to have a specific gyro-angle value αj so that we
know how to transform its Xj to xj and then do the charge deposition in x space.

To increase the resolution over the gyro-angle (the quantity of intest to us, e.g., density, is
the integration of the particle distribution function at fixed spatial location, and the distribution
at the fixed location is not uniform in the gyro-angle), we need to load more markers. However,
thanks to the fact that both sampling probability density function P and δfg are independent
of α, the resolution over the gyro-angle can be increased in a simple way.

n(x) =
n1(x) + n2(x) + n3(x) + n4(x)

4
. (265)

This corresponds to sampling the 6D phase-space 4 separate times (each time with identical
sampling points in (X, v‖, v⊥) but different sampling points in α) and then using the averaging
of the 4 Monte-Carlo integrals to estimate the exact value. This estimation can also be (roughly)
considered as a Monte-Carlo estimation using 4 times larger number of markers as that is orig-
inally used (the Monte-Carlo estimation using truly 4 time larger number of markers is more
accurate than the result we obtained above because the former also increase the resolution of
(X, v‖, v⊥) while the latter keeps the resolution of (X, v‖, v⊥) unchanged.)

In numerical code, we choose N sampling points that are evenly distributed on the gyro-
ring (N is usually 4 as a compromise between efficiency and accuracy). Denote the Mote-Carlo
weight of the j th marker by wj . Then the weight is evenly split by the N sub-markers on the
gyro-ring. Therefore each sub-marker have a Monte-Carlo weight wj/N . Then calculating the
integration (271) at a grid corresponds to depositing all the N sub-markers associated with each
guiding-center marker to the grid, as is illustrated in Fig. 6. However, interpreting in this way
is confusing to me because, with a single sampling of the phase-space, the phase-space volume
or weight can not be easily split. I prefer the above interpretation that the 6D phase space is
sampled 4 separate times and thus we get 4 estimations and finally we take the averaging of
these 4 estimations. It took a long time for me to finally find this way of understanding.

In summary, the phase-space to be sampled in gyrokinetic simulations are still 6D rather
than 5D. In this sense, the statement that gyrokinetic simulation works in a 5D phase space is
misleading. We are still working in the 6D phase-space. The only subtle thing is that the sixth
dimension, i.e., gyro-angle, can be sampled in an easy way that is independent of the other 5
variables.

In numerical implementation, the gyro-angle may not be explicitly used. We just try to find 4
arbitrary points on the gyro-ring that are easy to calculate. Some codes (e.g. ORB5) introduces
a random variable to rotate these 4 points for different markers so that the gyro-angle can be
sampled less biased.

From the view of particle simulations, the gyrokinetic model can be considered as a noise
reduction method, where the averaging over the gyro-angle is equivalent to a time averaging
over a gyro-period, which reduces the fluctuation level (in both time and space) associated
with evaluating the Monte-Carlo phase integration. Here the averaging in gyrokinetic particle
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A

B

C

Figure 6: The spatial grid in the plane perpendicular to the equilibrium magnetic field, a guiding-
center marker C, and its gyro-ring with 4 sampling points (sub-markers) on it. The 4 sub-markers
are calculated by using the transformation (19) (inverse guiding-center transform). Assume that
Monte-Carlo weight of the guiding-center marker C is wj . Then The Monte-Carlo weight of each
sub-marker is wj/4. The value of integration (271) at a grid point is approximated by I/∆V ,
where I is the Monte-Carlo integration of all sub-markers (associated with all guiding-center
markers) in the cell, ∆V is the cell volume. The cell associated with a grid-point (e.g., A) is
indicated by the dashed rectangle (this is for the 2D projection, the cell is 3D and it is a cube).
If the Dirac delta function is used as the shape function of the sub-markers, then calculating
the contribution of a sub-marker to a grid corresponds to the nearest-point interpolation (for
example, the 4 sub-markers will contribute nothing to grid point B since no-sub marker is located
within the cell). In practice, the flat-top shape function with its support equal to the cell size
is often used, then the depositing corresponds to linearly interpolating the weight of each sub-
marker to the nearby grids.

simulation refers to taking several points on a gyro-ring when depositing markers to spatial grids
to obtain the density and current on the grids. (Another gyro-averaging appears in evaluating
the guiding-center drift.) In gyrokinetic particle simulation, even a step size smaller than a
gyro-period is taken, the quantities used in the model is still the ones averaged over one gyro-
period. In this sense, a gyrokinetic simulation is only meaningful when the time step size is
larger than one gyro-period. [**Some authors may disagree with that the gyro-averaging is a
time-averaging. They may consider the gyro-averaging as the phase-space integration over the
gyro-angle coordinate. This view seems to be right in Euler simulations but seems to be wrong in
particle simulations. The reason is as follows. For each marker, choose a random gyro-phase and
then do the inverse transformation to obtain particle position, and sum over all markers (this
corresponds to phase-space Monte-Carlo integration, which include the gyro-angle integration,
so no further gyro-angle integration is needed); choose another random gyro-phase and repeat
the above procedure (this can be interpreted as do the phase-space Monte-Carlo integration at
another time), choose further random gyro-phase for each marker and repeat. Finally averaging
all the above values to obtain the final estimation of the phase-space integration. This amounts
to a time-averaging over a gyro-motion. In summary, sampling several times with different gyro-
phases for each marker and taking the average amounts to the time averaging over gyro-motion**]
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When doing the time-average over the ion cyclotron motion, the time variation of the low-
frequency mode is negligible and only the spatial variation of the modes is important. For
the gyro-motion, only the gyro-angle is changing and all the other variables, (X, v⊥, v‖), are
approximately constant. As a result, this time averaging finally reduces to a gyro-averaging.

I am always reasoning in terms of particle position and velocity, considering the guiding-center
location as an image of the particle position. When working in the guiding-center coordinates,
I always reason by transforming back to the particle position. This reasoning is clear and help
me avoid some confusions I used to have.

A.3 Distribution function transform**check

In the above, we assume that X and x are related to each other by the guiding-center transfor-
mation (17) or (19) , i.e., x and X are not independent. For some cases, it may be convenient
to treat x and X as independent variables and express the guiding-center transformation via an
integral of the Dirac delta function. For example,

fp(x,v) =

∫
fg(X,v)δ3(X− x + ρ)dX, (266)

where x and X are considered as independent variables, ρ is the gyroradius evaluated at x,
δ3(x − X − ρ) is the three-dimensional Dirac delta function. [In terms of general coordinates
(x1, x2, x3), the three-dimensional Dirac delta function is defined via the 1D Dirac delta function
as follows:

δ3(x) =
1

|J |δ(x1)δ(x2)δ(x3), (267)

where J is the the Jacobian of the general coordinate system. The Jacobian is included in order
to make δ3(x) satisfy the normalization condition

∫
δ3(x)dx =

∫
δ3(x)|J |dx1dx2dx3 = 1.]

Expression (266) can be considered as a transformation that transforms an arbitrary function
from the guiding-center coordinates to the particle coordinates. Similarly,

fg(X,v) =

∫
fp(x,v)δ3(x−X− ρ)dx, (268)

is a transformation that transforms an arbitrary function from the the particle coordinates to
the guiding-center coordinates.

A.4 Moments of distribution function expressed as integration over
guiding-center variables

In terms of particle variables (x,v), it is straightforward to calculate the moment of the distri-
bution function. For example, the number density n(x) is given by

n(x) =

∫
fp(x,v)dv. (269)

However, it is a little difficult to calculate n(x) at real space location x by using the guiding-
center variables (X,v). This is because holding x constant and changing v, which is required by
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the integration in Eq. (269), means the guiding-center variable X is changing according to Eq.
(17). Using Eq. (24), expression (269) is written as

n(x) =

∫
fg(X(x,v),v)dv, (270)

As is mentioned above, the dv integration in Eq. (270) should be performed by holding x constant
and changing v, which means the guiding-center variable X = X(x,v) is changing. This means
that, in (X,v) space, the above integration is a (generalized) curve integral along the the curve
X(v) = x−ρ(x,v) with x being constant. Treating X and x as independent variables and using
the Dirac delta function δ, this curve integral can be written as the following double integration
over the independent variables X and v:

n(x) =

∫ ∫
fg(X,v)δ3(X− x + ρ)dvdX. (271)

Another perspective of interpreting Eq. (271) is that we are first using the transformation (266)
to transform fg to fp and then integrating fp in the velocity space.

B Diamagnetic flow **check**

The perturbed distribution function δF given in Eq. (145) contains two terms. The first term
is gyro-phase dependent while the second term is gyro-phase independent. The perpendicular
velocity moment of the second term will give rise to the so-called diamagnetic flow. For this
case, it is crucial to distinguish between the distribution function in terms of the guiding-center
variables, fg(X,v), and that in terms of the particle variables, fp(x,v). In terms of these
denotations, equation (145) is written as

δFg =
q

m
(δΦ− 〈δΦ〉α)

∂F0g

∂ε
+ δfg. (272)

Next, consider the perpendicular flow U⊥ carried by δfg. This flow is defined by the correspond-
ing distribution function in terms of the particle variables, δfp, via,

nU⊥ =

∫
v⊥δfp(x,v)dv, (273)

where n is the number density defined by n =
∫
δfpdv. Using the relation between the particle

distribution function and guiding-center distribution function, equation (273) is written as

nU⊥ =

∫
v⊥δfg(x− ρ,v)dv. (274)

Using the Taylor expansion near x, δfg(x− ρ,v) can be approximated as

δfg(x− ρ,v) ≈ δfg(x,v)− ρ · ∇δfg(x,v). (275)

Plugging this expression into Eq. (274), we obtain

nU⊥ ≈
∫

v⊥δfg(x,v)dv −
∫

v⊥ρ · ∇δfg(x,v)dv (276)

51



As mentioned above, δfg(x,v) is independent of the gyro-angle α. It is obvious that the first
integration is zero and thus Eq. (276) is reduced to

nU⊥ = −
∫

v⊥ρ · ∇δfg(x,v)dv (277)

Using the definition ρ = −v × e‖/Ω, the above equation is written

nU⊥ =

∫
v⊥

v × e‖
Ω

· ∇δfg(x,v)dv

=

∫
v⊥
(e‖

Ω
×∇δfg(x,v)

)
· v⊥dv.

=

∫
v⊥H · v⊥dv, (278)

where H =
e‖
Ω ×∇δfg(x,v), which is independent of the gyro-angle α because both e‖(x)/Ω(x)

and δfg(x,v) are independent of α. Next, we try to perform the integration over α in Eq. (278).
In terms of velocity space cylindrical coordinates (v‖, v⊥, α), v⊥ is written as

v⊥ = v⊥(x̂ cosα+ ŷ sinα), (279)

where x̂ and ŷ are two arbitrary unit vectors perpendicular each other and both perpendicular
to B0(x). H can be written as

H = Hxx̂ +Hyŷ, (280)

where Hx and Hy are independent of α. Using these in Eq. (278), we obtain

nU⊥ =

∫
v⊥(x̂ cosα+ ŷ sinα)v⊥(Hx cosα+Hy sinα)dv

=

∫
v2
⊥[x̂(Hx cos2 α+Hy sinα cosα) + ŷ(Hx cosα sinα+Hy sin2 α)]dv. (281)

Using dv = v⊥dv‖dv⊥dα, the above equation is written as

nU⊥ =

∫ ∞
−∞

dv‖

∫ ∞
0

v⊥dv⊥

∫ 2π

0

v2
⊥[x̂(Hx cos2 α+Hy sinα cosα) + ŷ(Hx cosα sinα+Hy sin2 α)]dα

=

∫ ∞
−∞

dv‖

∫ ∞
0

v⊥dv⊥

∫ 2π

0

v2
⊥(x̂Hx cos2 α+ ŷHy sin2 α)dα

=

∫ ∞
−∞

dv‖

∫ ∞
0

v⊥dv⊥[v2
⊥(x̂Hxπ + ŷHyπ)]

=

∫ ∞
−∞

dv‖

∫ ∞
0

v⊥dv⊥[v2
⊥Hπ]

=

∫ ∞
−∞

dv‖

∫ ∞
0

v⊥dv⊥[v2
⊥

e‖
Ω
×∇δfg(x,v)π]

=
e‖
Ω
×∇

∫ ∞
−∞

dv‖

∫ ∞
0

v⊥dv⊥δfg(x,v)
v2
⊥
2

2π

=
e‖
mΩ
×∇δp⊥, (282)
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where

δp⊥ ≡
∫ ∞
−∞

dv‖

∫ ∞
0

v⊥dv⊥δfg(x,v)
mv2
⊥

2
2π

=

∫
δfg(x,v)

mv2
⊥

2
dv, (283)

is the perpendicular pressure carried by δfg(x,v). The flow given by Eq. (282) is called the
diamagnetic flow.

C Transform gyrokinetic equation from (X, µ, ε, α) to (X, µ, v‖, α)
coordinates

The gyrokinetic equation given above is written in terms of variables (X, µ, ε, α), where α is the
gyro-phase. Next, we transform it into coordinates (X′, µ′, v‖, α′) which is defined by

X′(X, µ, ε, α) = X
µ′(X, µ, ε, α) = µ
α′(X, µ, ε, α) = α

v‖(X, µ, ε, α) = ±
√

2(ε− µB0(X))

(284)

Use this definition and the chain rule, the gradient operators in (X, µ, ε, α) variables are written,
in terms of (X′, µ′, v‖, α′) variables, as

∂

∂X

∣∣∣∣
µ,ε,α

=
∂X′

∂X
· ∂

∂X′

∣∣∣∣
µ′,v‖,α′

+
∂µ′

∂X

∂

∂µ′

∣∣∣∣
X′,v‖,α′

+
∂v‖
∂X

∂

∂v‖

∣∣∣∣
X′,µ′,α′

+
∂α′

∂X

∂

∂α′

∣∣∣∣
X′,µ′,v‖

=
∂

∂X′
+ 0

∂

∂µ′
− µ

v‖

∂B0

∂X

∂

∂v‖
+ 0

∂

∂α′
(285)

and

∂

∂ε

∣∣∣∣
X,µ,α

=
∂X′

∂ε

∂

∂X′
+
∂µ′

∂ε

∂

∂µ′
+
∂v‖
∂ε

∂

∂v‖
+
∂α′

∂ε

∂

∂α′

= 0
∂

∂X′
+ 0

∂

∂µ′
+

1

v‖

∂

∂v‖
+ 0

∂

∂α′
(286)

Then, in terms of independent variable (X′, µ′, v‖, α′), equation (142) is written[
∂

∂t
+ (v‖e‖ + VD + δVD) · ∂

∂X′

]
δG0 − (v‖e‖ + VD + δVD) · µ

v‖

∂B0

dX

∂δG0

∂v‖

= −δVD ·
(
∂F0

∂X′
− µ

v‖

∂B0

dX

∂F0

∂v‖

)
− q

m

∂〈δL〉α
∂t

∂F0

∂v‖

1

v‖
, (287)

where δVD and 〈δL〉α involve the gyro-averaging operator 〈. . .〉α. The gyro-averaging operator
in (X′, µ′, v‖, α′) coordinates is similar to that in the old coordinates since the perpendicular
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velocity variable µ is identical between the two coordinate systems. Also note that the perturbed
guiding-center velocity δVD is given by

δVD =
e‖ ×∇X〈δφ〉α

B0
+ v‖

〈δB⊥〉α
B0

, (288)

where ∂/∂X (rather than ∂/∂X′) is used. Since δφ(x) = δφg(X, µ
′, α′), which is independent of

v‖, then Eq. (285) indicates that ∂δφ/∂X = ∂δφ/∂X′.
Dropping terms of order higher than O(λ2), equation (287) is written as[

∂

∂t
+ (v‖e‖ + VD + δVD) · ∂

∂X′

]
δG0 − e‖ · µ∇B0

∂δG0

∂v‖

= −δVD ·
(
∂F0

∂X′

)
+

(
δVD · µ∇B0 −

q

m

∂〈δL〉α
∂t

)
∂F0

∂v‖

1

v‖
, (289)

Similarly, in terms of independent variable (X′, µ′, v‖, α′), equation (147) is written as

[
∂

∂t
+ (v‖e‖ + VD + δVD) · ∂

∂X′

]
δf − e‖ · µ∇B0

∂δf

∂v‖

= −δVD ·
(
∂F0

∂X′

)
+ δVD ·

(
µ

v‖
∇B0

∂F0

∂v‖

)
− q

m

[
−∂〈v · δA〉α

∂t
−
(
v‖e‖ + VD + v‖

〈δB⊥〉α
B0

)
· ∇X〈δφ〉α

]
∂F0

∂v‖

1

v‖
, (290)

The guiding-center velocity in the macroscopic (equilibrium) field is given by

v‖e‖ + VD =
B?

0

B?‖0
v‖ +

µ

ΩB?‖0
B0 ×∇B0 +

1

B0B?‖0
E0 ×B0 (291)

where
B?

0 = B0 +B0

v‖
Ω
∇× b, (292)

B?‖ ≡ b ·B? = B
(

1 +
v‖
Ω

b · ∇ × b
)
, (293)

Using B?‖0 ≈ B0, then expression (291) is written as

v‖e‖ + VD = v‖b +
v2
‖

Ω
∇× b︸ ︷︷ ︸

curvature drift

+
µ

ΩB0
B0 ×∇B0︸ ︷︷ ︸
∇B drift

+
1

B2
0

E0 ×B0︸ ︷︷ ︸
E×B drift

, (294)

where the curvature drift, ∇B drift, and E0×B0 drift can be identified. Note that the perturbed
guiding-center velocity δVD is given by (refer to Sec. D.3)

δVD =
e‖ ×∇X〈δφ〉α

B0
+ v‖

〈δB⊥〉α
B0

. (295)
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Using the above results, equation (290) is written as[
∂

∂t
+ (v‖e‖ + VD + δVD) · ∂

∂X′

]
δf − e‖ · µ∇B0

∂δf

∂v‖

= −δVD ·
(
∂F0

∂X′

)
+

(
e‖ ×∇X〈δφ〉α

B0
+ v‖

〈δB⊥〉α
B0

)
·
(
µ

v‖
∇B0

∂F0

∂v‖

)
− q

m

[
−∂〈v · δA〉α

∂t
−
(
v‖e‖ +

v2
‖

Ω
∇× b +

µ

ΩB0
B0 ×∇B0 +

1

B2
0

E0 ×B0 + v‖
〈δB⊥〉α
B0

)
·∇X〈δφ〉α

]
∂F0

∂v‖

1

v‖
,(296)

Collecting coefficients before ∂F0/∂v‖, we find that the two terms involving ∇B0 (terms in blue
and red) cancel each other, yielding[

∂

∂t
+ (v‖e‖ + VD + δVD) · ∂

∂X′

]
δf − e‖ · µ∇B0

∂δf

∂v‖

= −δVD ·
(
∂F0

∂X′

)
+
q

m

[
m

q
v‖
〈δB⊥〉α
B0

· (µ∇B0) +
∂〈v · δA〉α

∂t
+

(
v‖b +

v2
‖

Ω
∇× b +

1

B2
0

E0 ×B0 + v‖
〈δB⊥〉α
B0

)
· ∇X〈δφ〉α

]
∂F0

∂v‖

1

v‖
,(297)

This equation agrees with Eq. (8) in I. Holod’s 2009 pop paper (gyro-averaging is wrongly
omitted in that paper) and W. Deng’s 2011 NF paper. Equation (297) drops all terms higher
than O(λ2) and as a result the coefficient before ∂δf/∂v‖ contains only the mirror force, i.e.,

dv‖
dt

= −e‖ · µ∇B0, (298)

which is independent of any perturbations.

D Transform gyrokinetic equation from (δΦ, δA) to (δE, δB)

D.1 Expression of δB⊥ in terms of δA

Note that

δB⊥ = ∇× δA− (e‖ · ∇ × δA)e‖
= ∇× (δA⊥ + δA‖e‖)− [e‖ · ∇ × (δA⊥ + δA‖e‖)]e‖ (299)

Correct to order O(λ), δB⊥ in the above equation is written as (e‖ vector can be considered
as constant because its spatial gradient combined with δA will give terms of O(λ2), which are
neglected)

δB⊥ ≈ ∇× δA⊥ +∇δA‖ × e‖ − [e‖ · ∇ × δA⊥ + e‖ · (∇δA‖ × e‖)]e‖ (300)

= ∇× δA⊥ +∇δA‖ × e‖ − (e‖ · ∇ × δA⊥)e‖ (301)

Using local cylindrical coordinates (r, φ, z) with z being along the local direction of B0, and two
components of A⊥ being Ar and Aφ, then ∇×A⊥ is written as

∇× δA⊥ =

(
−∂δAφ

∂z

)
er +

(
∂δAr
∂z

)
eφ +

1

r

[
∂

∂r
(rδAφ)− ∂δAr

∂φ

]
e‖. (302)
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Note that the parallel gradient operator ∇‖ ≡ e‖ · ∇ = ∂/∂z acting on the the perturbed
quantities will result in quantities of order O(λ2). Retaining terms of order up to O(λ), equation
(302) is written as

∇× δA⊥ ≈
1

r

[
∂

∂r
(rδAφ)− ∂δAr

∂φ

]
e‖, (303)

i.e., only the parallel component survive, which exactly cancels the last term in Eq. (301), i.e.,
equation (301) is reduced to

δB⊥ = ∇δA‖ × e‖. (304)

D.2 Expression of δB‖ in terms of δA

δB‖ = e‖ · ∇ × δA
= e‖ · ∇ × (δA⊥ + δA‖e‖) (305)

Accurate to O(λ1), δB‖ in the above equation is written as (e‖ vector can be considered as con-
stant because its spatial gradient combined with δA will give O(λ2) terms, which are neglected)

δB‖ ≈ e‖ · ∇ × δA⊥ + e‖ · (∇δA‖ × e‖)

= e‖ · ∇ × δA⊥ (306)

[Using local cylindrical coordinates (r, φ, z) with z being along the local direction of B0, and two
components of δA⊥ being δAr and δAφ, then ∇× δA⊥ is written as

∇× δA⊥ =

(
−∂δAφ

∂z

)
er +

(
∂δAr
∂z

)
er +

1

r

[
∂

∂r
(rδAφ)− ∂δAr

∂φ

]
e‖ (307)

Note that the parallel gradient operator ∇‖ ≡ e‖ · ∇ = ∂/∂z acting on the the perturbed
quantities will result in quantities of order O(λ2). Retaining terms of order up to O(λ), equation
(302) is written as

∇× δA⊥ ≈
1

r

[
∂

∂r
(rδAφ)− ∂δAr

∂φ

]
e‖, (308)

Using this, equation (306) is written as

δB‖ =
1

r

[
∂

∂r
(rδAφ)− ∂δAr

∂φ

]
. (309)

However, this expression is not useful for GEM because GEM does not use the local coordinates
(r, φ, z).]

D.3 Expressing the perturbed drift in terms of δE and δB

The perturbed drift δVD is given by Eq. (131), i.e.,

δVD = − q

m
∇X〈δL〉α ×

e‖
Ω
. (310)
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Using δL = δΦ− v · δA, the above expression can be further written as

δVD = − q

m
∇X〈δΦ− v · δA〉α ×

e‖
Ω

=
q

m

e‖
Ω
×∇X〈δΦ〉α −

q

m

e‖
Ω
×∇X〈v‖δA‖〉α

− q

m

e‖
Ω
×∇X〈v⊥ · δA⊥〉α. (311)

Accurate to order O(λ), the term involving δΦ is

q

m

e‖
Ω
×∇X〈δΦ〉α =

e‖
B0
× 〈∇XδΦ〉α

≈ e‖
B0
× 〈∇xδΦ〉α

≈ e‖
B0
×
〈
−δE− ∂δA

∂t

〉
α

≈ e‖
B0
× 〈−δE〉α

≡ δVE , (312)

which is the δE×B0 drift. Accurate to O(λ), the 〈v‖δA‖〉α term on the right-hand side of Eq.
(311) is written

− q

m

e‖
Ω
×∇X〈v‖δA‖〉α ≈ − q

m

1

Ω
〈e‖ ×∇X(v‖δA‖)〉α

≈ − q

m

1

Ω
〈e‖ ×∇x(v‖δA‖)〉α

≈ − q

m

v‖
Ω
〈e‖ ×∇x(δA‖)〉α

= v‖
〈δB⊥〉α
B0

, (313)

which is due to the magnetic fluttering (this is actually not a real drift). In obtaining the last
equality, use has been made of Eq. (304), i.e., δB⊥ = ∇xδA‖ × e‖.

Accurate to O(λ), the last term on the right-hand side of expression (311) is written

− q

m

e‖
Ω
×∇X〈v⊥ · δA⊥〉α ≈ − 1

B0
〈e‖ ×∇X(v⊥ · δA⊥)〉α

≈ − 1

B0
〈e‖ ×∇x(v⊥ · δA⊥)〉α

= − 1

B0
〈e‖ × (v⊥ ×∇x × δA⊥ + v⊥ · ∇xδA⊥)〉α

= − 1

B0
〈(e‖ · ∇x × δA⊥)v⊥ + e‖ × v⊥ · ∇xδA⊥〉α
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Using equation (306), i.e., δB‖ = e‖ · ∇ × δA⊥, the above expression is written as

− q

m

e‖
Ω
×∇X〈v⊥ · δA⊥〉α = − 1

B0
〈δB‖v⊥ + e‖ × v⊥ · ∇xδA⊥〉α

≈ − 1

B0
〈δB‖v⊥ + e‖ × v⊥ · ∇XδA⊥〉α

≈ − 1

B0
〈δB‖v⊥〉α −

1

B0
e‖ × 〈v⊥ · ∇XδA⊥〉α.

≈ − 1

B0
〈δB‖v⊥〉α. (314)

where use has been made of 〈v⊥ · ∇XδA⊥〉α ≈ 0 (**seems wrong**), where the error is of
O(λ)δA⊥. The term 〈δB‖v⊥〉α/B0 is of O(λ2) and thus can be neglected (I need to verify this).

Using Eqs. (312), (313), and (314), expression (311) is finally written as

δVD ≡ −
q

m
∇X〈δL〉α ×

e‖
Ω

=
〈δE〉α × e‖

B0
+ v‖

〈δB⊥〉α
B0

. (315)

Using this, the first equation of the characteristics, equation (128), is written as

dX

dt
= v‖e‖ + VD + δVD (316)

= v‖e‖ + VD +
〈δE〉α × e‖

B0
+ v‖

〈δB⊥〉α
B0

≡ VG (317)

D.4 Expressing the coefficient before ∂F0/∂ε in terms of δE and δB

[Note that
∂δA⊥
∂t

= −(δE⊥ +∇⊥δΦ), (318)

where ∂δA⊥/∂t is of O(λ2). This means that δE⊥ +∇⊥δφ is of O(λ2) although both δE⊥ and
δφ are of O(λ).]

Note that

∂〈v · δA〉α
∂t

= v‖
∂〈δA‖〉α

∂t
+ v⊥ ·

∂〈δA〉α
∂t

= v‖
∂〈δA‖〉α

∂t
+ 〈v⊥ · (−δE−∇δΦ)〉α

≈ v‖
∂〈δA‖〉α

∂t
− 〈v⊥ · δE〉α (319)

where use has been made of 〈v⊥ ·∇δφ〉 ≈ 0, This indicates that 〈v⊥ · δE〉α is of O(λ1)δE. Using

58



Eq. (319), the coefficient before ∂F0/∂ε in Eq. (147) can be further written as

− q

m

[
−∂〈v · δA〉α

∂t
−
(
v‖e‖ + VD −

q

m

e‖
Ω
×∇X〈v · δA〉α

)
· ∇X〈δΦ〉α

]
= − q

m

[
−v‖

∂〈δA‖〉α
∂t

+ 〈v⊥ · δE〉α −
(
v‖e‖ + VD −

q

m

e‖
Ω
×∇X〈v · δA〉α

)
·
〈
−δE− ∂δA

∂t

〉
α

]
≈ − q

m

[
−v‖

∂〈δA‖〉α
∂t

+ 〈v⊥ · δE〉α −
(
v‖e‖ + VD −

q

m

e‖
Ω
×∇X〈v · δA〉α

)
· 〈−δE〉α + v‖

〈
∂A‖
∂t

〉
α

]
= − q

m

[
〈v⊥ · δE〉α +

(
v‖e‖ + VD −

q

m

e‖
Ω
×∇X〈v · δA〉α

)
· 〈δE〉α

]
≈ − q

m

[
〈v⊥ · δE〉α +

(
v‖e‖ + VD + v‖

〈δB⊥〉
B0

)
· 〈δE〉α

]
. (320)

Using Eq. (320) and (), gyrokinetic equation (147) is finally written as[
∂

∂t
+

(
v‖e‖ + VD +

〈δE〉α × e‖
B0

+ v‖
〈δB⊥〉α
B0

)
· ∇X

]
δf

= −
( 〈δE〉α × e‖

B0
+ v‖

〈δB⊥〉α
B0

)
· ∇XF0

− q

m

[
〈v⊥ · δE〉α +

(
v‖e‖ + VD + v‖

〈δB⊥〉α
B0

)
· 〈δE〉α

]
∂F0

∂ε
. (321)

E Drift-kinetic limit

In the drift-kinetic limit, 〈v⊥ ·δE〉α = 0, 〈δB‖v⊥〉α = 0, and 〈δh〉α = δh, where δh is an arbitrary
field quantity. Using these, gyrokinetic equation (321) is written as[

∂

∂t
+

(
v‖e‖ + vD + vE + v‖

δB⊥
B0

)
· ∇X

]
δf

= −
(

vE + v‖
δB⊥
B0

)
· ∇XF0 −

q

m

[(
v‖e‖ + vD + v‖

δB⊥
B0

)
· δE

]
∂F0

∂ε
. (322)

E.1 Linear case

Neglecting the nonlinear terms, drift-kinetic equation (322) is written[
∂

∂t
+ (v‖e‖ + vD) · ∇X

]
δf

= −
(

vE + v‖
δB⊥
B0

)
· ∇XF0 −

q

m
[(v‖e‖ + vD) · δE]

∂F0

∂ε
. (323)

Next let us derive the parallel momentum equation from the linear drift kinetic equation (this
is needed in my simulation). Multiplying the linear drift kinetic equation (323) by qv‖ and then
integrating over velocity space, we obtain

∂δj‖
∂t

= −q
∫
dvv‖(v‖e‖ + vD) · ∇Xδf

− q

∫
dvv‖

(
vE + v‖

δB⊥
B0

)
· ∇XF0 −

q

m
q

∫
dvv‖[(v‖e‖ + vD) · δE]

∂F0

∂ε
. (324)
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Equation (324) involve ∇Xδf and this should be avoided in particle methods whose goal is to
avoid directly evaluating the derivatives of δf over phase-space coordinates. On the other hand,
the partial derivatives of velocity moment of δf are allowed. Therefore, we would like to make the
velocity integration of δf appear. Note that ∇Xδf here is taken by holding (ε, µ) constant and
thus v‖ is not a constant and thus can not be moved inside ∇X . Next, to facilitate performing the
integration over v‖, we transform the linear drift kinetic equation (323) into variable (X, µ, v‖).

E.2 Transform from (X, µ, ε) to (X, µ, v‖) coordinates

The kinetic equation given above is written in terms of variable (X, µ, ε). Next, we transform it
into coordinates (X′, µ′, v‖) which is defined by

X′(X, µ, ε) = X, (325)

µ′(X, µ, ε) = µ, (326)

and
v‖(X, µ, ε) =

√
2(ε− µB0(X)). (327)

Use this, we have

∂δG0

∂X
|µ,ε =

∂X′

∂X

∂δG0

∂X′
+
∂µ′

∂X

∂δG0

∂µ′
+
∂v‖
∂X

∂δG0

∂v‖

=
∂δG0

∂X′
|µ,v‖ + 0

∂δG0

∂µ′
− µ

v‖

∂B0

dX

∂δG0

∂v‖
, (328)

and

∂F0

∂ε
=

∂F0

∂µ′
∂µ′

∂ε
+
∂F0

∂v‖

∂v‖
∂ε

= 0
∂F0

∂µ′
+
∂F0

∂v‖

∂v‖
∂ε

=
∂F0

∂v‖

1

v‖
(329)

Then, in terms of variable (X′, µ, v‖), equation (323) is written

∂δf

∂t
+ (v‖e‖ + vD) · ∇δf − e‖ · µ∇B

∂δf

∂v‖

= −
(

vE + v‖
δB⊥
B0

)
· ∇F0 +

(
vE
v‖

+
δB⊥
B0

)
· µ∇B∂F0

∂v‖
− q

m

[(
e‖ +

vD
v‖

)
· δE

]
∂F0

∂v‖
,(330)

where ∇ ≡ ∂/∂X′|µ,v‖ .
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E.3 Parallel momentum equation

Multiplying the linear drift kinetic equation (330) by qv‖ and then integrating over velocity space,
we obtain

∂δj‖
∂t

+ q

∫
dvv‖(v‖e‖ + vD) · ∇Xδf − q

∫
dvv‖e‖ · µ∇B

∂δf

∂v‖

= −q
∫
dvv‖

(
vE + v‖

δB⊥
B0

)
· ∇XF0 + q

∫
dvv‖

(
vE
v‖

+
δB⊥
B0

)
· µ∇B∂F0

∂v‖

− q

m
q

∫
dvv‖

[(
e‖ +

vD
v‖

)
· δE

]
∂F0

∂v‖
. (331)

Consider the simple case that F0 does not carry current, i.e., F0(X, µ, v‖) is an even function
about v‖. Then it is obvious that the integration of the terms in red in Eq. (331) are all zero.
Among the rest terms, only the following term

− q

m
q

∫
dvv‖[(v‖e‖) · δE]

∂F0

∂v‖

1

v‖
(332)

explicitly depends on δE. Using dv = 2πBdv‖dµ, the integration in the above expression can be
analytically performed, giving

− q

m
q

∫
dvv‖[(v‖e‖) · δE]

∂F0

∂v‖

1

v‖

= −q
2

m

∫
2πBdv‖dµv‖δE‖

∂F0

∂v‖

= −q
2

m

∫
2πBdµδE‖

∫
v‖
∂F0

∂v‖
dv‖

= −q
2

m

∫
2πBdµδE‖

(
0−

∫
F0dv‖

)
=
q2

m
δE‖n0. (333)

Using these results, the parallel momentum equation (331) is written

∂δj‖
∂t

=
q2

m
δE‖n0 − q

∫
dvv‖(v‖e‖ + vD) · ∇Xδf + q

∫
dvv‖e‖ · µ∇B

∂δf

∂v‖

−q
∫
dvv‖

(
v‖
δB⊥
B0

)
· ∇F0 + q

∫
dvv‖

(
δB⊥
B0

)
· µ∇B∂F0

∂v‖
, (334)

where the explicit dependence on δE is via the first term q2n0δE‖/m, with all the the other
terms being explicitly independent of δE (δf and δB implicitly depend on δE).

Equation (334) involve derivatives of δf with respect to space and v‖ and these should be
avoided in the particle method whose goal is to avoid directly evaluating these derivatives. Using
integration by parts, the terms involving ∂/∂v‖ can be simplified, yielding

∂δj‖
∂t

=
q2

m
δE‖n0 − q

∫
dvv‖(v‖e‖ + vD) · ∇Xδf − q(e‖ · ∇B0)

∫
µδfdv

−q
∫
dvv‖

(
v‖
δB⊥
B0

)
· ∇F0 − q

(
δB⊥
B0

)
· (∇B0)

∫
µF0dv, (335)
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Define p⊥0 =
∫
mv2
⊥F0/2dv and δp⊥ =

∫
mv2
⊥δf/2dv, then the above equation is written

∂δj‖
∂t

=
q2

m
δE‖n0 − q

∫
dvv‖(v‖e‖ + vD) · ∇Xδf − q(e‖ · ∇B0)

δp⊥
mB0

−q
∫
dvv‖

(
v‖
δB⊥
B0

)
· ∇F0 − q

(
δB⊥
B0

)
· (∇B0)

p⊥0

mB0
, (336)

Next, we try to eliminate the spatial gradient of δf by changing the order of integration. The
second term on the right-hand side of Eq. (336) is written

−q
∫
dvv‖(v‖e‖) · ∇Xδf,

= −q
∫

2πB0dv‖dµv
2
‖e‖ · ∇Xδf

= −q2πB0e‖ · ∇X
∫
v2
‖δfdv‖dµ

= −qB0e‖ · ∇X
(

1

mB0

∫
mv2
‖δfdv

)
= −qB0e‖ · ∇X

(
δp‖
mB0

)
, (337)

where δp‖ =
∫
mv2
‖δfdv. Similarly, the term −q

∫
dvv‖

(
v‖

δB⊥
B0

)
· ∇XF0 is written as

−q
∫
dvv‖

(
v‖
δB⊥
B0

)
· ∇XF0

= −q
∫

2πB0dv‖dµ

(
v2
‖
δB⊥
B0

)
· ∇XF0

= −q
(
δB⊥
B0

)
·B0∇X

∫
(v2
‖F02πdv‖dµ)

= −q
(
δB⊥
B0

)
·B0∇X

[
1

B

∫
(mv2

‖F0dv)

]
= −qδB⊥ · ∇X

(
p‖0
mB0

)
(338)

where p‖0 =
∫
mv2
‖F0dv. Similarly, the term −q

∫
dvv‖vD ·∇Xδf can be written as the gradient

of moments of δf . Let us work on this. The drift vD is given by

vD =
B0

v‖
Ω∇× b

B?‖
v‖ +

µ

ΩB?‖
B0 ×∇B0. (339)

where B?‖ = B0

(
1 +

v‖
Ω b · ∇ × b

)
(refer to my another notes). Using b · ∇ × b ≈ 0, we obtain

B?‖ ≈ B. Then vD is written

vD =
v2
‖

Ω
∇× b +

µ

Ω
b×∇B0.
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Using this and dv = 2πB0dv‖dµ, the term −q
∫
dvv‖vD · ∇Xδf is written as

−q
∫
dvv‖vD · ∇Xδf = −q

∫
2πB0dv‖dµv‖

(
v2
‖

Ω
∇× b +

µ

Ω
b×∇B0

)
· ∇Xδf

= −q2πB0
1

Ω
(∇× b) · ∇X

∫
v3
‖δfdv‖dµ− q2πB0

1

Ω
(b×∇B0) · ∇X

∫
v‖µδfdv‖dµ

= −qB0
1

Ω
(∇× b) · ∇X

(
1

B0

∫
v3
‖δfdv

)
− qB0

1

Ω
(b×∇B0) · ∇X

(
1

B0

∫
v‖µδfdv

)
,

= −m(∇× b) · ∇X
(

1

B0

∫
v3
‖δfdv

)
−m(b×∇B0) · ∇X

(
1

B0

∫
v‖µδfdv

)
, (340)

which are the third order moments of δf and may be neglect-able (a guess, not verified). Using
the above results, the linear parallel momentum equation is finally written

∂δj‖
∂t

=
e2ne0
m

δE‖ + eB0b · ∇X
(
δp‖
mB0

)
+ e(b · ∇B0)

δp⊥
mB0

+eδB⊥ · ∇X
(
p‖0
mB0

)
+ e

(
δB⊥
B0

)
· (∇B0)

p⊥0

mB0
.

−m(∇× b) · ∇X
(

1

B0

∫
v3
‖δfdv

)
−m(b×∇B0) · ∇X

(
1

B0

∫
v‖µδfdv

)
(341)

Define

D0 = ∇
(
p‖0
mB0

)
+
∇B0

B0

p⊥0

mB0
, (342)

which, for the isotropic case (p‖0 = p⊥0 = p0), is simplified to

D0 =
∇p0

mB0
. (343)

then Eq. (341) is written as

∂δj‖
∂t

=
e2n0

m
δE‖ + eδB⊥ ·D0

+ eB0b · ∇X
(
δp‖
mB0

)
+ e(b · ∇B0)

δp⊥
mB0

− m(∇× b) · ∇X
(

1

B0

∫
v3
‖δfdv

)
−m(b×∇B0) · ∇X

(
1

B0

∫
v‖µδfdv

)
. (344)

E.4 Special case in uniform magnetic field

In the case of uniform magnetic field, the parallel momentum equation (341) is written as

∂δj‖
∂t

=
q

m
qE‖ne0 − qe‖ · ∇X(δp‖)− q

δB⊥
B0
· ∇Xp‖0. (345)
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E.5 Electron perpendicular flow

Using the gyrokinetic theory and taking the drift-kinetic limit, the perturbed perpendicular
electron flow, δVe⊥, is written (see Sec. B or Appendix in Yang Chen’s paper[2])

ne0δVe⊥ =
ne0
B0

δE× b︸ ︷︷ ︸
E×B flow

− 1

eB0
b×∇δp⊥e︸ ︷︷ ︸

diamagnetic flow

(346)

where ne0 is the equilibrium electron number density, δpe⊥ is the perturbed perpendicular pres-
sure of electrons.

E.5.1 Drift kinetic equation

Drift kinetic equation is written

∂f

∂t
+

(
v‖b̃ + vD +

δE× b

B0

)
· ∇f +

(
− e

m
δE‖ − µb̃ · ∇B

) ∂f

∂v‖
= 0, (347)

where f = f(x, µ, v‖, t), µ = mv2
⊥/B0 is the magnetic moment, b̃ = b + δB⊥/B0, b = B0/B0

is the unit vector along the equilibrium magnetic field, vD = vD(x, µ, v‖) is the guiding-center
drift in the equilibrium magnetic field. δE and δB are the perturbed electric field and magnetic
field, respectively.

E.5.2 Parallel momentum equation

Multiplying the drift kinetic equation () by v‖ and then integrating over velocity space, we obtain∫
∂fev‖
∂t

dv +

∫
v‖

(
v‖b̃ + vD +

δE× b

B0

)
· ∇fedv +

∫
v‖
(
− e

m
δE‖ − µb̃ · ∇B

) ∂fe
∂v‖

dv = 0,

(348)
which can be written as

∂J‖e
∂t

+

∫
v‖

(
v‖b̃ + vD +

δE× e‖
B0

)
· ∇fedv +

∫
v‖
(
− e

m
δE‖ − µb̃ · ∇B

) ∂fe
∂v‖

dv = 0, (349)
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Using dv = B−12πmdv‖dµ, the last term on the RHS of the above equation is written∫ ∫
v‖
(
− e

m
δE‖ − µb̃ · ∇B

) ∂fe
∂v‖

dv

=

∫ ∫
v‖
(
− e

m
δE‖ − µb̃ · ∇B

) ∂fe
∂v‖

2π
B

m
dv‖dµ

= − e

m
δE‖2π

B

m

∫ ∫
v‖
∂fe
∂v‖

dv‖dµ− (b̃ · ∇B)2π
B

m

∫
µ

∫
v‖
∂fe
∂v‖

dv‖dµ

= − e

m
δE‖2π

B

m

∫ (
v‖fe|+∞−∞ −

∫
fedv‖

)
dµ− (b̃ · ∇B)2π

B

m

∫
µ

(
v‖fe|+∞−∞ −

∫
fedv‖

)
dµ

=
e

m
δE‖2π

B

m

∫ ∫
fedv‖dµ+ (b̃ · ∇B)2π

B

m

∫
µ

∫
fedv‖dµ

=
e

m
δE‖ne +

∫ ∫
µ(b̃ · ∇B)fedv (350)

≈ e

m
δE‖ne

∫ ∫
v‖(v‖b̃) · ∇fedv

=

∫ ∫
b̃ · ∇(v2

‖fe)dv

=

∫ ∫
b̃ · ∇(v2

‖fe)2π
B

m
dv‖dµ

= b̃ · ∇
(∫ ∫

v2
‖fe2π

1

m
dv‖dµ

)
B0

= b̃ · ∇
(
p‖
B0

)
B0

= b̃ · ∇
(
p‖0 + δp‖

B0

)
B0

= b̃ · ∇
(
p‖0
B0

)
B0 + b̃ · ∇

(
δp‖
B0

)
B0

≈ b · ∇
(
p‖0
B0

)
B0 +

δB⊥
B0
· ∇
(
p‖0
B0

)
B0 + b · ∇

(
δp‖
B0

)
B0

≈ b · ∇(p‖0) +
δB⊥
B0
· ∇(p‖0) + b · ∇(δp‖) (351)

=
δB⊥
B0
· ∇(p‖0) + b · ∇(δp‖)

where use has been made of b · ∇p‖0 = 0.

∂δJe‖
∂t

= − e

m
δE‖ne −

δB⊥
B0
· ∇(p‖0)− b · ∇(δp‖) (352)

Using Eq. () in Eq. (), we obtain

µ0e
e

m
δE‖ne + b · ∇ ×∇× δE = −µ0e

[
δB⊥
B0
· ∇(pe‖0) + b · ∇(δpe‖)

]
(353)
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————–

− b · ∇ ×∇× δE = −µ0e

(
−q δB⊥

B0
· ∇Xp‖0 +

q

m
qE‖ne0 − qe‖ · ∇X(δp‖)

)
. (354)

ddddd∫ ∫
v‖

(
v‖b̃ + vD +

δE× b

B0

)
· ∇fedv

=

∫ ∫ (
v‖b̃ + vD +

δE× b

B0

)
· ∇(v‖fe)dv

=

∫ ∫
v‖b̃ · ∇(v‖fe)dv +

∫ ∫
vD · ∇(v‖fe)dv +

∫ ∫
δE× b

B0
· ∇(v‖fe)dv

=

∫ ∫
b̃ · ∇(v2

‖fe)dv +

∫ ∫
vD · ∇(v‖fe)dv +

∫ ∫
δE× b

B0
· ∇(v‖fe)dv

=

∫ ∫
b̃ · ∇(v2

‖fe)2π
B

m
dv‖dµ+

∫ ∫
vD · ∇(v‖fe)2π

B

m
dv‖dµ+

∫ ∫
δE× b

B0
· ∇(v‖fe)2π

B

m
dv‖dµ

=

∫
b̃ · ∇

(
v2
‖fe2π

1

m
dv‖dµ

)
B +

∫ ∫
vD · ∇(v‖fe)2π

B

m
dv‖dµ+

∫ ∫
δE× b

B0
· ∇(v‖fe)2π

B

m
dv‖dµ

= b̃ · ∇
(p‖
B

)
B +

∫ ∫
vD · ∇(v‖fe)2π

B

m
dv‖dµ+

∫ ∫
δE× b

B0
· ∇(v‖fe)2π

B

m
dv‖dµ

= b̃ · ∇
(p‖
B

)
B +

∫ ∫
1

mΩ
b× (µ∇B) · ∇(v‖fe)2π

B

m
dv‖dµ+

∫ ∫
1

mΩ
b× (mv2

‖κ) · ∇(v‖fe)2π
B

m
dv‖dµ

+

∫ ∫
δE× b

B0
· ∇(v‖fe)2π

B

m
dv‖dµ

F Derivation of Eq. (111), not finished

From the definition of µ, we obtain

∂µ

∂x
= − v2

⊥
2B2

0

∂B0

∂x
+

1

2B0

∂v2
⊥

∂x
= − µ

B0

∂B0

∂x
+
∂v⊥
∂x
· v⊥
B0

(355)

Using
∂v⊥
∂x

=
∂[v − v‖e‖]

∂x
= −v‖

∂e‖
∂x
− ∂v‖
∂x

e‖, (356)

expression (355) is written as

∂µ

∂x
= − µ

B0

∂B0

∂x
− v‖

∂e‖
∂x
· v⊥
B0

, (357)
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which agrees with Eq. (10) in Frieman-Chen’s paper[3].

1

2π

∫ 2π

0

dαv · ∂µ
∂x

=
1

2π

∫ 2π

0

dαv ·
(
− µ

B0

∂B0

∂x
− v‖

∂e‖
∂x
· v⊥
B0

)
=?0

1

2π

∫ 2π

0

dαv ·
[
v × ∂

∂x

(e‖
Ω

)]
· ∂δG0

∂X
=

Using the fact that δG0 is independent of α, the left-hand side of Eq. (111) is written as

〈v · [λB1 + λB2]δG0〉α

=
1

2π

∫ 2π

0

dαv ·
{[

v × ∂

∂x

(e‖
Ω

)]
· ∂δG0

∂X
+
∂µ

∂x

∂δG0

∂µ
+
∂α

∂x

∂δG0

∂α

}
=

1

2π

∫ 2π

0

dαv ·
{[

v × ∂

∂x

(e‖
Ω

)]
· ∂δG0

∂X
+
∂µ

∂x

∂δG0

∂µ

}

G Modern view of gyrokinetic equation **wrong**

The modern form of the nonlinear gyrokinetic equation is in the total-f form. This way of deriving
the gyrokinetic equation is to use transformation methods to eliminate gyro-phase dependence
of the total distribution function and thus obtain an equation for the resulting gyro-phase inde-
pendent distribution function (called gyro-center distribution function).

The resulting equation for the gyro-center distribution function is given by (see Baojian’s
paper) (

∂

∂t
+ Ẋ · ∇+ v̇‖

∂

∂v‖

)
f(X, v‖, µ, t) = 0, (358)

where

Ṙ = VD +
e‖
B0
× 〈∇δΦ〉α + v‖

〈δB⊥〉α
B0

(359)

v̇‖ = − 1

m

B?

B?‖
· (q∇〈δΦ〉+ µ∇B0)− q

m

∂〈δA‖〉α
∂t

. (360)

Here the independent variables are gyro-center position X, magnetic moment µ and parallel
velocity v‖.

The gyro-phase dependence of the particle distribution can be recovered by the inverse trans-
formation of the transformation used before. The pull-back transformation gives rise to the
polarization density term. (phase-space-Lagrangian Lie perturbation method (Littlejohn, 1982a,
1983), I need to read these two papers.).
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H About this document

These notes were initially written when I visited University of Colorado at Boulder (Sept.-Nov.
2016), where I worked with Dr. Yang Chen, who pointed out that most gyrokinetic simu-
lations essentially employ Frieman-Chen’s nonlinear gyrokinetic equation. Therefore a careful
re-derivation of the equation to know the gyrokinetic orderings and physics included in the model
is highly desirable, which motivates me to write this note.

This document was written by using TeXmacs[4], a structured wysiwyw (what you see is
what you want) editor for scientists. The HTML version of this document is generated by first
converting the TeXmacs file to TeX format and then using htlatex to convert the TeX file to
HTML format.

References

[1] P J Catto. Linearized gyro-kinetics. Plasma Physics, 20(7):719, 1978.

[2] Yang Chen and Scott E. Parker. Particle-in-cell simulation with vlasov ions and drift kinetic
electrons. Phys. Plasmas, 16:52305, 2009.

[3] E. A. Frieman and Liu Chen. Nonlinear gyrokinetic equations for low-frequency electromag-
netic waves in general plasma equilibria. Physics of Fluids, 25(3):502–508, 1982.

[4] Joris van der Hoeven. Gnu texmacs, a structured wysiwyw (what you see is what you want)
editor for scientists. http://www.texmacs.org/, 2007. [Online].

68

http://www.texmacs.org/

	Introduction
	Gyrokinetic?
	Vlasov equation and guiding-center coordinates

	Transform Vlasov equation from particle coordinates to guiding-center coordinates
	Guiding-center transformation
	Choosing velocity coordinates
	Summary of the phase-space coordinate transform
	Distribution function in terms of guiding-center variables
	Spatial gradient operator in guiding-center coordinates
	Velocity gradient operator in guiding-center coordinates
	Time derivatives in guiding-center coordinates
	Final form of Vlasov equation in guiding-center coordinates

	Perturbed Vlasov equation in guiding-center variables
	Electromagnetic field perturbation
	Distribution function perturbation
	Gyrokinetic orderings
	Assumptions for macroscopic quantities
	Assumptions for microscopic quantities

	Equation for macroscopic distribution function Fg
	Equation for perturbed distribution function Fg
	Balance on order O (1): adiabatic response
	Separate Fg into adiabatic and non-adiabatic part
	Linear term expressed in terms of  and A

	Equation for the non-adiabatic part G
	Expansion of G
	Gyro-averaging
	Simplification of the nonlinear term
	Final equation for the non-adiabatic part of the perturbed distribution function


	Characteristic curves of Frieman-Chen nonlinear gyrokinetic equation
	Time evolution equation for v

	Gyrokinetic equation in forms amenable to numerical computation
	Eliminate  / t term on the right-hand side of Eq. (142)
	Eliminate v A  / t term on the right-hand side of GK equation
	For special case A A e

	Summary of split of the distribution function
	Velocity space moment of qm v A  F0
	Parallel Ampere's Law

	Split-weight scheme for electrons
	special case of g = 1

	Comments on how to split the distribution function

	Coordinate system and grid in TEK code
	Poisson's equation and polarization density
	Discussion on cancellation scheme
	Adiabatic electron response ** need to check the derivation
	Poisson's equation with adiabatic electron response

	Polarization density with the velocity integration performed
	Gyro-averaging of  in guiding-center coordinates
	Gryo-angle integration in particle coordinates
	The remaining velocity integration can be performed analytically if F0 is Maxwellian
	Final form of polarization density

	Pade approximation
	Long wavelength approximation of the polarization density
	Polarization density expressed in terms of Laplacian operator


	Polarization density matrix obtained by numerically integrating in phase space using grid
	Direct evaluation of the double gyrophase integration
	Performing the parallel velocity integration
	Toroidal Fourier transform of polarization density in field-aligned coordinates
	Using MC integration, to be continued, not necessary

	Implementation of gyrokinetics in particle-in-cell (PIC) codes
	Monte-Carlo evaluation of distribution function moment at grid-points
	Monte-Carlo sampling of 6D guiding-center phase-space 
	Distribution function transform**check
	Moments of distribution function expressed as integration over guiding-center variables

	Diamagnetic flow **check**
	Transform gyrokinetic equation from (X, , , ) to (X, , v, ) coordinates
	Transform gyrokinetic equation from (, A) to (E, B)
	Expression of B in terms of A
	Expression of B in terms of A
	Expressing the perturbed drift in terms of E and B
	Expressing the coefficient before F0 /  in terms of E and B

	Drift-kinetic limit
	Linear case
	Transform from (X, , ) to (X, , v) coordinates
	Parallel momentum equation
	Special case in uniform magnetic field
	Electron perpendicular flow
	Drift kinetic equation
	Parallel momentum equation


	Derivation of Eq. (111), not finished
	Modern view of gyrokinetic equation **wrong**
	About this document

