
Particle In Cell (PIC) simulation
by Youjun Hu

Email: yjhu@ipp.cas.cn
Institute of Plasma Physics, Chinese Academy of Sciences

Abstract

This note reviews the basic theory of Particle-In-Cell (PIC) simulation of plasmas.

1 Particle methods
There are a class of numerical methods that make use of the characteristic lines of hyperbolic Partial Dif-
ferential Equations (PDEs). These methods reduce a hyperbolic PDE to a family of ordinary di�erential
equations that can be integrated from initial values to get the the solution of the original partial di�eren-
tial equation. By using the integration along the characteristic lines, all partial derivatives of the unknown
distribution function with respect to phase-space coordinates are avoided, and thus this method does not
need a regular phase-space mesh to construct numerical approximation to the phase-space partial di�eren-
tial operators. Therefore, this method can be considered as a kind of �mesh-free� method. This enables us
to adopt random sampling of the phase-space, which has the advantage of reducing the error in evaluating
high-dimensional phase-space integration. Since the characteristic lines are usually identical to the orbits
of particles/elements in the phase-space, these methods can be generally called �particle methods�. Lie in
the core of particle methods, are the method of characteristics and Monte-Carlo sampling and integration.

The computational nodes (often called markers/particles/super-particles) in particle methods follow
the particle orbits and thus their positions in phase-space evolve with time, which is one of the di�erences
between the particle methods and the usual Euler-grid-based methods that usually uses �xed grid-points.
The evolving computational nodes in particle method are often called Lagrangian markers while the �xed
grids are often called Euler grid-points. Therefore, particle method is a kind of mesh-free Lagrangian
method.

The so-called Particle-In-Cell (PIC) method, however, is a kind of incomplete particle method, in
which both evolving nodes (mesh-free) and �xed grid-points (mesh) are used. Speci�cly, the kinetic equa-
tion for the particle distribution function in the phase space is solved by using mesh-free particle methods,
whereas Maxwell's eqaution for the electromagnetic �eld are solved by using spatial mesh. To obtain the
source terms in Maxwell's equation at grids, we need to calculate moments of the distribution function
represented by the mesh-free computational nodes. In PIC simulations, the values of a moment at a spa-
tial grid is approximated by the averaged value of the moment in the corresponding spatial cell. This aver-
aging procedure, along with the use of �nite spatial shape function of markers (discussed later), has the
e�ect of reducing (ideally removing) collisions between particles. Collisions, if to be modeled, should be
modeled by other means.

For instance, in solving the Vlasov-Poisson equations by the PIC method, the Vlasov equation for the
phase-space distribution function is solved by using the evolving nodes while the Poisson equation for the
spatial electric potential is solved by using the �xed grid-points. The special nomenclature �particle-in-
cell� refers to the particular way of inferring the value of charge density at the �xed spatial grid-points
from the evolving coordinates of computational markers. Therefore the PIC method is a kind of hybrid
particle-mesh methods.

This note discusses the basic theory of the Particle-In-Cell (PIC) simulation, along with practical
implementation in curvilinear coordinate system. In the process of learning the PIC simulation method, I
have developed several toy Fortran codes to test what I have learned. The numerical results given in these
notes are obtained by using these codes. A copy of these codes can be found at
http://theory.ipp.ac.cn/~yj/codes/pic_1D_src.tar

1.1 Brief history of particle-mesh methods
Particle-mesh (PM) method was invented in the 1950's at LANL for simulation of compressible �uid �ows.
The �rst wide-spread application was for collisionless plasma simulation, for which particle-mesh method
was reinvented in the 1960's and called particle in cell methods. These methods later also obtained popu-
larity in cosmology simulations.

1

2 Phase-space sampling and markers' weight
Particle simulations in space plasma physics community usually use the Cartesian coordinate system,
which is suitable for the simple con�guration considered there. In tokamak physics community, curvlinear
coordinates are usually used because of the toroidal con�guration. (Another di�erence is that the kinetic
equation solved is usually the gyrokinetic one rather than the primitive Vlasov equation.) Since my
research interests are in tokamak plasma, I will primarily use general curvilinear coordinate system in pre-
senting the PIC method. Speci�cly, the Jacobian of the coordinate system will be explicitly shown in the
formulas.

2.1 Phase-space sampling and Phase space volume sampled by a marker
Suppose the phase space Z = (r; v) is described by general curvlinear coordinates (�; �;
; v�; v� ; v
).
Given a probability density function P = P (�; �;
; v�; v�; v
) that satis�es the following normalization
condition Z

PdV =1; (1)

where
 is the phase space region of interest, dV is the phase-space volume element. In terms of the (�;
�;
; v�; v� ; v
) coordinates, dV is given by dV = jJ rJ v jd�d�d
dv�dv�dv
, where J r is the Jacobian of
transformation from Cartesian space coordinates (x; y; z) to curvlinear coordinates (�; �;
), and J v is
the Jacobian of transformation from Cartesian velocity coordinates (vx; vy; vz) to curvlinear coordinates
(v�; v�; v
). Using this, the normalization condition (1) is written asZ

P jJ rJ v jd�d�d
dv�dv�dv
=1: (2)

Use this probability density function to sample the phase space region
 with N markers, then the marker
distribution function g is given by

g=N �P: (3)

The de�nition of g implies that the number of markers within a small volume of phase-space dV is given
by

dN = gdV = g jJ rJ v jd�d�d
dv�dv�dv
: (4)

Therefore the average phase space volume occupied (or sampled) by a marker, Vp, is written as

Vp�
dV
dN

=
1
g
: (5)

In practical numerical implementation in a curvlinear coordinate system, I prefer to de�ne P 0 and g 0 by

P 0=P jJ rJ v j; (6)

and

g 0= g jJ rJ vj; (7)

where I explicitly include the coordinates transform Jacobian in the de�nition of P 0 and g 0. Then equa-
tion (1) is written as Z

P 0d�d�d
dv�dv�dv
=1; (8)

equation (3) is written as

g 0=N �P 0; (9)

and the number of particle within the phase-space element d�d�d
dv�dv�dv
 is given by

dN = g 0d�d�d
dv�dv�dv
 (10)

i.e., P 0 and g 0 act respectively like a probability density function and distribution function in curvlinear
coordinates (�; �;
; v�; v�; v
) with the Jacobian equal to unity (i.e., �; �; �; v�; v�; v
 act as Cartesian
coordinates). The reason I do this is as follows. In many simulations, markers are required to be loaded
directly in (�; �;
; v�; v�; v
) coordinates, i.e., these coordinates are directly sampled. Then working in
terms of P 0 and g 0 is more intuitive to me. In terms of g 0, the average phase space volume occupied by a
marker is now written as

Vp=
jJ rJ vj
g 0

: (11)

2 Section 2

The methods of generating random numbers satisfying a given probability density function are discussed
in Sec. 7.

2.1.1 Time evolution of phase-space volume occupied by a marker

Evaluate Vp at the initial location of each marker and then assign this value, Vpj0, to the corresponding
marker, i.e.,

Vpj0=
1

g(rj0;vj0)
=
jJ r(rj0)J v(rj0;vj0)j

g 0(rj0;vj0)
; (12)

where rj0 and vj0 are the initial coordinates of the j th markers.
Further note that any particle distribution function g in any non-relativistic continuous electromag-

netic �eld evolves as dg/dt=0, where d/dt is the convective derivative in the phase space, i.e., the distri-
bution function is constant along a characteristic line. Since Vp=1/g, it follows that,

d

dt
(Vpj)=0; (13)

Therefore, V pj associated with a marker at later time is always equal to the volume initially assigned to it,
i.e., Vpj = Vpj0. This is assumed in most collisionless PIC simulation codes and related to the issue of dis-
crete particle noise. In practical simulation, we use �nite number rather than in�nite number of markers
to represent the marker distribution function g. Due to this reason (the so-called discrete particle e�ect),
dgnumerical/ dt is never exactly zero. We can examine how accurate dgnumerical/ dt � 0 is by numerically
count the number of markers �N in a small phase volume �V around a marker and examining the evolu-
tion of �N /�V . Some choices of the initial state g(x; v; t = 0) can make d(�N /�V) /dt smaller and
thus reduce the noise introduced by the discrete particle e�ect.

2.2 Weights of markers

Denote the physical particle distribution function in question by f (f can be the full-f or �f , depending
on the context). The weight of a marker in this note is de�ned as the number of physical particles carried
by f in the corresponding phase-space volume sampled by the marker, i.e.,

wj= f(Zj)dVpj ; (14)

which, by using Eq. (5), is further written as

wj=
f(Zj)

g(Zj)
(15)

or, by using Eq. (11), is written as

wj=
f(Zj)

g 0(Zj)
jJ r(Zj)J v(Zj)j: (16)

2.2.1 Some discussions

In most PIC codes I wrote, I implement several kinds of marker distribution functions, which can be
chosen via an option. In practice, I primarily use the marker distribution g that is uniform in real space
and Maxwellian in velocity space with a constant temperature (the other forms of marker distributions are
used occasionally for benchmarking purpose), i.e., g is given by

g=
Np

V

�
m
2�Tg

�
3/2

exp
�
¡mv2

2Tg

�
; (17)

where Tg is a constant temperature, Np is the number of markers, and V is the spatial volume of the com-
putational box. This marker distribution satis�es the normalization

R
gdvdr=Np.

[In the literature on �f PIC simulations, the weight de�ned by di�erent authors may di�er by a factor
and this factor is taken into account when calculating velocity moments using the weight. For example, in
Ben's thesis[?], the weight is de�ned as wj? = �f / f0, where f0 is the equilibrium physical distribution
function. Assume that f0 is an Maxwellian distribution with constant temperature Tg, then the marker
distribution given in Eq. (17) can be written in terms of f0 as g = Npf0/(n0V), where n0 is the equilib-
rium number density. Then wj? and the weight wj de�ned above is related by

wj=
�f
g
=

�f
f0Np

n0V =wj?
V
Np

n0: (18)

Phase-space sampling and markers' weight 3

As another example, in the GEM code, the particle weight is de�ned by w? = �f / (nug?), where nu is an
number density unit, and the marker distribution g? is chosen as

g?=

�
m
2�Tg

�
3/2

exp
�
¡mv2

2Tg

�
; (19)

which is related to g de�ned in Eq. (17) by g = g?Np/V . Here g? satis�es the normalization
R
g? dvdr =

V . Then the relation of w?j in GEM and wj in this note is given by

wj=
�f
g
=

�f

g?Np/V
=wj?

nuV
Np

; (20)

i.e.,

wj?=wj
Np

(nuxu
3)V

; (21)

where V =V /xu
3 and xu is the length unit used in GEM.]

2.3 Special case: Cartesian coordinates
If we use Cartesian coordinates (x; y; z; vx; vy; vz) to describe the phase space, then it is obvious that
J r=1 and J v=1.

3 Spatial shape of markers

A marker (super-particle) in PIC simulations represents a group of physical particles, which has their own
distribution function given by

fp(v; r)=wp
1
J v

�(v¡vp)S(r¡ rp); (22)

where the subscript p denotes quantities on a marker, wp is the weight of the marker de�ned above, � is
the Dirac delta function, S is the spatial shape function. [The Dirac delta function �(v ¡ vp) has a phys-
ical dimension of 1/ jvj. Similarly the spatial shape function S(r ¡ rp) is of physical dimension of 1/ jrj.
Therefore the physical dimension of fp given in expression (22) is 1/(jvjjrj), consistent with the physical
dimension of a distribution function.]

In standard PIC simulation, the shape of markers in velocity space is always a Dirac delta function,
i.e., all the physical particles represnted by a marker have the same veloicty vp. However, �nite-size shape
in spatial space is usually needed, i.e., the physical particles represented by a marker have di�erent spatial
locations. This has the e�ect of making the resulting self-consistent �eld more smooth, reducing (ideally
completely removing) the arti�cial collision e�ects (the interaction among close particles) associated with
using very few markers to approximate a plasma that has many physical particles in a Debye sphere[7].

A 3D shape function can be constructed by combining three 1D shape functions and the Jacobian of
the coordinate system. For example, in (�; �;
) coordinate system, a 3D shape function is written as

S(r¡ rp)=
1
J r

�
1

��p
S1D

�
�¡�p
��p

���
1

��p
S1D

�
� ¡ �p
��p

���
1

�
p
S1D

�

 ¡
p
�
p

��
; (23)

where J r = J r(�; �;
) is the Jacobian of (�; �;
) coordinate system, ��p, ��p, and �
p are the scale-
lengths of the support of the 1D shape function S1D along �, �, and
 directions, respectively. The 1D
shape function S1D should satisfy the following normalization:Z

¡1

1
S1D(�¡ �p)d�=1; (24)

where � is one of the spatial coordinates. The reason to include the Jacobian in the de�nition of the 3D
shape function is that this makes fp be consistent with the de�nition of a distribution function, i.e., sat-
isfy the following normalization: Z

fpdvdr=wp; (25)

i.e., Z
¡1

1 Z
¡1

1 Z
¡1

1�Z
¡1

+1
fpdv

�
J d�d�d
=wp: (26)

4 Section 3

While not strictly necessary, symmetric shapes are usually chosen, i.e. S1D has the property: S1D(� ¡
�p) = S1D(�p ¡ �). The support of S1D should be compact (i.e. it is zero outside a small region) so that
physical particles represnted by the marker are localized to a small portion of the space. Compact support
of S1D can make the deposition and gathering operations (defined later) computationally efficient.
Modern PIC codes usually use the so-called b-splines as the spatial shape functions. The b-spline func-
tions are a series of consecutively higher order functions obtained from each other by integration:

bl(�)=

Z
¡1

1
bl¡1(�

0)b0(�¡ � 0)d� 0 (27)

with the 0th b-spline being the �at-top function de�ned as

b0(�)=

�
1
0

for j� j< 1/2
other

: (28)

Then, by using Eqs. (27) and (28), it is ready to derive the expression of b1(�), which is given by

b1(�)=

�
1¡ j� j
0

for j� j< 1
other

: (29)

The graphics of the �rst two b-splines, b0(�) and b1(�), are shown in Fig. 1.

0

0.5

1

1.5

−1 −0.5 0 0.5 1

ξ

b0(ξ)
b1(ξ)

Figure 1. Graphics of the �rst two b-splines, b0(�) and b1(�).

The 1D shape function based on the b-spline function is then given by

S1D(�)= bl(�); (30)

Most PIC codes use b0, i.e, the �at-top function, as the shape function and choose the support of the
shape function �p equal to the grid spacing. (k-spectra of particle shape functions, to be continued)

The shape functions are essentially identical to the basis functions used in �nite element methods.
The spatial shape of markers determines how physical particles represented by a marker are distrib-

uted to spatial cells (called deposition) and also how the force on a marker is related to the nearby elec-
tromagnetic �eld. Let us consider these in turn.

3.1 Integration in velocity space

The physical particle distribution is the sum of all the particle elements given in expression (22), i.e.,

f =
X
p

fp=
X
p

wp
1
J v

�(v¡vp)S(r¡ rp): (31)

Consider a general velocity moment of the distribution function:

I(r)=

Z
¡1

1
A(v)f(r;v) dv; (32)

where A(v) is a known function. Using expression (31), the above moment is written as

I(r)=
X
p

S(r¡ rp)wp

Z
¡1

1
A(v)

1
J v

�(v¡vp) dv: (33)

Spatial shape of markers 5

By using the property of the Dirac delta function, the above equation is written as

I(r)=
X
p

wpA(vp)S(r¡ rp): (34)

3.2 Cell-averaged velocity moment
One of the most important methods of reducing collisions between markers when using very few markers
to approximate a system with much more physical particles is to solve Maxwell's equation on discrete
grids and use the cell-averaged moments obtained from markers as the source term in the �eld equation.

To be clear, grid points and the corresponding cells are de�ned as illustrated in Fig. 2 for the 1D case.

cell

grid grid

cell cell

grid

Figure 2. De�nition of spatial grid points and cells in PIC simulations. A grid point is the center of the corre-
sponding cell.

Field solvers in PIC code usually need the values of I at the grid-points. This value at the grid point
is de�ned as the average of I over the corresponding cells (similar to that in the �nite element method),
i.e.,

Ii;j ;k� I(�i; �j ;
k)�
1
�V

Z
�i¡1/2

�i+1/2
Z
�j¡1/2

�j+1/2
Z

k¡1/2

k+1/2
I(�; �;
)Jd�d�d
; (35)

where �V =
R
�i¡1/2

�i+1/2
R
�j¡1/2

�j+1/2
R

k¡1/2

k+1/2Jd�d�d
 is the cell volume, which can be approximated as �V �
J�����
. Using Eqs. (34), the above expression is written as

Ii;j ;k=
1
�V

Z
�i¡1/2

�i+1/2
Z
�j¡1/2

�j+1/2
Z

j¡1/2

j+1/2X
p

wpA(vp)S(r¡ rp)Jd�d�d
: (36)

Using the shape function given in expression (23), the above expression is written as

Ii;j ;k =

1
�V

X
p

wpA(vp)

Z
�i¡1/2

�i+1/2
Z
�j¡1/2

�j+1/2
Z

j¡1/2

j+1/2
�

1
��p

S1D

�
�¡�p
��p

���
1

��p
S1D

�
�¡ �p
��p

���
1

�
p
S1D

�

 ¡
p
�
p

��
d�d�d
;

(37)

where the Jacobian is cancelled out. The 3D integration in expression (37) consists of three identical 1D
integrations. Consider one of them:

W =
1

��p

Z
�i¡1/2

�i+1/2
S1D

�
�¡�p
��p

�
d�; (38)

Consider the case ��p = ��, and choose S1D to be the l th order b-spline function, bl, then the above
expression is written as

W =
1
��

Z
�i¡1/2

�i+1/2
bl

��¡�p
��

�
d� (39)

= bl+1

��i¡�p
��

�
; (40)

where bl+1 is the (l + 1)th order b-spline function. [Proof of Eq. (40): Using the property of the zeroth
order b-spline function b0 (a �at top function), the integration (39) can be written as

W =
1
��

Z
¡1

1
bl

��¡�p
��

�
b0

�
�¡�i
��

�
d�

By using the de�nition of the b-splines, we �nd the above expression is a b-spline function that is one
order higher than the corresponding b-spline shape function, i.e.,

W = bl+1

��i¡�p
��

�
:

6 Section 3

] Therefore expression (37) is written as

Ii;j ;k=
1
�V

X
p

wpA(vp)bl+1

� �i¡�p
��

�
bl+1

�
�j¡ �p
��

�
bl+1

�

k¡
p
�

�
: (41)

In terms of the b-spline functions, the local value I(�; �;
) given by expression (34) is written as

I(�; �;
)=
1
�V

X
p

wpA(vp)bl

� �¡�p
��

�
bl

�
�¡ �p
��

�
bl

�

 ¡
p
�

�
: (42)

It is instructive to compare expression (41) with (42), which indicates that they are similar except that
the b-spline functions involved in the cell-averaged expression (41) is one order higher than that involved
in the local expression (42).

3.3 E�ective �eld on a marker
The e�ective �eld on a marker is de�ned as the averaged �eld on the group of particles represented by the
marker. To get the averaged �eld, we need to reconstruct a continuum electric �eld. The continuum elec-
tric �eld is usually reconstructed using the assumption that the �eld is constant in each cell, i.e., piecewise
constant function, i.e.,

E(�; �;
)=
X
i;j ;k

Ei;j ;kb0
�
�¡�i
��

�
b0

�
�¡ �i
��

�
b0

�

 ¡
i
�

�
; (43)

where Ei;j ;k is the �eld value at grid-points (centers of cells) obtained by solving the �eld equation. The
electric �eld on a computational marker is the average of the electric �eld over all the physical particles
contained in the marker, i.e.,

Ep=
1
wp

Z
¡1

+1Z
¡1

+1Z
¡1

+1
E(�; �;
)

�Z
fpdv

�
J rd�d�d
 (44)

Using fp given in Eq. (22) in the above equation, we obtain

Ep =

Z
¡1

+1Z
¡1

+1Z
¡1

+1
E(�; �;
)

�
1

��p
S1D

�
�¡�p
��p

���
1

��p
S1D

�
� ¡ �p
��p

���
1

�
p
S1D

�

 ¡
p
�
p

��
d�d�d
;

(45)

where the Jacobian and wp disappear. Use the reconstructed electric �eld [Eq. (43)] in the above equa-
tion, giving

Ep =X
i;j ;k

Ei;j;k

Z
¡1

+1Z
¡1

+1Z
¡1

+1
b0

�
�¡�i
��

�
b0

�
�¡ �i
��

�
b0

�

 ¡
i
�

�
1

��p
S1D

�
�¡�p
��p

�
1

��p
S1D

�
� ¡ �p
��p

�
1

�
p
S1D

�

 ¡
p
�
p

�
d�d�d

If we choose the shape function S1D as the b-spline function bl with ��p = ��, ��p = ��, and �
p =
�
, then the above equation is written as

Ep=
X
i;j ;k

Ei;j ;kbl+1

� �i¡�p
��

�
bl+1

�
�j ¡ �p
��

�
bl+1

�

k¡
p
�

�
; (47)

which speci�es how the e�ective �eld on a marker is related to the nearby �eld on the grid-points.

3.4 Numerical implementation in codes
Most PIC codes use the l = 0 b-spline function (i.e., b0, the �at-top function) as the shape function of
markers. This model is often called Could in Cell (CIC) since a particle looks like a �nite-sized cloud
rather than a point. In this case, the cell average of I given in Eq. (41) is written as

Ii;j ;k=
1
�V

X
p

wpA(vp)b1

� �i¡�p
��

�
b1

�
�j ¡ �p
��

�
b1

�

k¡
p
�

�
(48)

and the electric �eld on the marker given in Eq. (47) is written as

Ep=
X
i;j;k

Ei;j;kb1

��i¡�p
��

�
b1

�
�j¡ �p
��

�
b1

�

k¡
p
�

�
; (49)

Spatial shape of markers 7

Because the function b1 has a narrow support, as shown in Fig. 1, in practice of calculating Ii;j ;k in
expression (48), we loop over each particle for only once and assign the contribution of each one to their
neighbouring cells (rather than looping over all particle for each cell as the straightforward reading of
expression (48) would suggest). The operation of the latter would be O(N � Np), where N is number of
grids and Np is the number of markers, while the former is only O(nNp), where n is the number of opera-
tion involved in assigning each particle to its neighbouring cells, which is usually much smaller than the
grid number N .

Similarly, in calculating the force on a marker, the summation over all the grids (as the straightfor-
ward reading of expression (49) would suggest) is not needed. We only need to �nd which cell a marker is
in and then sum the contribution from the nearby grids (rather than all the grids).

3.5 E�ective force on a marker
The total charge of a group of particles represented by a maker, Q, is given by Q =

R
qfpd

6v, where q is
the charge of a single particle. Then the e�ective force on a marker is then Fp = QEp with Ep given by
Eq. (46). The total mass of a group of particles represented by a marker, M , is given by M =

R
mfpd6v,

where m is the mass of a single particle. Then the ratio between Q and M is written as

Q
M
=

R
qfpd6vR
mfpd6v

=
q
m
; (50)

which is identical to the single particle charge mass ratio. Note that the motion equation of a particle in
an electromagnetic �eld is distinguished only by this ratio. Therefore motion of a marker in the phase
space is identical with the motion of a real particle with the e�ective �eld given by Eq. (46).

3.6 Monte-Carlo integration in phase-space
Consider a general moment of the distribution function f in the phase-space

I �
Z

0
A(Z)f(Z) dV ; (51)

where
0 is a sub-region of the phase space
, A(Z) is a general function of the phase-space coordinates
Z, dV is the phase space volume element. As is discussed above, in particle methods, f(Z) is approxi-
mated by

f(Z)�
X
j=1

N

wjSps(Z¡Zj); (52)

where Sps(Z ¡ Zj) is the phase space shape function of markers, N is the total number of marker loaded
in the phase space
. Using this, expression (51) is written as

I =
X
j=1

N Z

0
A(Z)wjSps(Z¡Zj)dV ; (53)

If the shape function Sps is chosen to be the Dirac delta function, then the above equation is written as

I =
X
j=1

N 0

A(Zj)wj ; (54)

where N 0 is the number of markers that are within the sub-region
0. Equation (54) is the Monte-Carlo
approximation to the integration in Eq. (51)[4, 2].

In PIC simulations, we are usually interested in the velocity moments of f , i.e., A in Eq. (53) is only
a function of only v and the velocity integration is over the whole velocity space, whereas the spatial inte-
gration in over a small spatial cell. Furthermore, in PIC simulations, the markers are assumed to have a
�nite shape in real space (the shape in velocity space is still the Dirac delta function). In this case, Eq.
(53) is written as

I =
X
j=1

N Z
v
A(v)wj�(v¡vj)

�Z
�Vr

Sr(r¡ rj)dr
�
dv;

=
X
j=1

N

A(vj)wj

�Z
�Vr

Sr(r¡ rj)dr
�
; (55)

8 Section 3

where Sr is the shape function. Then the cell-averaged value of I is written as

I
�Vr

=
X
j=1

N

A(vj)wj

�
1

�Vr

Z
�Vr

Sr(r¡ rj)dr
�
: (56)

Note that the phase-space volume occupied (or sampled) by a marker is di�erent from the concept of the
spatial-shape of a marker.

3.7 On accuracy and noise: particle methods vs. Euler-grid-based methods

The overall error of the Monte-Carlo approximation given in Eq. (54) always scales like 1/ N 0
p

, which is
independent of the dimensionality of the phase-space. It is easy to demonstrate that the overall error of
the usual regular-grids approximation to the integration scales like 1/N 01/d, where d is the dimension of
the phase space[4]. This fact implies that Monte-Carlo approximation is more accurate than the regular-
grids methods for high-dimension (d> 3) integration. Due to this reason, particle methods can be consid-
ered more accurate than the Euler-grid-based methods for the same number of sampling points in a high-
dimensional (>3) phase space.

On the other hand, PIC simulations obviously contain unphysical noise. The noise is due to the dis-
crete marker e�ects, which can be further categorized into two types: sampling noise (�uctuation of the
sampling error) and remaining unwanted collisions in a collisionless simulation.

Due to the limited small number of markers used in PIC code, there are considerable time and spatial
�uctuation over the the number of markers in a spatial-cell. This �uctuation in the number of sampling
points (i.e., �uctuation of the sampling error) gives rise to the sampling noise.

Inaccuracy in a PIC simulation is also related to the fact that the phase-space volume sampled by a
marker is assumed to be constant in a PIC code but this assumption is not strictly satis�ed in practice
due to (1) the number of markers being not large enough and (2) the resulting self-consistent �eld being
not smooth enough, which introduce e�ective collisional e�ects, making the conservation of the phase-
space volume less accurate. How well the phase-space volume is conserved depends on the smoothness of
the �eld: smooth �eld means less collisions and thus phase-space volume are better conserved. PIC simu-
lation codes seek to reduce the collision through using �nite-size particles (discussed in Sec. 3) and aver-
aging in a spatial cell in solving for the electromagnetic �elds, which e�ectively smooth the �elds. This
kind of PIC simulations are thus designed for collisionless plasmas. And the remaining collisional e�ect
should be small enough to not a�ect the process of interest. And this remaining collisional e�ects should
be viewed as numerical artifacts rather than a modeling of any real collisional e�ect in plasmas. If we
want to model the real collisional e�ect in PIC simulation, we need to use other techniques rather than
relying on the remaining collisions mentioned above because the latter is not easy to control and ideally
should be completely removed.

Various noise reduction techniques in PIC codes (e.g., �nite-size particles, grids, and perturbative �f
method) can be used when the marker number is �xed. When exhausting all these methods, the �nal
brute-force method of reducing noise (reducing collisions) is to increase the marker number. Therefore the
noise issue is �nally a convergence issue about the marker number.

From the view of particle simulations, the gyrokinetic model can also be considered as a noise reduc-
tion technique, where the gyro-averaging process makes the �eld on a marker more smooth.

(Noise in PIC code is equivalent to the remaining arti�cial collision e�ect? We can test this by doing a
test particle simulation, in which we loaded a group of markers to sample a distribution function in the
phase space and then compute the density evolution of the sampled distribution under a given smooth
electromagnetic �eld (i.e., eliminating the collisional e�ect). If there is still signi�cant noise in the time
evolution, then this indicates there are factors other than collisions that contribute to the noise. I did this
when I studied Landau damping, the results indicate there is still signi�cant noise in the solution, indi-
cating the discrete phase space sampling is the root of the noise.)

One thing to note is that the noisy results obtained in particle method are not necessarily less accu-
rate than the smooth results obtained in Euler-grid-based methods because bigger errors may be hidden in
smooth results when one uses coarse grids.

Before the invention of gyrokinetic model, all plasma fully kinetic simulations in 3D space used the
PIC method since the 6-dimensional phase space seems to be too high for Euler-gird-based methods to
handle. With the gyrokinetic model, the dimenionality of the phase space is reduced by one, which makes
it possible for Euler-grid-based method to handle.

Spatial shape of markers 9

Another reason why particle methods are/were more popular than the Eulerian-grid-based methods in
plasma community is the algorithmic compactness and subsequent ease of coding in comparison with the
Eulerian-grid-based methods (really? is this related to that PIC method seems more intuitive at first
glance?). This is not about accuracy or even science. Historical or psychological reasons can partically
account for the popularity of one particular method.

Parallization is easier in PIC codes? The answer may depend on one's experience.
For gyrokinetic simulation of tokamak plasmas, it is not easy to judge which method, particle-based

method or grid-based mthod, is better than the other. When dealing with full Landau collision oprators,
some PIC codes, e.g., XGC, uses grids in velocity space. This may indicate that velocity grids are gener-
ally needed, suggesting that grids-methods may have advantages. On the other hand, hybrid methods that
use both velocity grids and markers may be a practical way since �hybrid� provides us freedoms to use
whatever methods available that can get work done.

3.8 Modeling collisions in PIC simulations

(check**However, the grid-less approach in particle method makes it di�cult to handle general Landau
collision operators that involve the velocity gradients of the distribution function and evaluating these gra-
dients usually needs velocity grids. For some simple collision operators, a corresponding Langevin equa-
tion can be constructed, which makes the collisional e�ect be able to be modeled by stochastic change in
marker trajectories. However, this correspondence can not be found for all collisional operators.)

4 Evolution of distribution functions

The marker weight is composed of two factors, namely the physical distribution function f and the
marker distribution function g. The time evolution of the weight w is thus determined by the time evolu-
tion of f and g, which are discussed in Sec. 4.1 and 4.2, respectively.)

4.1 Time evolution of the physical distribution function

4.1.1 Full-f formula

The collisionless kinetic equation (Vlasov equation) is given by

@f
@t
+v � @f

@x
+

q
m
(E+v�B) � @f

@v
=0; (57)

It is ready to �nd that the characteristic lines of the equation is given by

dx
dt

=v; (58)

and
dv
dt

=
q
m
(E+v�B): (59)

Along a characteristic line, the kinetic equation is written

df
dt

=0; (60)

where f is the total particle distribution function (full-f). Particles methods that use Monte-Carlo sam-
pling to approximate the total f are called total-f or full-f method.

4.1.2 Delta-f formula

Since the phenomena we consider in tokamak plasmas are usually developing from an equilibrium or near-
equilibrium state, it is desirable to calculate the the evolution of the only the perturbation, instead of the
total f . Therefore, we write f as the sum of a known time-independent distribution function f0 (@f0 /
@t=0) and a unknown time-dependent perturbation �f (@�f /@t=/ 0):

f = f0+ �f ; (61)

10 Section 4

Then the kinetic equation (60) is written
d�f
dt

=¡df0
dt

: (62)

Particle methods that use Monte-Carlo sampling to approximate the �f are usually called �f method.
When the right-hand side of Eq. (62) is known, Eq. (62) can be integrated to obtain the time evolution of
�f . The time evolution of �f can also be obtained by using

�f(t;Zj(t))= f(t=0;Zj(t=0))¡ f0(Zj(t)): (63)

In this way, the time integration of �f /dt is avoided, which may reduce the computational overhead and
improve the accuracy of �f . This seemingly trivial method was emphasized in a CPC paper[1], which
introduces an adaptive f0 method based on this idea. I have tested this method in my toy code about the
1D Landau damping, which gave the same results as the usual method. However, Yang Chen pointed out
that this method is never used in simulations of tokamak plasmas due to the following reasons. The
chosen equilibrium distribution function f0 in tokamak plasmas simulation is usually not a solution the
following time-independent Vlasov equation:

v � @f0
@x

+
q
m
(E0+v�B0) �

@f0
@v

=0; (64)

Instead, the chosen f0 is a solution of the following equation

v � @f0
@x

+
q
m
(E0+v�B0) �

@f0
@v

=S; (65)

where S is a nonzero term. On the other hand, the perturbation part is governed by the following equa-
tion

d�f
dt

=¡ q
m
(�E+v� �B) � @f0

@v
: (66)

Then it is ready to prove that the actual kinetic equation for the full f in the usual tokamak simulation is
actually given by

df
dt

=S; (67)

which indicates that f is not a constant along the characteristic curves and thus is not consistent with the
algorithm given in Eq. (63). **may be wrong, check**The case given in Eq. (67) is the more relevant case
to tokamak experiments where a particular form of f0 is maintained by external sources and we are asked
to calculate the perturbation evolution around f0.**wrong!

4.2 Time evolution of marker distribution function
Any particle distribution function g(x;v; t) satis�es that dg/dt=0 for Hamiltonian motion and non-di�u-
sive motion in general. In other words, the phase-space particle flow is volume preserving (this is
Louisville's theorem), i.e.,

dVj
dt

=0: (68)

i.e, the phase-space volume sampled by a marker does not change along the characteristic curves. This is
good news for PIC simulation because the marker distribution is known exactly along the characteristic
line at every time-step and we do not need to numerically evaluate it (numerically evaluating the marker
distribution by directly counting markers would be noisy due to the small number of markers loaded and
should be avoided in practice whenever possible).

For di�usive motion, the phase space particle �ow is usually not volume preserving, i.e.,

dg(Zj)

dt
=/ 0: (69)

For this case, the values of g at markers need to be evaluated numerically every time step, which is usu-
ally noisy and time-consuming in terms of CPU time. Therefore, this kind of evaluation should be avoided
in practice whenever possible. The usual way of achieving this is by choosing a suitable initial distribution
for the markers, so that g remains approximately constant along the trajectory of markers[3].

The marker distribution chosen in practice is determined by the desired resolution of phase space of
interest, not determined by the physical particle distribution, i.e., the initial marker distribution can be
di�erent from the physical particle distribution.

Evolution of distribution functions 11

4.3 Time evolution of marker's weight
As mentioned in Sec. 2.2, marker's weight, w = f / g, is composed of two factors, namely the physical dis-
tribution function f and the markers' distribution function g. The time evolution of the weight w is thus
determined by the time evolution of f and g.. In some cases, the formula for the time evolution of both f
and g can be obtained analytically, as discussed in Sec. 4.1 and 4.2, respectively. [*check**In other cases,
the formula for the time evolution of f and/or g can not be easily obtained but the formula for the time
evolution of w can still be obtained analytically. A typical example of this kind is the full-f simulation
including the collision e�ects in the orbits. In this case, the phase-space �ow is not volume-conserving,
i.e., dg/dt=/ 0, and it is di�cult to �nd an analytic formula for the time evolution of g. However, the con-
servation of the particle number along the orbits in the phase space is still valid (check this!, wrong), i.e.,

dw
dt

=0: (70)

Does this algorithm correctly describe the �collision�? This algorithm (i.e., including the collision
e�ects via randomly changing the orbit variables) is obviously correct when w is 1, i.e., a marker only rep-
resents one physical particle. The correctness for wj > 1 case should be veri�ed. ***check]. Collisions in
both full-f and �f methods seem to be implemented by including a source term in the evolution equation
for the weight, rather than kicking the orbit (I will check the kicking orbit method later).

5 An example: One-dimensional electrostatic simulation

5.1 Vlasov equation
Consider the electrostatic case. The Vlasov equation (9) for electrons is written

@f
@t
+v � rf + e

m
r� �rvf =0; (71)

where � is the electric potential. Consider the one-dimensional case where f and � are independent of y
and z coordinates. In this case, the above equation is written

@f
@t
+ vx

@f
@x

+
e
m

d�
dx

@f
@vx

=0 (72)

Integrating both sides of the above equation over vy and vz, we obtain

@F
@t

+ vx
@F
@x

+
e
m

d�
dx

@F
@vx

=0; (73)

where F (x; vx; t) =
R
¡1
1 R

¡1
1

fdvydvz is the reduced distribution function. De�ne characteristic lines by
the following ordinary di�erential equations:

dx
dt

= vx; (74)

and
dvx
dt

=
e
me

d�
dx

: (75)

Then along a characteristic line, we obtain
dF
dt

=0; (76)

which indicates that the distribution function F remain unchanged along a characteristic line.

5.2 Poisson's equation
In terms of the reduced distribution function F , Poisson's equation is written

¡ d2�
dx2

=
e
"0

�
nion¡

Z
¡1

1
Fdvx

�
; (77)

where nion is the number density of ions, which are assumed to be uniform in x and not evolving with
time.

12 Section 5

5.3 Equilibrium state
Consider a spatially uniform distribution function given by

F (x; vx; t)=F0(vx); (78)

where F0(vx) is a known velocity distribution function with number density being equal to those of ions,
i.e.,

R
¡1
+1

F0(vx)dvx=nion. Consider a case with zero electric �eld, i.e.,

E(x; t)=0: (79)

Then it is ready to verify that expression speci�ed by Eqs. (78) and (79) is a equilibrium solution to
Vlasov-Poisson system (Eqs. (73) and (77)).

In this note, two kind of equilibrium distribution functions will be considered. The �rst one is the
Maxwellian distribution given by

F0(vx)=
ne0
�

p
vt
exp

�
¡ v

2

vt
2

�
: (80)

In this system, small perturbation will be damped by a mechanism known as Landau damping. The
second kind of distribution considered is the two-stream Maxwellian distribution given by

F0(vx)=
ne0
�

p
vt

1
2

�
exp

�
¡(v¡ vb)

2

vt
2

�
+ exp

�
¡(v+ vb)

2

vt
2

��
: (81)

In this system, small perturbation will give rise to an instability known as the two-stream instability.

5.4 �f evolution
Write the distribution function F as

F =F0+ �F ; (82)

where F0 is the equilibrium distribution function. Then Eq. (76) is written as

d�F
dt

=¡dF0
dt

: (83)

Use the de�nition of the orbit propagator,

d
dt
� @
@t
+ vx

@
@x

+
e
m

d�
dx

@
@vx

; (84)

to rewrite the right-hand side of Eq. (83), yielding

d�F
dt

=¡
�
e
m

d�
dx

@F0
@vx

�
; (85)

which can be integrated to obtain the time evolution of �F .
The time evolution of �F can also be obtained by using

�F (Zj(t))=F (Zj(t=0))¡F0(Zj(t)): (86)

In this way, the time integration of �F /dt is avoided, which may reduce the computational work load and
improve the accuracy of �F . This seemingly trivial method was emphasized in a CPC paper[1], which
introduces an adaptive F0 method based on this idea. I have compared the results of Landau damping
obtained by the two methods (i.e., using Eq. (85) and Eq. (86), respectively), which shows they agree
with each other very well.

5.5 Normalization
Choose a typical number density n0 and a typical velocity v0, then de�ne the electron plasma frequency
!pe and the Debye length �D as

!pe=
n0e2

me"0

r
; (87)

and

�D=
v0
!pe

; (88)

An example: One-dimensional electrostatic simulation 13

respectively. Using !pe and �D, de�ne the following normalized quantities:

t= t!pe; x=
x
�D

; �=
e�

mev0
2 ; F =

v0
n0
F ; vx=

vx
v0
; ni=

ni
n0

(89)

In terms of these normalized quantities, equation (76) is written

dF
dt

=0; (90)

and the Poisson equation (77) is written
d2�

dx2
=¡�: (91)

where �=nion¡
R
¡1
1

Fd vx.
The equations for the characteristic lines, Eq. (74) and (75), are written

dx
d t

= vx; (92)

d vx
d t

=
d�
d x

: (93)

The electric �eld is given by E=¡d�/dx, which, in terms of normalized quantities, is written

E=¡ d�
dx

; (94)

where E=Ee�D/(mv0
2).

In terms of the normalized quantities, the evolution equation (85) of �F is written as

d�F
d t

=E
@F0
@vx

(95)

In terms of �F , Poisson's equation is written as

d�

d x2
=

Z
¡1

1
�F d vx; (96)

where nion=ne0 has been assumed.

5.6 Boundary condition for �eld
The periodic boundary condition is used for the electrical field E, i.e., the electric field on the right
boundary is set equal to that on the left boundary.

5.7 Boundary condition for particles
The periodic boundary condition is also used for markers, i.e., a marker that leaves from the right
boundary will re-enter the computational region from the left boundary and vice versa.

5.8 Evaluation of particle number density
Set up uniform grid-points in x-direction: xj = j� for j = 0; 1; 2; :::; N , as is shown in Fig. 3. Use the �rst
b-spline (�at-top function) with a support �p=� as the shape function of markers. It is obvious that we
can use the following procedures to obtain the number of physical particles in each cell. For a particle
marker labeled by k whose position is x = r, we can �nd which two grids the particle lies between. Sup-
pose that r is between xj and xj+1, then the particle number nj and nj+1 is evaluated as follows

nj!nj+wk �
xj+1¡ r

�
; nj+1!nj+1+wk �

r¡xj
�

; (97)

where wk is the weight of the marker. Performing the same procedures for each marker in turn allows us
to build up nj at all the grid points (all nj are set to zero before these procedures).

The particle number at the boundary grid-points j = 0 and j =N needs special treatment. The above
treatment do not include the contribution to n0 from the left cell of the j = 0. Since we use periodic
boundary condition, the contribution to n0 from the left cell of the j = 0 grid is identical to the contribu-
tion to nN from the left cell of the j =N grid. The latter has already been calculated in the above, which
can be added to n0 obtained above to get the �nal n0. The same situation applies for nN . After these
treatment, we have n0=nN.

14 Section 5

Dividing the particle number nj by the cell size � gives the number density.

5.9 FFT solver for Poisson equation
The normalized one-dimensional Poisson equation is given by Eq. (91). For notation simplicity, omit the
over-bar on � and x, then Eq. (91) is written

d 2�

dx2
=¡�: (98)

This is a two-points boundary value problem. Two boundary conditions are needed to determine the solu-
tion. Assume the periodic boundary condition �(0) = �(L) and note that � can contain an arbitrary con-
stant. Thus the periodic boundary condition alone is sufficient to specify the electrical field. We use
Fourier transformation method to solve Eq. (98). The Fourier transformation of the left-hand side of the
above equation is written Z

¡1

1 d 2�

dx2
eikxdx = ¡k2

Z
¡1

1
�eikxdx

= ¡k2�̂(k); (99)

where �̂ is the Fourier transformation of �. Using this, the Fourier transformation of Eq. (98) is written

�̂(k)=
�̂(k)

k2
; (100)

where

�̂=

Z
¡1

1
�(x)eikxdx (101)

is the Fourier transformation of �. After �̂ is obtained, the electric potential � is �nally reconstructed via
the inverse Fourier transformation

�=
1
2�

Z
¡1

1
�̂(k)e¡ikxdk: (102)

In the numerical implementation, the Fourier transformation in Eq. (101) and the inverse transformation
in Eq. (102) are discretized by the Discrete Fourier Transformation (DFT), which is further evaluated by
using the FFT algorithm (I use the FFTW library). Set up uniform grid-points in x-direction: xj= j� for
j=0; 1; 2; :::; N , as is shown in Fig. (3).

L = N∆

∆

0 1 2 N − 1 N

Figure 3. One-dimensional spatial computational box and grids.

Let �j = �(xj) and �j = �(xj). Let �̂j and �̂j denote the corresponding DFT. Using the sampled
points �j with j = 0; 1; 2; :::; N ¡ 1, we can obtain the DFT �̂j. Note that the corresponding wave-number
k of �̂j (also for �̂j) is given by k= j2�/(N�) for j = 0; 1; :::; N /2 and k= (j ¡N)2�/(N�) for j =N /

2+ 1; :::; N ¡ 1 (this corresponds to the negative wave-number part). Use Eq. (100) and the corresponding
expression of the wave-number, the discrete form of Eq. (100) is written

�̂j=
�̂j

[j2�/(N�)]2
: (103)

for j=1; 2; :::;N /2, and

�̂j=
�̂j

[(j ¡N)2�/(N�)]2 (104)

for j = N /2 + 1; N / 2 + 2; :::; N ¡ 1. The j = 0 case is a special one because in this case k = 0 and k
appears in the denominator of (100). Since the overall charge neutrality

R
¡1
1

�dx = 0 implies �̂0 = 0. we
usually set �̂0=0. After obtaining �̂j with j=0; 1; :::;N ¡ 1, we can obtain �j through the inverse DFT.

Knowing the electron potential �j, the electric �eld is obtained through the following central di�erence
scheme

Ej=¡
d�
dx

����
x=xj

=¡�j+1¡ �j¡1
2�

: (105)

An example: One-dimensional electrostatic simulation 15

The electric �eld at the boundary points are obtained by using the periodic boundary conditions of �.
In the above we use Fourier transformation method to get the electric potential and then use �nite dif-

ference scheme to calculate the electric �eld. This is a mixed way to calculate the electric �eld. We can
use only Fourier transformation method to solve for the electric �eld. In terms of the electric �eld, Poisson
equation (91) is written

dE
dx

= �: (106)

For notation simplicity, omit the over-bar on variables, the above equation is written

dE
dx

= �: (107)

The Fourier transformation of the left-hand side of the above equation is writtenZ
¡1

1 dE
dx

eikxdx =

Z
¡1

1
eikxdE

= Eeikxj¡1+1¡ ik
Z
¡1

1
Eeikxdx

= ¡ik
Z
¡1

1
Eeikxdx (108)

= ¡ikÊ ;

where Ê is the Fourier transformation of E. Using this, the Fourier transformation of Eq. (107) is written

Ê=
�̂
¡ik; (109)

The discrete form of Eq. (109) is similar to the form given in Eqs. (103) and (104), i.e.,

Êj=
�̂j

¡i[j2�/(N�)] : (110)

for j=1; 2; :::;N /2, and

Êj=
�̂j

¡i[(j ¡N)2�/(N�)] (111)

for j=N /2+ 1;N /2+2; :::;N ¡ 1.

5.10 Finite di�erence solver for Poisson equation
Using the center di�erence scheme for the second order derivative, the discrete form of Eq. (98) is written

�i¡1¡ 2�i+ �i+1=¡�2�i (112)

Using the boundary condition �0= �N¡1= 0, equation (112) is written in the following tridiagonal matrix
form:

A�= b (113)

where

A=

0BBBB@
¡2 1 0 0 0
1 ¡2 1 0 0
��� ��� ��� ��� ���
0 0 1 ¡2 1
0 0 0 1 ¡2

1CCCCA; b=¡�2

0BBBB@
�1
�2
���
�N¡3
�N¡2

1CCCCA (114)

The results presented in this note are obtained by using the FFT solver, instead of the �nite di�erence
solver.

5.11 Interpolate the �eld to particle markers
As discussed in Sec. 3, for the spatial shape of markers given by the zero-order b-spline function b0, the
corresponding interpolate function is b1, which corresponds to a simple linear interpolation. Suppose the
location of a marker, rp, is between xj and xj+1, then the electric �eld on the marker is given by

Ep=Ej
xj+1¡ rp

�
+Ej+1

rp¡ xj
�

: (115)

16 Section 5

5.12 Integration of orbit and weight of markers

The evolution equation of orbit and weight can be generally written as

dv
dt

=H1(r; v; E); (116)

dw
dt

=H2(r; v;E); (117)

where H1 and H2 are known function. Note that E, as well as r and v, depends on time t. However E is
not speci�ed as an evolution equation. Instead, E is determined by a �eld equation, namely Poisson's
equation.

The classical 4th Runge-Kutta time integrator requires four evaluations of the function appearing on
the right-hand side of the equation of motion per time step. In PIC method, this corresponds to that the
�eld equation needs to be solved for four times. For large-scale simulation (e.g. spatial three-dimension
simulation), solving the �eld equation is usually time-consuming. Considering this, lower order Runge-
Kutta (e.g. 2nd order), which requires fewer times of evaluation of functions (and thus fewer times of
solving the �eld equation) may be preferred in practice.

We use the 2nd Runge-Kutta method to integrate orbit and weight of markers. In this method, r, v,
and w are �rst integrated from tn to the half time-step tn+1/2 using (rn; vn; En) to evaluate the right-hand
side of Eqs. (116) and (117). Then we solve the Poisson's equation at tn+1/2 to obtain En+1/2 using the
already obtained values of (rn+1/2; vn+1/2; wn+1/2). After En+1/2 is obtained, r, v, and w are integrated
from tn to tn+1 by using the values at the half time-step, namely (rn+1/2; vn+1/2; wn+1/2; En+1/2). Forget-
ting to solve the �eld equation at tn+1/2 to get En+1/2 is one of the mistakes I made during writing the
code. Forgetting to do this means that I am still using En, instead of En+1/2, in taking the full step from
tn to tn+1, which amounts to the (inaccurate and thus may be unstable) Euler scheme.

[Besides, the leapfrog scheme (2nd order accuracy) is often adopted to integrate the equations of
motion. This scheme is given by

v(i+1/2)= v(i¡1/2)+ a(i)dt; (118)

x(i+1)=x(i)+ v
(i+1/2)

dt (119)

where ai = ai(xi) is the acceleration of the particle at the time step i. The leapfrog scheme given by Eqs.
(119) and (118) can be equivalently written as[6]

x(i+1)= x(i)+ v(i)dt+
1
2
a(i)dt2 (120)

v(i+1)= v(i)+
1
2
(a(i)+ a(i+1))dt; (121)

The leapfrog scheme given by Eqs. (120) and (121) was implemented in my code, but was not tested seri-
ously (I usually used the 2n Runge-Kutta method discussed above). Note that, for electrostatic case,
a(i+1) is independent of v(i+1) and depends only on x(i+1), which is already obtained by Eq. (120). Thus
the scheme given by Eqs. (120) and (121) is still an explicit scheme.]

5.13 Initial perturbations

In the electrostatic particle simulation, the electric �eld is determined by the particle distribution and
thus no initial condition for the electric field is needed. The equilibrium distribution function can be
chosen to various forms to investigate di�erent physical problems. In this note, a Maxwellian distribution
and a two-stream Maxwellian distribution will be chosen to demonstrate the Landau damping and the
two-stream instability, respectively. In the total-f simulation, the noise associated with the initial sam-
pling of the phase space can provide initial perturbations for some physical instabilities (e.g. two-stream
instability) to develop from the equilibrium state. In this case, we do not need to impose perturbation
manually. However, for other cases where instability is weak or the perturbations are damping (e.g.
Landau damping), manual perturbation to the particle weight is needed. In the �f simulation, we do need
to manually impose perturbation on the equilibrium state. i.e. set �f to nonzero value. Otherwise �f will
be always zero.

An example: One-dimensional electrostatic simulation 17

5.14 Veri�cation of the code by using analytic results of Landau damping
One advantage of �f simulation is that nonlinear e�ects can be readily turned o� by setting the particle
orbits to the unperturbed orbits (orbits in the equilibrium �eld), so that the simulation results can be
compared with analytic results obtained in the linear case. Choose Maxwellian distribution as the equilib-
rium velocity distribution function:

F0(x; vx)=F0(vx)=
ne0
�

p
vt
exp

�
¡ vx

2

vt
2

�
: (122)

In order to impose a single-k (spatial wavenumber) density perturbation, we set the initial value of �F as

�F (x; vx)= 0.001sin(kx)
1

�
p exp

�
¡vx

2

vt
2

�
: (123)

This perturbation will excite an electrostatic wave and this wave will be damped by a collisionless
damping mechanism called Landau damping. Fig. 4 compares the analytic results of Landau damping
with those of the linear �f simulation, which shows good agreement between each other in both the fre-
quency and the damping rate.

−0.0015

−0.001

−0.0005

0

0.0005

0.001

0.0015

0.002

0 5 10 15 20 25

(a)

E
c k

tωpe

delta-f simulation
analytic

−0.0004

−0.0002

0

0.0002

0.0004

0.0006

0.0008

0.001

0 5 10 15 20 25

(b)

E
c k

tωpe

delta-f simulation
analytic

Figure 4. Time evolution of the Fourier cosine component of the electrical �eld Ek
(c) for (a) k = 8 � 2� /L and (b)

k= 16� 2�/L. Initial value of the �f is set as �f = 0.001sin(kx)exp(¡v2/vt2)/ �
p

. Parameters used in the �f simula-
tions are d t= 0.0125, L/�D = 100, dx/�D = 0.25, and N = 2� 105. Uniform random sampling of the phase space is
used. The difference between the linear and nonlinear �f simulations is negligible and only linear �f simulation
results are plotted here. The analytic frequency and damping rate are obtained by numerically solving the electron

plasma wave dispersion relation, which is given by 1 + 2
�
!p

kvt

�
2
[1 + �Z(�)] = 0; where � = !/kvt, vt= 2Te/me

p
, and

Z(�)=
1

�
p

R
C

e¡z
2

z¡ �
dz is the plasma dispersion function[5].

The initial perturbation �F given by Eq. (123) are carried equally by the right-going and left-going
particles. As a result of this, the electron plasma wave excited in the simulation is always a standing-wave
(a standing wave is composed of two waves with the same frequency and wave-number but opposite prop-
agation directions). Figure 5 plots the spatial structure of the electrical �eld Ex at four successive time,
which clearly shows that the wave excited is a standing wave.

−0.0025
−0.002
−0.0015
−0.001
−0.0005

0

0.0005
0.001

0.0015
0.002

0.0025

0 20 40 60 80 100

E
x

x/L

t = 0.00
t = 1.25
t = 2.50
t = 3.75

Figure 5. Spatial structure of the electric �eld at four successive time in the �f simulation with the initial perturba-
tion given by �f = 0.001cos(kx)exp(¡v2/vt2)/ �

p
with k=8� 2�/L. Other parameters are d t= 0.0125, L/�D= 100,

and dx/�D = 0.25; N = 2 � 105 markers with Maxwellian distribution in velocity and uniform distribution in space
are loaded.

18 Section 5

To excite a right-going wave, instead of a standing-wave, we can set the initial value of �F as

�F =

8><>: 2� 0.001sin(kx)
1

�
p exp

�
¡vx

2

vt
2

�
;

0;

for vx> 0
for vx< 0

: (124)

This initial perturbation is not symmetric about vx and thus will carry electric current. Unless otherwise
speci�ed, the remainder of this note will consider only the symmetrical perturbation of the form (123).

5.15 Methods of identifying resonant particles

Analytically, resonant particles are de�ned as those particles whose velocity is close to the phase-velocity
of the wave. These particles are expected to exchange more energy with the waves compared with the
non-resonant particles. Next, we examine the phase-space structure of �F in order to �nd a general way of
identifying the resonant region in the phase-space. The initial phase-space structure of �F is plotted in
Fig. 6a, which shows the �uctuation in x direction and Maxwellian distribution in vx direction. Figure 6b
plots the phase-space structure of �F at t= 20/!pe. It is not obvious what kind of useful information can
be obtained from the figure. Note that lower velocity particles carry more perturbation than higher
velocity particles because of the exp(¡v2 / vt2) dependence in �F . The dominant structure of �F in the
lower velocity region may blur the change of �F in the higher velocity region. To make the change of �F
obvious, de�ne a new function S(v; x) � �F / [exp(¡v2/vt2) / �

p
], which eliminate the initial variation of

�F in vx direction. Figure 7 plots the contour of S(v; x) in phase space (x; v) at t = 0 and t = 20/!pe,
which shows that there are peaks developing near v��2.44 at t= 20/!pe. The location of the peaks of S
in the phase-space, v � �2.44, is very near the phase-velocity of the wave excited in the simulation (vp/
vt=!/kvt=�2.44). Therefore, the peaks of S prove to be a good indication of the resonant region.

-3

-2

-1

 0

 1

 2

 3

 0 20 40 60 80 100

v/
v t

x/L

-0.0006

-0.0004

-0.0002

 0

 0.0002

 0.0004

 0.0006

-3

-2

-1

 0

 1

 2

 3

 0 20 40 60 80 100

v/
v t

x/L

-0.0015

-0.001

-0.0005

 0

 0.0005

 0.001

 0.0015

Figure 6. Contour of �F in phase-space (x; v) at t=0 (left �gure) and t= 20/!pe (right �gure) in the �f simulation
with uniform sampling of phase-space.. Initial value of �F is set as �F = 0.001cos(kx)exp(¡v2/vt2)/ �

p
with k = 8�

2�/L.

-3

-2

-1

 0

 1

 2

 3

 0 20 40 60 80 100

v/
v t

x/L

-0.001

-0.0005

 0

 0.0005

 0.001

-3

-2

-1

 0

 1

 2

 3

 0 20 40 60 80 100

v/
v t

x/L

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

Figure 7. Contour of S(x; vx)� �F /[exp(¡v2/vt2)/ �
p

] at t= 0 (left �gure) and t= 20/!pe (right �gure) in the �f
simulation with uniform sampling of phase-space. Initial value of �F is set as �F = 0.001cos(kx)exp(¡v2 / vt2) / �

p

with k = 8 � 2� /L. The solid lines on the �gure indicate the phase-velocity of the wave excited in the simulation
(vp/vt= !/kvt=�2.44). Other parameters used in the simulation are d t= 0.0125, L/�D= 100, dx/�D= 0.25, N =

2� 105, and [vmin/vt; vmax/vt] = [¡3.5;+3.5].

An example: One-dimensional electrostatic simulation 19

We select the top 500 markers that have large variation in �f / [exp(¡v2/vt2) / �
p

] and then compare
their velocity with the phase-velocity of the wave. The results are plotted in Fig. 8, which con�rms that
these velocities are close to the phase-velocity of the wave. Note that, since the wave excited in the simu-
lation is a standing-wave, which has two opposite phase-velocities, the corresponding resonant velocity
also have two opposite values.

−3

−2

−1

0

1

2

3

100 200 300 400 500

(a)

v
/
v t

sequency number of markers

−3

−2

−1

0

1

2

3

100 200 300 400 500

(b)

v
/
v t

sequency number of markers

Figure 8. Velocity of the top 500 particles that have large variation in �f /[exp(¡v2/vt2)/ �
p

] between t=0 and t=
20/!pe in the �f simulation with Maxwellian velocity sampling (a) and uniform velocity sampling (b). Initial value
of the �f is set as �f = 0.001cos(kx)exp(¡v2/vt2)/ �

p
with k=8� 2�/L. The markers are ordered according to their

magnitude of the variation in �f / [exp(¡v2/vt2)/ �
p

]. The �rst marker has the largest variation. The solid lines on
the �gure indicate the phase-velocity of the wave excited in the simulation (vp/vt = ! /kvt=�2.44). Other parame-
ters used in the simulation are d t= 0.0125, L/�D= 100, dx/�D= 0.25, N =2� 105, and [vmin/vt; vmax/vt] = [¡3.5;+
3.5]; spatial sampling is uniform.

There is difference between Fig. 8a and Fig. 8b, which arises from the different sampling of the
velocity space. In Fig. 8b, we note that the top 50 resonant particles all have positive velocity, which is
nonphysical because there is no preferred direction in the system with a standing wave and symmetric
velocity distribution.

5.16 Energy conservation (check!)
Next we check how well the total energy of the system is conserved in a total-f simulation. The total phys-
ical particles in the system is given by

Ns=
X
j=0

Np

wj ; (125)

The spatial volume occupied by these physical particles is given by V = Ns /n0, where n0 is the equilib-
rium electron number density. Since the length along the x direction of the system is L, the cross section
Syz of volume occupied by these physical particles is given by

Syz=
V
L
=

P
j=0
Np wj

Ln0
: (126)

Then the total electrical energy in the volume is given by

WE=Syz

Z
0

Lx1
2
"0E

2dx�Syz
X
i=1

n
1
2
"0E

2(xi)� (127)

De�ne W0 = (mv0
2 / 2)

P
wj, and the normalized electric energy WE = WE /W0, which can be further

written as

WE=

P
j=0
N wj

ne0L

P
i=1
n 1

2
"0E2(xi)�

(mv0
2/2)

P
wj

=

P
i=1
n 1

2
"0E2(xi) dx

ne0L(mv0
2/2)

=

P
i=1
n 1

2
"0Ei

2 dx

ne0L(mv0
2/2)

�
mv0

2

e�D

�
2

=

P
i=1
n Ei

2 d x

L
: (128)

The total particle kinetic energy in the system is given by

Wk=
X
j=0

Np

wj
1
2
mvj

2: (129)

20 Section 5

De�ne the normalized kinetic energy Wk=Wk/W0, which can be further written as

Wk=

P
j=0
N wj

1

2
mvj

2

(mv0
2/2)

P
wj

=

P
j=0
N wj vj

2P
wj

: (130)

Figure 9 plots the time evolution of WE, Wk ¡Wk(t= 0), and Wk +WE ¡Wk(t= 0), which indicates the
total energy is approximately conserved.

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0 2 4 6 8 10 12 14 16 18 20

t pe

kinetic energy
eld energy

total energy

Figure 9. Time evolution of the electric energy WE, kinetic energy Wk, and total energy Wk + WE ¡ Wk(t = 0).
Wk(t=0)= 0.9991. Full-f simulation without imposing external perturbation.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0 2 4 6 8 10 12 14 16 18 20

t pe

kinetic energy
eld energy

total energy

Figure 10. Time evolution of the electric energy WE, kinetic energy Wk, and total energy Wk + WE ¡ Wk(t = 0).
Full-f simulation with perturbation wj¡!wj+ 0.05wjsin(krj)

5.17 Numerical results for two-stream instability

Choose an equilibrium distribution function F0(x; vx) of the following form:

F0(x; vx)=F0(vx)=
ne0
2

�
1

2�
p

vt
exp

�
¡(v¡ vb)

2

2vt
2

�
+

1

2�
p

vt
exp

�
¡(v+ vb)

2

2vt
2

��
; (131)

An example: One-dimensional electrostatic simulation 21

where ne0 is a constant which is chosen so that ne0 = nion. It is obvious that this initial condition corre-
sponds to an equilibrium state. It is well-known that when vb>vt, this equilibrium is unstable to an insta-
bility called the two-stream instability, which destroys the equilibrium state. In practice, the numerical
noise associated with the PIC method is usually large enough to provide the initial perturbation to make
this instability grow up. Thus, to see the instability, we usually do not need to manually impose any per-
turbation to the equilibrium. Figure 11 plots the distribution of the electron makers in the phase space
(x; v) at t = 0 and t = 17.5 in a full-f simulation. Every particle marker appears as a black dot on Figure
11. Note that, since this is a full-f simulation and the markers are loaded according to the initial distribu-
tion function, statistical weights of all the marker are equal to each other and remain constant during the
time evolution. Therefore more markers means more real particles. And since every particle marker
appears as a black dot on Figure 11, region with denser markers appears blacker. Thus the graphics in
Figure 11 can be considered as contour plots of the distribution function with the brightness indicating
the value (blacker meaning higher value).

-6

-4

-2

 0

 2

 4

 6

 0 10 20 30 40 50 60 70 80 90 100

v/
vt

x/λD

-8

-6

-4

-2

 0

 2

 4

 6

 8

 0 10 20 30 40 50 60 70 80 90 100

v/
vt

x/λD

Figure 11. Electron distribution function in the phase-space evaluated at t = 0 and t = 17.5 for a one-dimensional
electrostatic simulation of the two-stream instability performed with Nloaded = 2 � 104, N = 1024, L/�D = 100, vb/
vt=3, and �t!p= 0.1.

to be continued.
My Fortran code solving the two-stream instability problem is in the directory

/home/yj/project_new/pic_full-f/ of my computer.

6 Summary
In summary, PIC = random sample of phase space (Monte-Carlo integration) + particle spatial shape +
�eld solver + characteristics (particle orbits) and/or marker's weight integrator.

7 Random number

7.1 Uniformly distributed random number
Generating random numbers that are uniform distributed in the range [0; 1] is the basis for generating
non-uniform distribution. Because the same program with the same input always produces the same
output, it is not possible to write a program that produces truly random numbers. However, for most pur-
poses, a pseudo-random number sequence will work almost as well. By �pseudo-random number�, we mean
a repeatable sequence of numbers that has statistical properties similar to a random sequence. The most
well-known algorithm for generating pseudo-random sequences of integers is the linear congruental
method[4], in which the nth and (n+1)th integers in the sequence is related by

In+1=Mod(AIn+C;M); (132)

where Mod is the remainder function, A, C, and M are positive integer constants. The �rst number in the
sequence, which is called the seed value, is selected by users. Equation (132) can generate pseudo-random
number that is uniform distributed in the range [0; M ¡ 1]. The obtained sequence can be scaled by a
factor of M ¡ 1 to lie in the range [0; 1]. Figure 12 plots the possibility density of 106 values returned by
Eq. (132) with parameters A = 16807,C = 0, M = 2147483647 (this choice is called the Park and Miller
method). In practice we need to use Schrange's algorithm to avoid integer over�ow[4].

22 Section 7

 0.975
 0.98

 0.985
 0.99

 0.995
 1

 1.005
 1.01

 1.015
 1.02

 1.025
 1.03

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y

Figure 12. The distribution of the 106 values returned by the the random number generator Eq. (132). The possi-
bility density (value of the distribution function) is obtained by the following steps: (1) divide the range [0; 1] into
100 sub-regions; (2) then counts respectively the number of the returned value whose values are in the sub-regions;
(3) the numbers of value in each sub-region obtained this way is further divided by the total number of values (106)
to give the relativistic possibilities; (4) scale the relativistic possibilities by 100 times, which gives the exact possi-
bility density (this scaling is needed because the sub-region is of length 1/100, instead of unit length). Note that the
value of the possibility density can be larger than one.

Another way to visualize whether the values generated by the random generator are random distrib-
uted in the region [0; 1] is to view how the points (xj ; xj+1) are distributed in the two-dimension plane, as
is plotted in Fig. 13.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x j
+

1

xj

Figure 13. Plot of xj verse xj+1 for j =1; 2; :::; 104. Here xj are random numbers generated by the random number
generator.

7.2 Non-uniformly distributed random number
Consider the problem of generating random numbers that are distributed according to some kind of non-
uniform distribution function. There are two methods of generating non-uniformly distributed random
numbers satisfying a given distribution function, namely, the transformation method and the rejection
method[4]. Let us examine these two methods in turn.

7.2.1 Transformation method

Suppose there are two random variables y and x that are related to each other by y = f(x). If the proba-
bility density of x, Px(x), is known, how do we calculate the probability of the random variable y? Using
the probability conservation, i.e,

Py(y)jdy j=Px(x)jdxj; (133)

we obtain

Py(y)=
Px(x)
jf 0(x)j ; (134)

which gives the relation between Py(y) and P (x). Next, consider the inverse problem of the above, i.e., if
we want to generate non-uniform distribute random numbers y with probability density being Py(y) from
a uniformly distributed random variables x, how do we choose the function f(x)? In this case, P (x) = 1
and Eq. (134) is written

Py(f(x))=
1

jf 0(x)j ; (135)

which can be solved to give f(x). For a general function Py(y), Eq. (135) can not be solved analytically.
For the special case Py(y) = e¡y (Poisson distribution), we �nd that f(x) =¡ln x solves Eq. (135). There-
fore, we can generate Poisson distribution by the following Fortran codes:

Random number 23

call random_number(x) !generate uniformly distributed random numbers in [0:1]
y=-log(x)

The transformation method requires di�erential function f(x) be known, which is not always practical
for a general probability density Py(y). In such cases, we can use the rejection method discussed next.

7.2.2 Rejection method

Suppose that we want to generate non-uniformly distributed random numbers between xmin and xmax that
satisfy a given probability density P (x). To achieve this, we �rst generate a uniform random number xt
between xmin and xmax. Then we generate another uniform random number y between 0 and Pmax, where
Pmax are the maximal values of P (x) for x2 [xmin; xmax]. If P (xt)> y then, xt is kept as a desired random
number, otherwise xt is discarded. Repeat this process, then all the random numbers kept will satisfy the
probability density P (x) (need thinking why, to be proved). This method is called the rejection method.
It is obvious how the rejection method generalizes to multiple-dimensional cases.

7.2.3 Numerical examples

The one-dimensional Gaussian distribution is given by

P (y)=
1

2�
p

�
exp

�
¡(y¡ y)2

2�2

�
: (136)

Figure 14 compares the possibility density of the 106 numbers generated by the numerical code with that
of the analytic form in Eq. (136), which indicates that the numerical result agrees well with the analytic
one.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 1 2 3 4 5 6 7 8 9 10

y

Figure 14. The distribution of the 106 values returned by the the Gaussian distribution generator (using the rejec-
tion method) with the parameters y = 5.0 and �= 1.25. The possibility density (value of the distribution function) is
obtained as follows: (1) divide the range [0; 10] into 100 sub-regions (2) then counts respectively the number of the
returned value whose values are in the sub-regions (3) the numbers of value in each sub-region obtained this way is
further divided by the total number of values (106) to give the relativistic possibilities. (4) scale the relativistic possi-
bilities by 10 times, which gives the exact possibility density (this scaling is needed because the sub-region is of
length 1/10, instead of unit length). The solid line in the �gure is the value obtained by evaluating Eq. (136). The
results indicates that the distribution returned by the Gaussian generator agrees well with the desired theoretic one.

Figure 15 is a plot of xj verse xj+1 for j = 1; 2; :::; 104, which shows how the points (xj ; xj+1) are dis-
tributed in the two-dimension plane.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 1 2 3 4 5 6 7 8 9 10

x j
+

1

xj

Figure 15. Plot of xj verse xj+1 for j = 1; 2; :::; 104. Here xj are random numbers generated by the Gaussian distri-
bution generator.

24 Section 7

8 On the noise of PIC simulation

My comments on the accuracy of the PIC method: The PIC method is more accurate than the semi-
Lagrangian continuous method because the PIC method uses the Monte-Carlo method to evaluate the
high-dimension phase-space integral, which is more accurate than the corresponding methods used in the
semi-Lagrangian algorithm, which uses traditional regular-grids based methods to evaluate the phase
space integral.

wrong or unclearBecause of the discrete representation of continuous media (a marker representing
many physical particles), the PIC method usually gives rise to considerable �uctuations in the solution**.
At present, I do not fully understand why PIC approach gives rise to numerical noise while the continuum
approach does not seem to have this problem.==>Update: I think now I understand the reason: The �uc-
tuation in the number of sampling points per spatial cell gives rise to the noise in the results. However,
this noisy result is not necessarily less accurate than a smooth result (a bigger error may be hidden in a
smooth result).

8.1 Choices of sampling probability function
The probability density function used in making the phase-space sampling can be any reasonable function,
which can be chosen to obtain desired resolution of the phase-space. The most intuitive way of sampling
the phase-space is to sample it using the uniform probability density function, i.e., p(Z) = 1/V , where V
is the total volume of the phase space. Another frequently used sampling scheme is to load particle
markers according to the initial total distribution function of the physical particles. In this case P (Z) =
ftot(Z) /Ns, where Ns is the total number of physical particles, i.e.,

R
V
ftot(Z)d¡ = Ns. (The method of

generating random markers that satis�es a given probability density function is discussed in Sec. 7.)

9 Finite element theory of particle-in-cell method

Because of the use of �nite-size shape, PIC method can also be considered as a kind of �nite element
method[7].

9.1 Finite element expansion of distribution function

f =
X
p

fp(x; v; t) (137)

fp(x; v; t)=NpSx(x¡xp)Sv(v¡ vp) (138)

where Np, xp, and vp are functions of only time t and are independent of x and v.

9.2 Basis functions: particle shape

9.3 Moment equations

@f
@t
+ v

@f
@x

+
qs
ms

E
@f
@v

=0; (139)

X
p

�
@NpSx(x¡ xp)Sv(v ¡ vp)

@t
+ v

@NpSx(x¡ xp)Sv(v ¡ vp)
@x

+
qs
ms

E
@NpSx(x¡ xp)Sv(v ¡ vp)

@v

�
= 0;

(140)

Finite element theory of particle-in-cell method 25

�tmp�

f = f0+ �f (141)

d�f
dt

=¡df0
dt

(142)

d�f /f

dt
=¡1

f
df0
dt

(143)

d�f /f
dt

=¡f0
f
1
f0

df0
dt

(144)

dw
dt

=¡f ¡ �f
f

1
f0

df0
dt

(145)

dw
dt

=¡(1¡w) 1
f0

df0
dt

(146)

to be deleted�

Appendix A From discrete microscopic distribution function to
statistic (continuum) distribution function

A plasma can be considered to be composed of a set of classical point particles, with motion subject to
Newton's equations and with the Lorentz forces and electromagnetic �eld derived from Maxwell's equa-
tions. Because of the huge number of particles in a plasma, the above microscopic representation is
intractable, and simpli�cations must be sought[8].

A usual procedure is to approximate the set of particles by a continuum distribution function. This
step involves some kind of averaging procedure to remove certain spatial and temporal frequencies that
are associated with the graininess of the particle description (particle corelations, i.e., collisions). It is
important to note that approximation is introduced in passing from the microscopic particle representa-
tion to the continuum distribution function.

The averaging procedure involves a small parameter, the so-called �plasma parameter,� which is the
inverse of the number of particles contained in a Debye sphere. The collisionless Boltzmann equation, also
known as the Vlasov equation, emerges from the averaging procedure as the approximation at zero order
in the plasma parameter. What is discarded in the the zeroth order approximation is the so-called colli-
sional e�ects. In the �rst order approximation, there appear additional terms, which is a representation of
the Coulomb collision e�ects.

The discrete microscopic distribution function (Klimontovich-Dupree distribution function) (Chapter 3
in Nicholson (1983)) is written as

F�
M(x;v; t)=

X
p�=1

N�

�x
3(x¡xpa)�v3(v¡vp�): (147)

Then the partial time derivative of F�M is written as

@F�
M(x;v; t)
@t

=
X
p�=1

N�

�v
3(v¡vp�)

@
@t
�x
3(x¡xpa)+

X
p�=1

N�

�x
3(x¡xpa)

@
@t
�v
3(v¡vp�) (148)

= ¡
X
p�=1

N�

�v
3(v¡vp�)

@xp�
@t

�rx[�x3(x¡xpa)]¡
X
p�=1

N�

�x
3(x¡xpa)

@vp�
@t

�rv�v3(v¡vp�)

= ¡
X
p�=1

N�

�v
3(v¡vp�)vp� � rx[�x3(x¡xpa)]¡

X
p�=1

N�

�x
3(x¡xpa)

q�
m�

[EM(xp�)+vp��BM(xp�)] �

rv�v3(v¡vp�) (149)

Using the property of the Dirac delta function:

a�(a¡ b)= b�(a¡ b) (150)

26 Appendix A

expression (149) is written as

@F�
M(x;v; t)
@t

= ¡
X
p�=1

N�

�v
3(v ¡ vp�)v � rx[�x3(x ¡ xpa)] ¡

X
p�=1

N�

�x
3(x ¡ xpa)

q�
m�

[EM(x) + v � BM(x)] �

rv�v3(v¡vp�)

= ¡v � rx
X
p�=1

N�

�v
3(v ¡ vp�)[�x

3(x ¡ xpa)] ¡
q�
m�

[EM(x) + v � BM(x)] � rv
X
p�=1

N�

�x
3(x ¡

xpa)�v
3(v¡vp�)

= ¡v �F�M ¡
q�
m�

[EM(x)+v�BM(x)] � rvF�M ; (151)

i.e.,
@F�

M(x;v; t)
@t

+v �F�M +
q�
m�

[EM(x)+v�BM(x)] �rvF�M =0 (152)

This is the Klimontovich equation of the microscopic distribution function.

Note that Boltzmann equation provide a mesoscopic rather than a microscopic description because of
the spatio-temporal averaging involved in deriving the Boltzmann equation

The particle-in-cell (PIC) method has obvious structural similarities to a direct simulation of the
microscopic model of the plasma outlined above, but this is essentially misleading: Particle-in-cell simula-
tion should be understood to be a Monte Carlo solution of the Boltzmann equation (or the Vlasov equa-
tion), i.e., the PIC method is solving a continuum mesoscopic kinetic equation rather than the primitive
microscopic model of a plasma.

two things that reduce collision: (1) �nite-size particle used in doing the deposition and force iterpola-
tion and (2) �nite grid size used in solving the �eld equation.

The nearest grid point deposition and force interpolation correspond zero sized particle, i.e., delta
function

S(x)=
1
�x

�
�
x
�x

�
: (153)

Bibliography

[1] S.J. Allfrey and R. Hatzky. A revised delta-f algorithm for nonlinear pic simulation. Computer Physics Communica-
tions , 154(2):98 � 104, 2003.

[2] A. Y. Aydemir. A uni�ed monte carlo interpretation of particle simulations and applications to non-neutral plasmas.
Physics of Plasmas , 1(4):822�831, 1994.

[3] Yang Chen and Roscoe B. White. Collisional delta-f method. Physics of Plasmas , 4(10):3591�3598, 1997.
[4] Richard Fitzpatrick. Computational Physics:An introductory course . Richard Fitzpatrick, 2004.
[5] D. A. Gurnett and A. Bhattacharjee. Introduction to plasma physics : with space and laboratory applications . Cam-

bridge University Press, Cambridge, UK, 2004.
[6] Piet Hut and Jun Makino. http://www.artcompsci.org/vol1/v1web/node34.html . Online, 2012.
[7] Giovanni Lapenta. Particle In Cell Methods With Application to Simulations in Space Weather . Online, 2012.
[8] M. M. Turner. Kinetic properties of particle-in-cell simulations compromised by monte carlo collisions. Physics of

Plasmas , 13(3):033506, 2006.

Bibliography 27

	1 Particle methods
	1.1 Brief history of particle-mesh methods

	2 Phase-space sampling and markers' weight
	2.1 Phase-space sampling and Phase space volume sampled by a marker
	2.1.1 Time evolution of phase-space volume occupied by a marker

	2.2 Weights of markers
	2.2.1 Some discussions

	2.3 Special case: Cartesian coordinates

	3 Spatial shape of markers
	3.1 Integration in velocity space
	3.2 Cell-averaged velocity moment
	3.3 Effective field on a marker
	3.4 Numerical implementation in codes
	3.5 Effective force on a marker
	3.6 Monte-Carlo integration in phase-space
	3.7 On accuracy and noise: particle methods vs. Euler-grid-based methods
	3.8 Modeling collisions in PIC simulations

	4 Evolution of distribution functions
	4.1 Time evolution of the physical distribution function
	4.1.1 Full-f formula
	4.1.2 Delta-f formula

	4.2 Time evolution of marker distribution function
	4.3 Time evolution of marker's weight

	5 An example: One-dimensional electrostatic simulation
	5.1 Vlasov equation
	5.2 Poisson's equation
	5.3 Equilibrium state
	5.4 δf evolution
	5.5 Normalization
	5.6 Boundary condition for field
	5.7 Boundary condition for particles
	5.8 Evaluation of particle number density
	5.9 FFT solver for Poisson equation
	5.10 Finite difference solver for Poisson equation
	5.11 Interpolate the field to particle markers
	5.12 Integration of orbit and weight of markers
	5.13 Initial perturbations
	5.14 Verification of the code by using analytic results of Landau damping
	5.15 Methods of identifying resonant particles
	5.16 Energy conservation (check!)
	5.17 Numerical results for two-stream instability

	6 Summary
	7 Random number
	7.1 Uniformly distributed random number
	7.2 Non-uniformly distributed random number
	7.2.1 Transformation method
	7.2.2 Rejection method
	7.2.3 Numerical examples

	8 On the noise of PIC simulation
	8.1 Choices of sampling probability function

	9 Finite element theory of particle-in-cell method
	9.1 Finite element expansion of distribution function
	9.2 Basis functions: particle shape
	9.3 Moment equations

	Appendix A From discrete microscopic distribution function to statistic (continuum) distribution function
	Bibliography

