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Abstract

A routine in operating a tokamake is to reconstruct axisymmetirc
poloidal magnetic field under the constraints of MHD force balance
and various magnetic measurements. This kind of task can be done
by various codes, e.g., EFIT. Another routine in analsing the tokamak
discharge is to constructs a coordinate system, based on the 2D equi-
libriummagnetic field, with a desired form of Jacobian by using discrete
numerical equilibrium data output by the equilibrium reconstructing
codes. These are my notes when learning tokamak equilibrium theory.
These notes are evolving and are written for my own record. I have
been keeping revising these notes for more than 10 years. I enjoy seeing
the continuous improvement of these notes and my understanding of
this simple but important stuff in tokamak physics.

1 Axisymmetric magnetic field

Due to the divergence-free nature of magnetic field, i.e., r�B=0, magnetic field
can be expressed as the curl of a vector field,

B=r�A; (1.1)

where A is called the vector potential of B. (Using a vector potential represen-
tation is helpful in that we do not need to worry about the condition r �B=0
once the magnetic field is in the vector potential form.)

In cylindrical coordinates (R; �; Z), the above expression is written
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Ẑ+

�
@AR
@Z

¡ @AZ
@R

�
�̂: (1.2)

We consider axisymmetric magnetic field. The axial symmetry means that, when
expressed in the cylindrical coordinate system (R; �; Z), the components of
B, namely BR, BZ, and B�, are all independent of �. For this case, it can
be proved that an axisymmetric vector potential A suffices for expressing the
magnetic field, i.e., all the components of the vector potential A can also be
taken independent of �. Using this, Eq. (1.2) is written
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Ẑ+
�
@AR
@Z

¡ @AZ
@R

�
�̂: (1.3)

�. This article has been written using GNU TEXMACS [14].
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In tokamak literature, �̂ direction is called the toroidal direction, and (R; Z)
planes (i.e., �= const planes) are called poloidal planes.

1.1 Poloidal magnetic field

Equation (1.3) indicates that the two poloidal components of B, namely BR and
BZ, are determined by a single component of A, namely A�. This motivates us
to define a function 	(R;Z):

	(R;Z)�RA�(R;Z): (1.4)

Then Eq. (1.3) implies the poloidal components, BR and BZ, can be written as
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; (1.5)
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: (1.6)

(Note that it is the property of being axisymmetric and divergence-free that
enables us to express the two components of B, namely BR and BZ, in terms of
a single function 	(R;Z).) Furthermore, it is ready to prove that 	 is constant
along a magnetic field line, i.e. B �r	=0. [Proof:
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]

The function 	 is usually called the �poloidal flux function� in tokamak
literature because 	 can be related to the poloidal magnetic flux, as we will
discuss in Sec. 1.7.

Using Eqs. (1.5) and (1.6), the poloidal magnetic field Bp is written as

Bp = BRR̂+BZẐ
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= 1
R
r	� �̂

= r	�r� (1.8)
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1.2 Toroidal magnetic field

Next, let's examine the toroidal component B�. Equation (1.3) indicates that
B� involves both AR and AZ, which means that using the potential form does
not enable useful simplification for B�. Therfore we will directly use B�. Define
g �RB�(R; Z), (the reason that we define this quantity will become apparent
when we discuss the forece balance equation) then the toroidal magnetic field is
written

B�=B��̂=
g
R
�̂= gr�: (1.9)

1.3 General form of axisymmetric magnetic field

Combining Eqs. (1.8) and (1.9), we can write a general axisymmetric magnetic
field as

B = Bp+B�
= r	�r�+ gr�: (1.10)

Expression (1.10) is a famous formula in tokamak physics.

1.4 Gauge transformation of 	

Next, we discuss the gauge transformation of the vector potential A in the
axisymmetric case. As is well known, magnetic field remains the same under the
following gauge transformation:

Anew=A+rf ; (1.11)

where f is an arbitrary scalar field. Here we require that rf be axisymmetric
because, as mentioned above, an axisymmetric vector potential suffices for
describing an axisymmetric magnetic field. In cylindrical coordinates, rf is
given by

rf = @f
@R

R̂+ @f
@Z
Ẑ+ 1

R
@f
@�
�̂: (1.12)

Since rf is axisymmetric, it follows that all the three components of rf are
independent of �, i.e., @2f /@R@�= 0, @2f /@Z@�= 0, and @2f /@�2= 0, which
implies that @f /@� is independent of R, Z, and �, i.e., @f /@� is actually a
spatial constant. Using this, the � component of the gauge transformation (1.11)
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is written

A�
new = A�+

1
R

@f

@�

= A�+
C
R
; (1.13)

where C is a constant. Note that the requirement of being axial symmetry
greatly reduces the degree of freedom of the gauge transformation for A� (and
thus for RA�, i..e, 	). Multiplying Eq. (1.13) with R, we obtain the corre-
sponding gauge transformation for 	,

	new=	+C; (1.14)

which indicates 	 has the same gauge transformation as the electric potential,
i.e., adding a constant. (Note that the definition 	(R; Z) � RA� does not
imply 	(R=0; Z)= 0 because A� can adopt 1/R dependence under the gauge
transformation (1.13)).

1.5 Contours of 	 in the poloidal plane

Because 	 is constant along a magnetic field line and 	 is independent of �, it
follows that the projection of a magnetic field line onto (R;Z) plane is a contour
of 	. On the other hand, are contours of 	 on (R;Z) plane also the projections
of magnetic field lines onto the plane? Yes, they are. [Proof. A contour of 	 on
(R;Z) plane satisfies

d	=0; (1.15)

i.e.,
@	
@R

dR+ @	
@Z

dZ=0: (1.16)
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dZ =0: (1.17)

Using Eqs. (1.5) and (1.6), the above equation is written

BZdR¡BRdZ =0; (1.18)

i.e.,
dZ
dR

= BZ
BR

; (1.19)

which is the equation of the projection of a magnetic field line on (R;Z) plane.
Thus, we prove that contours of 	 are also the projections of magnetic field lines
in (R;Z) plane.]
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1.6 Magnetic surfaces

For axial symmetry system, magnetic surfaces can be defined in a trivial way.
The axial symmetry of tokamak magnetic field allows us to introduce a surface
of revolution that is generated by rotating the projection of a magnetic field
line on (R;Z) plane around the axis of symmetry, Z axis. The unique property
of this revolution surface is that no field line point-intersects it and a field line
with one point on it will have the whole field line on it. This revolution surface
is called a magnetic surface. For instance, consider an arbitrary magnetic field
line, whose projection on the poloidal plane is shown in Fig. 1.1. A magnetic
surface is generated by rotating the projection line around the Z axis.

Z

RR

project of a magnetic field line

on (R,Z) plane

Figure 1.1. A magnetic surface in tokamak is a revolution surface generated by
rotating the projection of a magnetic field line in the poloidal plane [(R; Z) plane]
around the Z axis. The projection is not necessarily a closed curve in the poloidal
plane, as is shown in this figure.

The value of 	 is constant on a magnetic surface (since 	 is constant along a
magnetic field line and 	 is independent of �). On the other hand, the value of
	 is usually different on different magnetic surfaces. The above two facts enable
	 to be used as labels of magnetic surfaces.

1.7 Relation of 	 with the poloidal magnetic flux

Note that 	 is defined by 	 = RA�, which is just a component of the vector
potential A, thereby having no obvious physical meaning. Next, we try to find
the physical meaning of 	, i.e., try to find some simple algebraic relation of 	
with some quantity that can be measured in experiments.
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Figure 1.2. The poloidal magnetic flux 	p between the two magnetic surfaces 	1
and 	2 is given by 	p=2�(	2¡	1).

In Fig. 1.2, there are two magnetic surfaces labeled, respectively, by 	=	1
and 	 = 	2. Using Gauss's theorem in the toroidal volume between the two
magnetic surface, we know that the poloidal magnetic flux through any toroidal
ribbons between the two magnetic surfaces is equal to each other. Next, we
calculate this poloidal magnetic flux. To make the calculation easy, we select a
plane perpendicular to the Z axis, as is shown by the dash line in Fig. 1.1. In
this case, only BZ contribute to the poloidal magnetic flux, which is written (the
positive direction of the plane is chosen in the direction of Ẑ)

	p =
Z
R1

R2

Bz(R;Z)2�RdR

=
Z
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R2 1
R
@	
@R

2�RdR

= 2�
Z
R1
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dR

= 2�[	2¡	1]: (1.20)

Equation (1.20) provides a simple physical meaning for 	, i.e., the difference
of 2�	 between two magnetic surfaces is equal to the poloidal magnetic flux
enclosed by the two magnetic surfaces. Noting that we are considering the
axisymmetric case, the physical meaning of 	 can also be stated as: the dif-
ference of 	 between two magnetic surfaces is equal to the poloidal magnetic
flux per radian. Due to this relation, 	 is usually called the �poloidal mag-
netic flux function� in tokamak literature. Note that it is the difference of 	
between two locations that determines the the physical quantities 	p, which
is consistent with the fact that gauge transformation (1.14) dose not change
the values of physical quantities.
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1.8 Measurement of poloidal magnetic flux

By measuring the voltage around a toroidal loop of wire, we can obtain the time
derivative of the poloidal magnetic flux though the loop and, after integrating
over time, the poloidal magnetic flux itself. Suppose that the loop is located at
(R;Z) and denote the magnetic flux through the loop by 	pol(R;Z; t) (only the
poloidal magnetic field contribute to this flux since the loop is in the toroidal
direction). Then Faraday's law gives

"=¡d	pol

dt
; (1.21)

where " is the emf. If the loop is a coil with N turns, the induced voltage V in
the coil is N times the emf ", i.e., V =N". Using this, Eq. (1.21) is written as

V =¡N d	pol

dt
: (1.22)

Integrating the above equation over time, we obtain

	pol(R;Z; t)¡	pol(R;Z; 0)=¡
1
N

Z
0

t

Vd t: (1.23)

The starting time t=0 can be chosen at a time when no plasma is present and
thus the initial value, 	pol(R;Z; 0), is easy to obtain.

As discussed in Sec. 1.7 ,the relation between 	 and 	pol is given by

	pol(R;Z; t)=2�[	(R;Z; t)¡	(R=0; Z ; t)]; (1.24)

where 	(R=0;Z ; t) is actually a spatial constant since R=0must be a magnetic
field line (required by the axisymmetry). 	(R= 0; Z ; t) is also a time constant
if we choose a gauge that is independent of time. We will stick to the time-
independent gauge since it does not seem useful to choose a time-dependent
gauge for 	. Denote the spatial-temporal constant 	(R = 0; Z ; t) by Cg, then
Eq. (1.24) is written as

	(R;Z; t)= 1
2�
	pol(R;Z; t)+Cg; (1.25)

i.e.,

	(R;Z; t)= 1
2�

�
¡ 1
N

Z
0

t

Vd t+	pol(R;Z; 0)
�
+Cg; (1.26)

which tells us how to obtain 	 form the measured voltage V .
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The above toroidal loop of wire used to measure poloidal magnetic flux is
often called �flux loop� by tokamak operators. There are usually many flux
loops (e.g. 37 on EAST[30], 41 on DIII-D) at different locations in the poloidal
plane (see Fig. 14.1). The measured value of poloidal flux can be used to obtain
contours of 	 and thus obtain a flux surface. With the feedback control (by
adjusting the current in the poloidal field coils), these measurement, along with
the poloidal field measurement by magnetic probes, can be used to control the
shape of the last-closed-flux-surface (LCFS), the distance of the LCFS from the
first wall, and the X-point location. This is often called iso-flux control, gap
control, or X-point control.

1.9 Closed magnetic surfaces in tokamak

In most part of a tokamak plasma, the contours of 	 on (R;Z) plane are closed
curves. As discussed above, the contours of 	 are the projection of magnetic lines
on the poloidal plane. Closed contours of 	 implies closed magnetic surfaces, as
shown in Fig 1.3.

Magnetic surface Ψ

Z

R

Ψ0

Ψ1

Ψa

S0

S1

S2 S3

S4

S5

R

Figure 1.3. Closed magnetic surfaces (blue) and various toroidal surfaces used to
define the poloidal magnetic flux. The magnetic flux through the toroidal surface S2
and S3 is equal to each other. Also the magnetic flux through S4 and S5 is equal to
each other; the magnetic flux through S0 and S1 is equal to each other.

The innermost magnetic surface reduces to a curve, which is called magnetic
axis (in Fig. 1.3, 	0 labels the magnetic axis). Because the magnetic axis is the
point of maximum/minimum of 	(R;Z), the value ofr	 is zero at the magnetic
axis. As a result, the poloidal component of the equilibrium magnetic field is zero
on magnetic axis (refer to Eq. (1.10)), i.e., the magnetic field has only toroidal
component there.

As discussed in Sec. 1.7, the poloidal magnetic flux enclosed by a magnetic
surface 	 (the poloidal magnetic flux through the toroidal surfaces S2) is given
by

	p=2� (	0¡	); (1.27)

8 Section 1



where 	0 is the value of 	 at the magnetic axis. Here the positive direction of the
surface S2 is defined to be in the clockwise direction when an observer looks along
the direction of �̂. In practice, we need to pay attention to the positive direction
of the toroidal surface used to define the poloidal flux (there can be a sign
difference when choosing different positive directions). Also note, in tokamak
literature, the poloidal magnetic flux enclosed by a closed magnetic surface can
have two different definitions, one of which is the the poloidal magnetic flux
through the surface S2 in Fig. 1.3, the other one is the poloidal magnetic flux
through the central hole of the magnetic surface, i.e., the poloidal flux through
S1 in Fig. 1.3. The former definition is adopted in this article, except explicitly
specified otherwise. In the latter case, the poloidal magnetic flux is written

	p=2�(	¡	a); (1.28)

where the positive direction of the surface S1 is defined to be in the clockwise
direction.

Also note that, since the poloidal magnetic field can be written as Bp =
r	�r�, the condition 	LCFS¡	axis>0 means Bp points in the anticlockwise
direction (viewed along � direction), and 	LCFS¡	axis< 0 means Bp points in
the clockwise direction.

1.9.1 Shape parameters of a closed magnetic surface
Let us introduce parameters characterizing the shape of a magnetic surface

in the poloidal plane. The �midplane� is defined as the plane that passes through
the magnetic axis and is perpendicular to the symmetric axis (Z axis). For
a up-down symmetric (about the midplane) magnetic surface, its shape can
be roughly characterized by four parameters, namely, the R coordinate of the
innermost and outermost points in the midplane, Rin and Rout; the (R; Z)
coordinators of the highest point of the magnetic surface, (Rtop; Ztop). These
four parameters are indicated in Fig. 1.4.

-1

-0.5

 0

 0.5

 1

 0  0.5  1  1.5  2

Z

R

(Rin,0) (Rout,0)

(Rtop,Ztop)

Figure 1.4. Four parameters characterizing the shape of a flux surface: the R coor-
dinate of the innermost and outermost points in the middle-plane, Rin and Rout; the
(R;Z) coordinators of the highest point of the flux surface, (Rtop; Ztop).
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In terms of these four parameters, we can define the major radius of a mag-
netic surface

R0=
Rin+Rout

2
; (1.29)

(which is the R coordinate of the geometric center of the magnetic surface), the
minor radius of a magnetic surface

a= Rout¡Rin

2
; (1.30)

the triangularity of a magnetic surface

�t=
R0¡Rtop

a
; (1.31)

and, the ellipticity (elongation) of a magnetic surface

�= Ztop

a
: (1.32)

Usually, we specify the value of R0, a, �t, and �, instead of (Rin;Rout;Rtop;Ztop),
to characterize the shape of a magnetic surface. The value of the triangularity �t
is usually positive in traditional tokamak operations, but negative triangularity
is achievable and potentially useful, which is under active investigation.

Besides, using a and R0, we can define another useful parameter "� a/R0,
which is called the inverse aspect ratio.

The four shape parameters for the typical Last-Closed-Flux-Surface (LCFS)
of EAST tokamak are: major radius R0=1.85m (can reach 1.9m), minor radius
a= 0.45m, ellipticity �= 1.8 (can be in the range from 1.7 to 1.9), triangularity
�t= 0.6 (can be in the range from 0.5 to 0.7). Note that the major radius R0 of
the LCFS is usually different from Raxis (the R coordinate of the magnetic axis).
Usually we have Raxis>R0 due to the so-called Shafranov shift.

1.10 Safety factor

Magnetic field lines on closed magnetic surfaces travel closed curves in a poloidal
plane. For these field lines, we can define the safety factor q, which is the number
of toroidal loops a magnetic field line travels when it makes one poloidal loop, i.e.

q� 4�
2�

; (1.33)

where4� as the change of the toroidal angle when a magnetic field line travels a
full poloidal loop. The safety factor can also be understood as the average pitch
angle of a magnetic field line in (�; �) plane of a closed magnetic surface.
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For open field line region (where a field line touches the wall before its
poloidal projection can close itself), the �connection length� is often used to
characterize the magnetic field.

1.10.1 Expression of safety factor in terms of magnetic field
The equation of magnetic field lines is given by

Rd�
d`p

=
B�
Bp

; (1.34)

where d`p is the line element along the direction of Bp on the poloidal plane.
Equation (1.34) can be arranged in the form

d�= 1
R

B�
Bp

d`p; (1.35)

which can be integrated over d`p to give

4�=
I

1
R

B�
Bp

d`p; (1.36)

where the line integration is along the poloidal magnetic field (the contour of 	
on the poloidal plane). Using this, Eq. (1.33) is written

q= 1
2�

I
1
R

B�
Bp

d`p: (1.37)

1.10.2 Expression of safety factor in terms of magnetic flux
The safety factor given by Eq. (1.37) is expressed in terms of the compo-

nents of the magnetic field. The safety factor can also be expressed in terms of
the magnetic flux. Define �	p as the poloidal magnetic flux enclosed by two
neighboring magnetic surface, then �	p is given by

�	p=2�R�xBp (1.38)

where �x is the length of a line segment in the poloidal plane between the
two magnetic surfaces, which is perpendicular to the first magnetic surface (so
perpendicular to the Bp). Note that �x, as well as R and Bp, generally depends
on the poloidal location whereas �	p is independent of the poloidal location.

Using Eq. (1.38), the poloidal magnetic field is written as

Bp=
1

2�R
�	p
�x

: (1.39)

Substituting Eq. (1.39) into Eq. (1.37), we obtain

q= 1
2�

I
1
R

B�
Bp

d`p=
1
2�

I
1
R

2�R�xB�
�	p

d`p=
I

�xB�
�	p

d`p: (1.40)
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We know �	p is a constant independent of the poloidal location, so �	p can
be taken outside the integration to give

q= 1
�	p

I
�xB�d`p (1.41)

It is ready to realise that the integral appearing in Eq. (1.41) is the toroidal
magnetic flux enclosed by the two magnetic surfaces, �	t. Using this, Eq. (1.41)
is written as

q= �	t
�	p

(1.42)

Equation (1.42) indicates that the safety factor of a magnetic surface is equal
to the differential of the toroidal magnetic flux with respect to the poloidal
magnetic flux enclosed by the magnetic surface.

1.10.3 Rational surfaces vs. irrational surfaces
If the safety factor of a magnetic surface is a rational number, i.e., q=m/n,

where m and n are integers, then this magnetic surface is called a rational
surface, otherwise an irrational surface. A field line on a rational surface with
q=m/n closes itself after it travels n poloidal loops. An example of a field line
on a rational surface is shown in Fig. 1.5.
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Figure 1.5. Left: A magnetic field line (blue) on a rational surface with q=2.1=21/
10 (magnetic field is from EAST discharge #59954@3.1s). This field line closes itself
after traveling 21 toroidal loops (meanwhile, it travels 10 poloidal loops). Right: The
intersecting points of the magnetic field line with the �=0 plane when it is traveling
toroidally. The sequence of the intersecting points is indicated by the number labels.
The 22nd intersecting point coincides with the 1st point and then the intersecting
points repeat themselves.
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1.11 Non-axisymmetric magnetic perturbations

In the above, the magnetic field is assumed to be axisymmetric. With this assump-
tion, the poloidal magnetic field (having two components) can be expressed
in terms of a single component of the vector potential A, A� (specifically via
	�A�R). This kind of simplification can not be achieved if the axisymmetricity
assumption is dropped, because other components of the vector potential (namely
AR and AZ) will appear in the expression of the poloidal magnetic field. Let
us re-examine Eq. (1.2) for a magnetic perturbation:

�B =
�
1
R

@�AZ
@�

¡ @�A�
@Z

�
R̂+

�
1
R

@(R�A�)
@R

¡ 1
R

@�AR
@�

�
Ẑ

+
�
@�AR
@Z

¡ @�AZ
@R

�
�̂: (1.43)

When studying tearing modes and turbulence, most authors narrow the possible
perturbed magnetic field by setting �AR= �AZ=0, i.e.,

�BR=¡
1
R
@�	
@Z

; (1.44)

�BZ=
1
R
@�	
@R

; (1.45)

�B�=0: (1.46)

where �	=R�A�. Therefore this kind of magnetic perturbation can be written
in the same form of the equilibrium poloidal magnetic field:

�B=r�	�r�: (1.47)

The above approximation is widely used in theory and simulation (e.g., tearing
mode theory; turbulence simulation, where �A� is replaced by �Ak.) Do we miss
some magnetic perturbations that is important for plasma transport when using
the above specific form?

The total magnetic field is then written as

B=r(	+ �	)�r�+ gr�: (1.48)

**check**Can the projection of the total magnetic field line in the poloidal plane
can be traced by tracing the contour of 	+ �	? No. The contours of 	+ �	
will not show island structures in the poloidal plane. To show the expected
island structures, we need to subtract non-reconnecting poloidal magnetic field
from the total poloidal field. I will discuss this in Sec. (), where I will show that
contours of the so-called helical flux will give the expected island structures near
the resonant surfaces.**can be worng, I have not checked this.
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Next, we return to discuss the 2D case (i.e., assuming axisymmetry).

2 Plasma current density in terms of 	 and g

When the displacement current term is neglectable (the case we consider in this
note), the conductive current is just another representation of the magnetic field.
Specifically, the current density can be written in terms of the magnetic field as
(Ampère's law):

�0J=r�B=¡@B�
@Z

R̂+ 1
R

@(RB�)
@R

Ẑ+
�
@BR
@Z

¡ @BZ
@R

�
�̂: (2.1)

2.1 Poloidal current density

Use Eq. (2.1) and the definition g�RB�, the poloidal components of the current
density, JZ and JR, can be written as

�0JR=¡
1
R
@g
@Z

; (2.2)

and

�0JZ=
1
R
@g
@R

; (2.3)

respectively.

2.2 Toroidal current density

Ampere's law (2.1) indicates the toroidal current density J� is given by

�0J� = @BR
@Z

¡ @BZ
@R

= ¡ 1
R
@2	
@Z2

¡ @
@R

�
1
R
@	
@R

�
: (2.4)

Define a differential operator 4? by

4�� @2

@Z2
+R @

@R

�
1
R

@
@R

�
; (2.5)

which is the Laplace operator in cylindrical coordinates for the axisymmertic
case, then Eq. (2.4) is written

J�=¡
1
�0R

4�	: (2.6)

3 Constraint of force-balance on magnetic field

Next, we will consider what constraint the force balance imposes on the axisym-
metric magnetic field discussed above.
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3.1 MHD momentum equation

The MHD momentum equation of plasmas is given by

�

�
@u
@t

+u �ru
�
= �qE+J�B¡r �P (3.1)

where �, �q, P, J, E, and B are mass density, charge density, thermal pres-
sure tensor, current density, electric field, and magnetic field, respectively. The
electric field force �qE is usually ignored due to either �q=0 or E=0. Further
assume that there is no plasma flow (u= 0, the flow effect is discussed in A.2)
and the plasma pressure is isotropic, then the steady state momentum equation
(force balance equation) is written

J�B=rP ; (3.2)

where P is the scalar plasma pressure.
Is the force balance (3.2) always satisfied in a real toakamak discharge? To

answer this question, we need to go back to the original momentum equation
(3.1). The imbalance between J�B and rP will give rise to the compressional
Alfven waves, the time-scale of which, �A, is much shorter than the time-scale �
we are interested in. Therefore, on the time scale � and for slow flow with u<Cs,
where Cs is the the sound speed, the leading order of the momentum equation
is the force balance (3.2). (to be sure, I need to think about this again). This
reasoning is from Youwen Sun[24].

3.2 Force balance equation in tokamak plasmas: Grad-Shafranov equa-
tion

3.2.1 Parallel force balance
Consider the force balance in the direction of B. Dotting the equilibrium

equation (3.2) by B, we obtain

0=B �rP ; (3.3)

which implies that P is constant along a magnetic field line. Since 	 is also
constant along a magnetic field line, P can be expressed in terms of only 	 on
a single magnetic line. Note that this does not necessarily mean P is a single-
valued function of 	, (i.e. P = P (	)). This is because P still has the freedom
of taking different value on different magnetic field lines with the same value of
	 while still satisfying B � rP = 0. This situation can appear when there are
saddle points (X points) in 	 contours (refer to Sec. A.9) and P takes different
functions of 	 in islands of 	 sepearated by a X point. For pressure within a
single island of 	, P =P (	) can be safely assumed.

On the other hand, if P =P (	), then we obtain

B �rP = dP
d	

B �r	=0;
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i.e., Eq. (3.3) is satisfied, indicating P = P (	) is a sufficient condition for the
force balance in the parallel (to the magnetic field) direction.

3.2.2 Toroidal force balance
Next, consider the � component of Eq. (3.2), which is written

JZBR¡JRBZ=
1
R
@P
@�
: (3.4)

Since P =P (	), which implies @P /@�=0, equation (3.4) reduces to

JZBR¡ JRBZ=0 (3.5)

Using the expressions of the poloidal current density (2.2) and (2.3) in the force
balance equation (3.5) yields

@g
@R

BR+
@g
@Z

BZ=0; (3.6)

which can be further written

B �rg=0: (3.7)

According to the same reasoning for the pressure, we conclude that g = g(	)
is a sufficient condition for the toroidal force balance. (The function g defined
here is usually called the �poloidal current function� in tokamak literature. The
reason for this name is discussed in Sec. A.3.)

3.2.3 Force balance along the major radius
Next, consider the force balance in R̂ direction. The R̂ component of the

force balance equation (3.2) is written

J�BZ ¡ JZB�=
@P
@R

(3.8)

Using the expressions of the current density and magnetic field [Eqs. (1.6), (2.3),
and (2.6)], equation (3.8) is written

¡ 1
R
4�	 1

R

@	
@R

¡ 1
R

@g

@R

g

R
= �0

@P

@R
: (3.9)

Assuming the sufficient condition discussed above, i.e., P and g are a function
of only 	, i.e., P =P (	) and g= g(	), Eq. (3.9) is written

¡ 1
R
4�	 1

R
@	
@R

¡ 1
R
dg
d	

@	
@R

g
R
= �0

dP
d	

@	
@R

; (3.10)

which can be simplified to

4�	=¡�0R2
dP
d	

¡ dg
d	

g; (3.11)
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i.e.,
@2	
@Z2

+R @
@R

�
1
R
@	
@R

�
=¡�0R2

dP
d	

¡ dg
d	

g: (3.12)

Equation (3.12) is known as Grad-Shafranov (GS) equation.
[Note that the Z component of the force balance equation is written

JRB�¡ J�BR=
@P
@Z

)¡ @g
@Z

1
R
g
R
¡ 1
R
4�	 1

R
@	
@Z

= �0
dP
d	

@	
@Z

)¡ dg
d	

@	
@Z

1
R

g

R
¡ 1
R
4�	 1

R

@	
@Z

= �0
dP

d	
@	
@Z

)¡ dg
d	

1
R
g
R
¡ 1
R
4�	 1

R
= �0

dP
d	

)4�	=¡�0R2
dP
d	

¡ dg
d	

g

which turns out to be identical with the Grad-Shafranov equation. This is not
a coincidence. The reason is that the force balance equation has been satisfied
in three different directions (namely, �̂, R̂, and B direction) and thus it must
be satisfied in all the directions.]

3.3 Axisymmetric equilibrium magnetic field

A general axisymmetric magnetic field (which does not necessarily satisfy the
force balance), is given by Eq. (1.10), i.e.,

B=r	�r�||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
poloidal

+ gr�||{z}}
toroidal

; (3.13)

For the above axisymmetric magnetic field to be consistent with the force balance
equation (3.2), there are additional requirements for 	 and g. Specifically, 	 is
restricted by the GS equation and g should be a function of only 	. Therefore
an axisymmetric equilibrium magnetic field is fully determined by two functions,
	 = 	(R; Z) and g = g(	). The 	 is determined by solving the GS equation
with specified RHS source terms and boundary conditions.

The RHS source terms in the GS equation (3.12) are P (	) and g(	), both
of which must be specified before the GS equation can be solved. For most
cases, the source terms are nonlinear about 	 and thus the GS equation is
a two-dimensional (in the cylindrical coordinates R and Z) nonlinear partial
differential equation for 	.

For most choices of P (	) and g(	), the GS equation (3.12) has to be solved
numerically. For some particular choices of P and g profiles, analytical solu-
tions are available, one of which is the Solovév equilibrium and is discussed in
Appendix A.1.
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Note that we solve the GS equation in order to obtain the poloidal magnetic
flux 	 and thus the poloidal magnetic field. The toroidal magnetic field must
be specified in some way before we can solve the GS equation. There are several
ways of specifying the toroidal magnetic field: (1) given g(	), (2) given hjki, (3)
given the safety factor q(	). There are simple relations between g, hjki, and
q, which allows translation form one to another (discussed later). In transport
simulations, hjki is obtained from current drive models and neoclassical boot-
strap current models. Note that the specification of the source terms (P , g, q,
and hjki) usually involve the unknown 	 (via not only the explicit presence of
	, but also the flux-surface averaging which implicit involves 	). This indicates
that iterations are needed when numerically solving the GS equation.

Many physical processes in tokamak are sensitive to the magnetic configura-
tion. Serious numerical simulations should use magnetic field that satisfies the
Grad-Shafranov equation and, if possible, use realistic magnetic fields recon-
structed from experimental data.

3.4 Axisymmetric equilibrium current density

Since J= �0
¡1r�B, the current density J can be inferred from a given magnetic

field. The components of J (expressed in terms of g and 	) are given by Eqs.
(2.2), (2.3) and (2.6) and these expressions can be further simplified by using
the equilibrium constraints, such as g= g(	) and 4�	=¡�0R2dPd	 ¡

dg

d	
g. The

simplified J expressions are given in A.8. On the other hand, in the kinetic equi-
librium reconstruction[18], it is the current that is first computed (by summing
sources of current drive and bootstrap current) and then the current is used as
constraints for the GS equation, i.e, constraints for the magnetic field.

3.5 Vacuum magnetic field (not finished)

In the vacuum region that is between the plasma and the first wall, there is no
current, i.e.,

r�B=0: (3.14)

Next, let us examine what constraint this condition imposes on the magnetic
field. Using expression (1.10), the above equation is written as

r� (r	�r�)+rg�r�=0; (3.15)

It is not obvious how to draw useful information from the above equation.
In the above, we use the vector potential approach. Next, let us try the scalar

potential approach:

B=r�; (3.16)

then the constraint r�B=0 is written as

r2�=0: (3.17)
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3.6 Equilibrium scaling

The GS equation is given by Eq. (3.12), i.e.,

@2	
@Z2

+R @
@R

�
1
R
@	
@R

�
=¡�0R2

dP
d	

¡ dg
d	

g: (3.18)

If a solution to the GS equation is obtained, the solution can be scaled to obtain
a family of solutions. Given an equilibrium with 	(R; Z), P (	), g(	), then it
is ready to prove that 	2= s	, P2= s2P (	), and g2=�sg(	) is also a solution
to the GS equation, where s is a constant. In this case, both the poloidal and
toroidal magnetic fields are increased by a factor of s, and thus the safety factor
remains unchanged. Also note that the pressure is increased by s2 factor and thus
the value of � (the ratio of the therm pressure to magnetic pressure) remains
unchanged. Note that g2 = �sg(	), which indicates that the direction of the
toroidal magnetic field can be reversed without breaking the force balance. Also
note that 	2= s	 and s can be negative, which indicates that the direction of
the toroidal current can also be reversed without breaking the force balance.

The second kind of scaling is to set 	2=	, P2=P (	), and g2
2= g2(	)+ c.

It is ready to prove that the scaled expression is still a solution to the GS
equation because g2g20 = gg 0. This scaling keep the pressure and the poloidal
field unchanged and thus the poloidal beta �p remains unchanged. This scaling
scales the toroidal field and thus can be used to generate a family of equilibria
with different profiles of safety factor.

Another scaling, which is trivial, is to set 	2 = 	, P2 = P (	) + c, and
g2= g(	). This scaling can be used to test the effects of the pressure (not the
pressure gradient) on various physical processes.

When a numerical equilibrium is obtained, one can use these scaling methods
together to generate new equilibria that satisfy particular global conditions. Note
that the shape of magnetic surfaces of the scaled equilibrium remains the same
as the original one.

The above scaling is made under the constraint that the the GS equation
(3.18), is satisfied. In practice, we may scale 	 by a factor while fixing g and P .
This does not satisfy the GS equation, but allows more flexibility in changing
the the safety factor profile. Scaling 	 by a factor corresponds to scaling the
plasma current and the poloidal magnetic field.

3.7 Free boundary equilibrium problem

If the value of 	 on the boundary of the computational box is unknown, how do
you sovle the GS equation?
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Suppose the boundary is a rectangle in (R; Z) plane. To numerically solve
the GS equation within this boundary, we need the value of 	 on the boundary.
Therefore we need to adopt some initial guess, then solve the GS equation to
get the value of 	 within the computational box. Using the computed 	, we
can calculate J� through Eq. (2.6). After this, all the current (current in the
plasma and in the external coils) perpendicular to the poloidal plane is known,
we can calculate the value of 	 on the boundary of the box, 	b, by using the
Green function formulation:

	(R0; Z 0)=
Z
P

G(R;Z;R0; Z 0)J�dRdZ +
X
i=1

Nc

G(Ric; Zic;R0; Z 0)I�: (3.19)

Note that 	b calculated this way usually differs from the initial guess of the
value of 	 on the boundary. Thus, we need to use the 	b calculated this way
as a new guess value of 	 on the computational boundary and repeat the above
procedures. The process is repeated until 	b obtained in two successive iterations
agrees with each other to a prescribed tolerance.

In solving the equilibrium problem, the current in external coils is given
and known while the current distribution in the plasma is unknown. Therefore,
solving the equilibrium problem actually corresponds to determining J�.

3.8 Fixed boundary equilibrium and choices of coordinates

Before considering the free boundary equilibrium, it is instructive to consider
the fixed boundary equilibrium problem, where the shape of the boundary flux
surface is given (i.e., the value of 	 is a constant on this boundary). In dealing
with the fixed boundary problem, the curvilinear coordinate system is useful.
Specifically, the convenience provided by a curvilinear coordinate system is that
the coordinates can be properly chosen to make one of the coordinate surfaces
coincide with the given boundary flux surface, so that the boundary condition
becomes trivial.

Next section discusses the basic theory of curvilinear coordinates system[4].
Many theories and numerical codes use the curvilinear coordinate systems that
are constructed with one coordinate surface coinciding with magnetic surfaces.
In these coordinate systems, we need to choose a poloidal coordinate � and a
toroidal coordinate �. A particular choice for � and � is one that makes the
magnetic field lines be straight lines in (�; �) plane. These kinds of coordinates
are often called magnetic coordinates. That is, �magnetic coordinates are defined
so they conform to the shape of the magnetic surfaces and trivialize the equations
for the field lines.�

A further tuned magnetic coordinate system is the so-called field aligned
(or filed-line following) coordinate system, in which changing one of the three
coordinates with the other two fixed would correspond to following a magnetic
field line. The field aligned coordinates are discussed in Sec. 11.
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4 Curvilinear coordinate system

In many studies of tokamak plasmas, one need construct a curvilinear coordinate
system based on a given magnetic cofiguration in order to make the problem
amenable to analytical methods or numerical methods. Specifically, one of the
coordinate surfaces of the constructed system will be required to coincide with
magnetic surfaces. In addition, the magnetic field lines on a magnetic surface
may be required to have some simple property (e.g., being a straight line) via
carefully choosing the other two angular coordinates. Next, let us discuss some
general properties about coordinates transformation.

4.1 Coordinates transformation

In the Cartesian coordinates, a point is described by its coordinates (x; y; z),
which, in the vector form, is written as

r=xx̂+ yŷ+ zẑ; (4.1)

where r is the location vector of the point; x̂, ŷ, and ẑ are the basis vectors of
the Cartesian coordinates, which are constant, independent of spactial location.
The transformation between the Cartesian coordinates system, (x; y; z), and a
general coordinates system, (x1; x2; x3), can be expressed as

r=x(x1; x2; x3)x̂+ y(x1; x2; x3)ŷ+ z(x1; x2; x3)ẑ: (4.2)

For example, cylindrical coordinates (R; �; Z) can be considered as a general
coordinate systems, which are defined by r=R cos�x̂+R sin�ŷ+Zẑ.

The transformation function in Eq. (4.2) can be written as

x=x(x1; x2; x3)
y= y(x1; x2; x3)
z= z(x1; x2; x3)

(4.3)

4.2 Jacobian

A useful quality characterizing coordinate transformation is the Jacobian deter-
minant (or simply called Jacobian), which, for the transformation in Eq. (4.3),
is defined by

J =

��������������������

@x

@x1

@x

@x2

@x

@x3

@y

@x1

@y

@x2

@y

@x3

@z

@x1

@z

@x2

@z

@x3

��������������������
; (4.4)

which can also be written as

J = @r
@x1

� @r
@x2

� @r
@x3

: (4.5)

It is easy to prove that the Jacobian J in Eq. (4.5) can also be written (the
derivation is given in my notes on Jacobian)

J =(rx1�rx2 �rx3)¡1: (4.6)
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Conventionally, the Jacobian of the transformation from the Cartesian coordi-
nates to a particular coordinate system � is called the Jacobian of �, without
explitly mentioning that this transformation is with respect to the Cartesian
coordinates.

Using the defintion in Eq. (4.4), the Jacobian J of the Cartesian coordinates
can be calculated, yielding 1. Likewise, the Jacobian of the cylindrical coordi-
nates (R; �; Z) can be calculated as follows:

J =

��������������������

@x

@R

@x

@�

@x

@Z

@y

@R

@y

@�

@y

@Z

@z

@R

@z

@�

@z

@Z

��������������������
=

��������������������

@R cos�
@R

@R cos�
@�

@R cos�
@Z

@R sin�
@R

@R sin�
@�

@R sin�
@Z

@Z

@R

@Z

@�

@Z

@Z

��������������������
=

������������
cos� ¡R sin� 0
sin� R cos� 0
0 0 1

������������=R
If the Jacobian of a coordinate system is greater than zero, it is called a right-
handed coordinate system. Otherwise it is called a left-handed system.

4.3 Orthogonality relation between two sets of basis vectors

In a curvilinear coordinate system (x1; x2; x3), there are two kinds of basis
vectors: rxi and @r/@xi, with i=1;2;3: These two kinds of basis vectors satisfy
the following orthogonality relation:

rxi �
@r
@xj

= �ij ; (4.7)

where �ij is the Kronical delta function. [Proof: Working in a Cartesian coordi-
nate system (x; y; z) with the corresponding basis vectors denoted by (x̂; ŷ; ẑ),
then the left-hand side of Eq. (4.7) can be written as

rxi �
@r
@xj

=
��

@xi
@x

�
x̂+

�
@xi
@y

�
ŷ+

�
@xi
@z

�
ẑ
�
�
�
@x

@xj
x̂+ x @x̂

@xj
+ @y

@xj
ŷ+ y

@ŷ
@xj

+

@z
@xj

ẑ+ z @ẑ
@xj

�
=
��

@xi
@x

�
x̂+

�
@xi
@y

�
ŷ+

�
@xi
@z

�
ẑ
�
�
�
@x
@xj

x̂+0+ @y
@xj

ŷ+0+ @z
@xj

ẑ+

0
�

(4.8)

= @xi
@x

@x
@xj

+ @xi
@y

@y
@xj

+ @xi
@z

@z
@xj

= @xi
@xj

(4.9)

= �ij ;
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where the second equality is due to @x̂/@xj=0; @ŷ/@xj= 0; @ẑ/@xj= 0 since
x̂; ŷ; ẑ are constant vectors independent of spatial location; the chain rule has
been used in obtaining Eq. (4.9)]

[The cylindrical coordinate system (R; �; Z) is an example of general coor-
dinates. As an exercise, we can verify that the cylindrical coordinates have the
property given in Eq. (4.7). In this case, x=x1cosx2, y=x1sinx2, z=x3, where
x1�R, x2� �, x3�Z.]

It can be proved thatrxi is a contravariant vector while @r/@xi is a covariant
vector (I do not prove this and do not bother with the meaning of these names,
just using this as a naming scheme for easy reference).

The orthogonality relation in Eq. (4.7) is fundamental to the theory of gen-
eral coordinates. The orthogonality relation allows one to write the covariant
basis vectors in terms of contravariant basis vectors and vice versa. For example,
the orthogonality relation tells that @r/@x1 is orthogonal to rx2 and rx3, thus,
@r/@x1 can be written as

@r
@x1

=Arx2�rx3; (4.10)

where A is a unknown variable to be determined. To determine A, dotting Eq.
(4.10) by rx1, and using the orthogonality relation again, we obtain

1=A(rx2�rx3) �rx1; (4.11)

which gives

A = 1
(rx2�rx3) �rx1

= J (4.12)

Thus @r/@x1 is written, in terms of rx1, rx2, and rx3, as

@r
@x1

=Jrx2�rx3: (4.13)

Similarly, we obtain
@r
@x2

=Jrx3�rx1 (4.14)

and
@r
@x3

=Jrx1�rx2: (4.15)

Equations (4.13)-(4.15) can be generally written

@r
@xi

=Jrxj�rxk; (4.16)

where (i; j ; k) represents the cyclic order in the variables (x1; x2; x3). Equation
(4.16) expresses the covariant basis vectors in terms of the contravariant basis
vectors. On the other hand, from Eq. (4.13)-(4.15), we obtain

rxi=J ¡1
@r
@xj

� @r
@xk

; (4.17)
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which expresses the contravariant basis vectors in terms of the covariant basis
vectors.

4.4 An example: ( ; �; �) coordinates

Suppose ( ;�; �) is an arbitrary general coordinate system. Following Einstein's
notation, contravariant basis vectors are denoted with upper indices as

e �r ; e��r�; e��r�: (4.18)

and the covariant basis vectors are denoted with low indices as

e �
@r
@ 

; e��
@r
@�
; e��

@r
@�
: (4.19)

Then the orthogonality relation, Eq. (4.7), is written as

e� � e�= ���: (4.20)

In term of the contravairant basis vectors, A is written

A=A e +A�e�+A�e� ; (4.21)

where the components are easily obtained by taking scalar product with e ;e�;
and e�, yielding A =A � e , A�=A � e�, and A� =A � e�. Similarly, in term of
the covariant basis vectors, A is written

A=A e +A�e�+A�e� ; (4.22)

where A =A � e , A�=A � e�, and A�=A � e�.
Using the above notation, the relation in Eq. (4.16) is written as

e =J e�� e� (4.23)

e�=J e�� e (4.24)

e�=J e � e� (4.25)

where J =[(r �r�) �r�]¡1. Similarly, the relation in Eq. (4.17) is written as

e =J ¡1e�� e� (4.26)

e�=J ¡1e� � e (4.27)

e�=J ¡1e � e� (4.28)
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4.5 Gradient and directional derivative in general coordinates ( ; �;
�)

The gradient of a scalar function f( ; �; �) is readily calculated from the chain
rule,

rf = @f
@ 
r + @f

@�
r�+ @f

@�
r�: (4.29)

Note that the gradient of a scalar function is in the covariant representation.
The inverse form of this expression is obtained by dotting the above equation
respectively by the three contravariant basis vectors, yielding

@f

@ 
=(Jr��r�) �rf = @r

@ 
�rf (4.30)

@f
@�

=(Jr� �r ) �rf = @r
@�
�rf (4.31)

@f

@�
=(Jr �r�) �rf = @r

@�
�rf (4.32)

Using Eq. (4.29), the directional derivative in the direction of r is written as

r �rf = jr j2 @f
@ 

+(r� �r )@f
@�

+(r� �r )@f
@�
: (4.33)

4.6 Divergence operator in general coordinates ( ; �; �)

To calculate the divergence of a vector, it is desired that the vector should be in
the contravariant form because we can make use of the fact:

r� (r��r�)= 0; (4.34)

for any scalar quantities � and �. Therefore we write vector A as

A=A( )Jr��r� +A(�)Jr� �r +A(�)Jr �r�; (4.35)

where A( )=A � r , A(�)=A � r�, A(�)=A � r�. Then the divergence of A
is readily calculated as

r�A = (r� � r�) � r(A( )J ) + (r� � r ) � r(A(�)J ) + (r � r�) �
r(A(�)J ) (4.36)

= 1
J

 
@A( )J
@ 

+ @A(�)J
@�

+ @A(�)J
@�

!
; (4.37)
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where the second equality is obtained by using Eqs. (4.30), (4.31), and (4.32).

4.7 Laplacian operator in general coordinates ( ; �; �)

The Laplacian operator is defined by r2�r �r. Then r2f is written as (f is
an arbitrary function)

r2f = r�rf

= r�
�
@f
@ 
r + @f

@�
r�+ @f

@�
r�
�
: (4.38)

To proceed, we can use the divergence formula (4.37) to express the divergence in
the above expression. However, the vector in the above (blue term) is not in the
covariant form desired by the divergence formula (4.37). If we want to directly
use the formula (4.37), we need to transform the vector (blue term in expression
(4.38)) to the covariant form. This process seems to be a little complicated.
Therefore, I choose not to use this method. Instead, I try to simplify expression
(4.38) by using basic vector identities:

r2f = r
�
@f
@ 

�
�r +r

�
@f
@�

�
�r�+r

�
@f
@�

�
�r�

+ @f
@ 
r2 + @f

@�
r2�+ @f

@�
r2�: (4.39)

Using the gradient formula, the above expression is further written as

r2f = @2f
@ 2

jr j2+ @2f
@ @�

r �r�+ @2f
@ @�

r �r�

+ @2f
@�@ 

r� �r + @2f
@�2
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@�@�
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@�2
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+ @f
@ 
r2 + @f

@�
r2�+ @f

@�
r2� ; (4.40)

and can be simplified as

r2f = @2f
@ 2

jr j2+2 @
2f

@ @�
r � r�+2 @

2f
@ @�

r �r�

+@
2f
@�2

jr� j2+2 @
2f

@�@�
r� � r�

+@
2f
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jr� j2

+ @f
@ 
r2 + @f

@�
r2�+ @f

@�
r2�: (4.41)
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Assume ( ; �; �) are field-line following coordinates with @r/@� along the field
line direction, then neglect all the parallel derivatives, i.e., derivative over �, then
the above expression is reduced to

r2f = @2f
@ 2

jr j2+2 @
2f

@ @�
r �r� + @2f

@�2
jr� j2

+ @f
@ 
r2 + @f

@�
r2�: (4.42)

This approximation reduces the Laplacian operator from being three-dimen-
sional to being two-dimensional. This approximation is often called the high-
n approximation, where n is the toroidal mode number (mode number along �
direction).

4.8 Curl operator in general coordinates ( ; �; �)

To take the curl of a vector, it should be in the covariant representation since
we can make use of the fact that r�r�=0. Thus the curl of A is written as

r�A = r� (A1r +A2r�+A3r�)
= rA1�r +rA2�r�+rA3�r�

=
�
@A1
@�
r� + @A1

@�
r�
�
� r +

�
@A2
@ 

r + @A2
@�
r�
�
� r� +�

@A3
@ 
r + @A3

@�
r�
�
�r�

= 1
J

�
@A2
@ 

¡ @A1
@�

�
Jr � r� + 1

J

�
@A1
@�

¡ @A3
@ 

�
Jr� � r +

1
J

�
@A3
@�

¡ @A2
@�

�
Jr��r�: (4.43)

Note that taking the curl of a vector in the covariant form leaves the vector in
the contravariant form.

4.9 Metric tensor for general coordinate system

Consider a general coordinate system ( ; �; �). I define the metric tensor as the
transformation matrix between the covariant basis vectors and the contravariant
ones. Equations (4.16) and (4.17) express the relation between the two sets of
basis vectors using cross product. Next, let us express the relation in matrix
from. To obtain the metric matrix, we write the contrariant basis vectors in
terms of the covariant ones, such as

r = a1Jr��r� + a2Jr� �r +a3Jr �r�: (4.44)
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Taking the scalar product respectively with r , r�, and r�, Eq. (4.44) is
written as

a1= jr j2; (4.45)

a2=r �r�; (4.46)

a3=r �r�: (4.47)

Similarly, we write

r�= b1Jr��r� + b2Jr� �r + b3Jr �r�; (4.48)

Taking the scalar product withr ,r�, andr�, respectively, the above becomes

b1=r� �r (4.49)

b2= jr� j2; (4.50)

b3=r� �r�: (4.51)

The same situation applies for the r� basis vector,

r� = c1r��r�J + c2r� �r J + c3r �r�J ; (4.52)

Taking the scalar product with r , r�, and r�, respectively, the above equa-
tion becomes

c1=r� �r (4.53)

c2=r� �r� (4.54)

c3= jr� j2 (4.55)

Summarizing the above results in matrix form, we obtain0@ r 
r�
r�

1A=
0BB@ jr j2 r �r� r �r�
r� �r jr�j2 r� �r�
r� �r r� �r� jr� j2

1CCA
0@ r��r�J
r� �r J
r �r�J

1A (4.56)

Similarly, to convert contravariant basis vector to covariant one, we write

r��r�J = d1r + d2r�+ d3r� (4.57)

Taking the scalar product respectively with r��r�J , r� �r J , and r �
r�J , the above equation becomes

d1= jr��r� j2J 2 (4.58)

d2=(r��r�J ) � (r� �r J ) (4.59)

d3=(r��r�J ) � (r �r�J ) (4.60)
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For the second contravariant basis vector

r��r J = e1r + e2r�+ e3r� (4.61)

e1=(r� �r ) � (r��r�)J 2 (4.62)

e2=(r� �r ) � (r� �r )J 2 (4.63)

e3=(r� �r ) � (r �r�)J 2 (4.64)

For the third contravariant basis vector

r �r�J = f1r + f2r�+ f3r� (4.65)

f1=(r �r�) � (r��r�)J 2 (4.66)

f2=(r �r�) � (r� �r )J 2 (4.67)

f3=(r �r�) � (r �r�)J 2 (4.68)

Summarizing these results, we obtain0@ r��r�J
r� �r J
r �r�J

1A=M
0@ r 
r�
r�

1A; (4.69)

where

M=

0BB@ jr��r� j2J 2 (r��r�) � (r� �r )J 2 (r��r�) � (r �r�)J 2

(r� �r ) � (r��r�)J 2 (r� �r ) � (r� �r )J 2 (r� �r ) � (r �r�)J 2

(r �r�) � (r��r�)J 2 (r �r�) � (r� �r )J 2 (r �r�) � (r �r�)J 2

1CCA;
This matrix and the matrix in Eqs. (4.56) should be the inverse of each other.
It is ready to prove this by directly calculating the product of the two matrix.

4.9.1 Special case: metric tensor for ( ; �; �) coordinate system

Suppose that ( ; �; �) are arbitrary general coordinates except that � is the
usual toroidal angle in cylindrical coordinates. Then r�=1/R�̂ is perpendic-
ular to both r and r�. Using this, Eq. (4.56) is simplified to

0@ r 
r�
r�

1A=
0BB@ jr j2 r �r� 0
r �r� jr� j2 0

0 0 1/R2

1CCA
0@ r��r�J
r��r J
r �r�J

1A (4.70)
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Similarly, Eq. (4.69) is simplified to0@ r� �r�J
r��r J
r �r�J

1A =

0BB@ jr�j2J 2/R2 ¡r� �r J 2/R2 0
¡r �r�J 2/R2 jr j2J 2/R2 0

0 0 R2

1CCA
0@ r 
r�
r�

1A (4.71)

[Note that the matrix in Eqs. (4.70) and (4.71) should be the inverse of each
other. The product of the two matrix,0BBBB@

jr� j2J 2/R2 ¡r� � r J 2/R2 0

¡r � r�J 2/R2 J 2

R2
jr j2 0

0 0 R2

1CCCCA
0BB@ jr j2 r � r� 0
r � r� jr� j2 0

0 0 1/R2

1CCA;
(4.72)

can be calculated to give 0@ A 0 0
0 A 0
0 0 1

1A;
where

A= jr� j2jr j2J 2/R2¡ (r� �r )2J 2:

By using the definition of the Jacobian in Eq. (4.6), it is easy to verify that
A=1, i.e.,

jr� j2jr j2¡ (r� �r )2= R2

J 2
; (4.73)

]

5 Covariant/contravariant representation of equilibrium
magnetic field

The axisymmetric equilibrium magnetic field is given by Eq. (3.13), i.e.,

B=r	�r�+ gr�: (5.1)

In a general coordinate system ( ; �; �) (not necessarily magnetic surface coor-
dinates), the above expression can be written as

B=¡	 r��r ¡	�r��r�+ gr�; (5.2)

where the subscripts denote the partial derivatives with the corresponding sub-
scripts. Note that Eq. (5.2) is a mixed representation, which involves both
covariant and contravariant basis vectors. Equation (5.2) can be converted to
the contravariant form by using the metric tensor, giving

B=¡	 r��r ¡	�r��r�+ g
J
R2
r �r�: (5.3)
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Similarly, Eq. (5.2) can also be transformed to the covariant form, giving

B=
�
	 

J
R2
r �r�+	�

J
R2
jr�j2

�
r +

�
¡	 

J
R2
jr j2¡	�

J
R2
r� �r 

�
r�+

gr�: (5.4)

For the convenience of notation, define

h��= J
R2
r� �r�; (5.5)

then Eq. (5.4) is written as

B=(	 h �+	�h��)r +(¡	 h  ¡	�h �)r�+ gr�: (5.6)

6 Magnetic surface coordinates ( ; �; �)

A coordinate system ( ; �; �), where � is the usual cylindrical toroidal angle,
is called a magnetic surface coordinate system if 	 is a function of only  , i.e.,
@	/@�=0 (we also have @	/@�=0 since we are considering axially symmetrical
case). In terms of ( ; �; �) coordinates, the contravariant form of the magnetic
field, Eq. (5.3), is written as

B=¡	0r��r + g
J
R2
r �r�; (6.1)

where 	0 � d	 / d . The covariant form of the magnetic field, Eq. (5.4), is
written as

B=
�
	0 J
R2
r �r�

�
r +

�
¡	0 J

R2
jr j2

�
r�+ gr�: (6.2)

6.1 Local safety factor

The local safety factor q̂ is defined by

q̂ = B �r�
B �r� ; (6.3)

which characterizes the local pitch angle of a magnetic field line in (�; �) plane
of a magnetic surface. Substituting the contravariant representation of the mag-
netic field, Eq. (6.1), into the above equation, the local safety factor is written

q̂( ; �)=¡ g
R2

J
	0
: (6.4)

Note that the expression q̂ in Eq. (6.4) depends on the Jacobian J . This is
because the definition of q̂ depends on the definition of �, which in turn depends
on the the Jacobian J .
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In terms of q̂, the contravariant form of the magnetic field, Eq. (6.1), is
written

B=¡	0(r��r + q̂r �r�): (6.5)

and the parallel differential operator B0 �r is written as

B0 �r=¡	0(r��r + q̂r �r�) �r=¡	0J ¡1
�
@
@�

+ q̂
@
@�

�
: (6.6)

If q̂ happens to be independent of � (i.e., field lines are straight in (�; �) plane),
then the above operator becomes a constant coefficient differential oprator (after
divided by J ¡1). This simplification is useful in that different poloidal harmonics
are decoupled in this case. We will discuss this issue futher in Sec. 10.

6.2 Global safety factor

The global safety factor defined in Eq. (1.37) is actually the poloidal average of
the local safety factor, i.e.,

q( ) � 1
2�

Z
0

2�

q̂d� (6.7)

= ¡ 1
2�

g
	0

Z
0

2� J
R2
d�: (6.8)

Note that q and q̂ defined this way can be negative, which depends on the choice
of the positive direction of � and � coordinates (note that the safety factor given
in G-eqdsk file is always positive, i.e. it is the absolute value of the safety factor
defined here).

Next, let us transform the � integration in expression (6.8) to a curve integral
in the poloidal plane. Using the relation d`p and d� [Eq. (6.16)], expression (6.8)
is further written

q( ) = ¡ 1
2�

g

	0

I
sign(J ) d`p

Rjr j

= ¡ 1
2�

g
sign(J )
sign(	0)

I
d`p

Rjr	j : (6.9)

Expression (6.9) is used in the GTAW code to numerically calculate the value
of q on magnetic surfaces (as a benchmarking of the q profile specified in the G-
eqdsk file). Expression (6.9) can also be considered as a relation between q and
g. In the equilibrium problem where q is given (fixed-q equilibrium), we can use
expression (6.9) to obtain the corresponding g (which explicitly appears in the
GS equation):

g=¡2�q
�I

d`p
Rjr	j

�¡1sign(	0)
sign(J ) : (6.10)

We note that expression (6.10) involves magnetic surface averaging, which is
unknown before we know 	. Therefore iteration is usually needed in solving the
fixed-q equilibrium (i.e., we guess the unknown 	, so that the magnetic surface
averaging in expression (6.10) can be performed, yielding the values of g.)
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Using Bp = jr	j/R and B� = g/R, the absolute value of q in expression
(6.9) is written

jq j = 1
2�

g

I
d`p

Rjr	j : (6.11)

= 1
2�

I
1
R

jB�j
Bp

d`p (6.12)

which is the familiar formula we see in textbooks.

6.3 Relation between Jacobian and poloidal angle �

Given the definition of a magnetic surface coordinate system ( ; �; �), the Jaco-
bian of this system is fully determined. On the other hand, given the definition
of  , �, and the Jacobian, the definition of � is fully determined (can have some
trivial shifting freedoms). Next, let us discuss how to calculate � in this case. In
( ; �; �) coordinates, a line element is written

dl= @r
@ 
d + @r

@�
d�+ @r

@�
d� (6.13)

The line element that lies on a magnetic surface (i.e., d =0) and in a poloidal
plane (i.e., d�=0) is then written

d`p = @r
@�
d�

= Jr��r d�: (6.14)

We use the convention that d`p and d� take the same sign, i.e.,

d`p= jJr��r jd�: (6.15)

Using the fact that r and r� are orthogonal and r� = �̂ /R, the above
equation is written as

d�= R
jJr jdlp (6.16)

Given jJr j, Eq. (6.16) can be integrated to determine the � coordinate of
points on a magnetic surface.

6.4 Calculating poloidal angle

Once jJr j is known, the value of � of a point can be obtained by integrating
expression (6.16), i.e.,

�i;j= �ref;j+
Z
xref;j

xi;j R
jJr jdlp; (6.17)
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where the curve integration is along the contour 	 = 	j, xref;j is a reference
point on the contour, where value of the poloidal angle is chosen as �ref;j. The
choice of the positive direction of � is up to users. Depending on the positive
direction chosen, the sign of the Jacobian of the constructed coordinates can
have a sign difference from the J appearing in Eq. (6.17). Denote the Jacobian
of the constructed coordinates by J 0, then

J 0=�J (6.18)

This sign can be determined after the radial coordinate and the positive direction
of the poloidal angle are chosen. In GTAW code, I choose the positive direction of �
to be in anticlockwise direction when observers look along the direction of �̂. To
achieve this, the line integration in Eq. (6.17) should be along the anticlockwise
direction. (I use the determination of the direction matrix, a well known method
in graphic theory, to determine the direction from a given set of discrete points
on a magnetic surface.)

6.4.1 Normalized poloidal angle
The span of � defined by Eq. (6.17) is usually not 2� in one poloidal loop.

This poloidal angle can be scaled by s( ) to define a new poloidal coordinate �,
whose span is 2� in one poloidal loop, where s( ) is a magnetic surface function
given by

s( )= 2�H R

jJr jdlp
: (6.19)

Then � is written as

�i;j = s( j)�i;j

= s( j)
�
�ref;j+

Z
xref;j

xi;j R
jJr jdlp

�
= �ref;j+ s( j)

Z
xref;j

xi;j R
jJr jdlp; (6.20)

where �ref;j = s( j)�ref;j. Sine we have modified the definition of the poloidal
angle, the Jacobian of the new coordinates ( ; �; �) is different from that of ( ;
�; �). The Jacobian Jnew of the new coordinates ( ; �; �) is written as

Jnew � 1
(r �r�) �r�

= 1
fr �r[s( )�]g �r�

= 1
s( )

1
(r �r�) �r�

= 1
s( )

J 0

= � 1
s( )

J (6.21)
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The Jacobian J can be set to various forms to achieve various poloidal coordi-
nates, which will be discussed in the next section. After the Jacobian and the
radial coordinate  is chosen, all the quantities on the right-hand side of Eq.
(6.20) are known and the integration can be performed to obtain the value of
�i;j of each point on each flux surface.

[The reference points xref;j and the values of poloidal angle at these points
can be chosen by users. One choice of the reference points xref;j are those points
on the horizontal ray in the midplane that starts from the magnetic axis and
points to the low filed side of the device and �ref;j at these points is chosen as
zero (this is my choice in the GTAW code). In the TEK code, the reference points
are chosen at the high-field side of the midplane and �ref;j=¡� at the reference
points.]

6.4.2 Jacobian for equal-arc-length poloidal angle
If the Jacobian J is chosen to be of the following form

J = R
jr j : (6.22)

Then �i;j in Eq. (6.20) is written

�i;j= �ref;j+
2�H
dlp

Z
xref;j

xi;j

dlp: (6.23)

and the Jacobian of new coordinates ( ;�; �), Jnew, which is given by Eq. (6.21),
now takes the form

Jnew=�
H
dlp
2�

R
jr j =�

H
dlp
2�

R
jr	j

d	
d 

: (6.24)

Equation (6.23) indicates a set of poloidal points with equal arc intervals cor-
responds to a set of uniform �i points. Therefore this choice of the Jacobian is
called the equal-arc-length Jacobian. Note that Eq. (6.23) does not involve the
radial coordinate  . Therefore the values of � of points on any magnetic surface
can be determined before the radial coordinate is chosen.

6.4.3 Jacobian for equal-volume poloidal angle (Hamada coordinate)
The volume element in ( ; �; �) coordinates is given by dV = jJ jd�d�d .

If we choose a Jacobian that is independent of �, then uniform � grids will
correspond to grids with uniform volume interval. In this case, J is written as

J =h( ); (6.25)

where h( ) is a function independent of �. Then �i;j in Eq. (6.20) is written

�i;j= �ref;j+
2�H R

jr jdlp

Z
xref;j

xi;j R
jr jdlp (6.26)
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and the Jacobian of the new coordinates ( ; �; �), Jnew, is given by Eq. (6.21),
which now takes the following form:

Jnew=�
1
2�

I
R
jr jdlp: (6.27)

Note that both �i;j and Jnew are independent of the function h( ) introduced in
Eq. (6.25). (h( ) is eliminated by the normalization procedure specified in Sec.
6.4.1 due to the fact that h( ) is constant on a magnetic surface.) The equal-
volume poloidal angle is also called Hamada poloidal angle.

The equal-volume poloidal angle is useful in achieving loading balance for
parallel particle simulations. Assume that markers are loaded uniform in space
and the poloidal angle is domain decomposed and assigned to different MPI
process. Then the equal-volume poloidal angle can make marker number in
each MPI process be equal to each other and thus work loading to each process
be equal. (**check**If the domain decomposition is also applied to the radial
direction, to achieve loading balance, then the radial coordinate  should be
chosen in a way that makes

H
(R/r )dlp be independent of  , so that Jnew in

Eq. (6.27) is constant in space.**)

6.4.4 Jacobian of Boozer's poloidal angle
If the Jacobian J is chosen to be of the Boozer form:

J ( ; �)= h( )
B2

: (6.28)

then the poloidal angle in Eq. (6.20) is written as

�i;j= �ref;j+
2�H B2R

jr jdlp

Z
xref;j

xi;j B2R
jr jdlp: (6.29)

The final Jacobian is given by

Jnew=�

H B2R

jr jdlp

2�
1
B2

: (6.30)

The usefullness of Boozer poloidal angle will be further discussed in Sec. 10.8
after we introduce a gneralized toroidal angle.

6.4.5 Jacobian for PEST poloidal angle (straight-field-line poloidal
angle)

If the Jacobian J is chosen to be of the following form

J ( ; �)=R2;
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then Eq. (6.4) implies that the local safety factor, q̂( ;�)=¡g/	0, is a magnetic
surface function, i.e., the magnetic field lines are straight in ( ; �) plane. Then
the poloidal angle in Eq. (6.20) is written

�i;j= �ref;j+
2�H 1

Rjr jdlp

Z
xref;j

xi;j 1
Rjr jdlp; (6.31)

The Jacobian Jnew given by Eq. (6.21) now takes the form

Jnew=�R2
H 1

Rjr jdlp

2�
: (6.32)

Let us denote an arbitrary poloidal angle by � and the above straight-field-line
poloidal angle by #, then it is ready to find the following relation between � and
#:

#=#ref;j+
1
q

Z
�ref;j

�

q̂d�; (6.33)

where q̂ is the local safety factor corresponding to the arbitrary poloidal angle
�, i.e., q̂ =B � r�/(B � r�). [Proof: Using d� = R

jJr jdlp, the poloidal angle #
given in Eq. (6.31) is written as

# = #ref;j+
2�H 1

Rjr jdlp

Z
xref;j

xi;j 1
Rjr jdlp

= #ref;j+
2�H 1

Rjr j
jJr j
R

d�

Z
xref;j

xi;j 1
Rjr j

jJr j
R

d�

= #ref;j+
2�H jJ j
R2
d�

Z
xref;j

xi;j jJ j
R2

d�: (6.34)

Using q̂ = ¡ g

R2
J
	0
, where J is the Jacobian of ( ; �; �) coordinates, then the

above # is reduced to expression (6.33).]
Note that Boozer poloidal angle is very close to the poloidal angel disccused

here because the two Jacobians are very similar:

J = 1
B2
�R2: (6.35)

6.4.6 Comparison between different types of poloidal angle

All Jacobians introduced above can be written in a general form:

J = Ri

jr jjBk
; (6.36)

The choice of (i = 2; j = k = 0) gives the PEST coordinate, (i = j = 0; k = 2)
give the Boozer coordinate, (i = j = 1; k = 0) gives the equal-arc coordinate,
(i= j= k=0) gives the Hammada coordinate.
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Figure 6.1 compares the equal-arc-poloidal angle and the straight-line poloidal
angle, which shows that the resolution of the straight-line poloidal angle is not
good near the low-field-side midplane. Since ballooning modes take larger ampli-
tude near the low-field-side midplane, better resolution is desired there. This
is one reason that I often avoid using the straight-line poloidal angle in my
numerical codes.
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Figure 6.1. The equal-arc poloidal angle (left) and the straight-line poloidal angle
(right) for EAST equilibrium #38300@3.9s. The blue lines correspond to the equal-�
lines, with uniform � interval between neighbour lines. The red lines correspond to the
magnetic surfaces, which start from 	t

p
= 0.01714 (the innermost magnetic surface)

and end at 	t
p

=0.9851 (the boundary magnetic surface), and are equally spaced in
	t

p
.

6.4.7 Verification of Jacobian
After the magnetic coordinates are constructed, we can evaluate the Jacobian

Jnew by using directly the definition of the Jacobian, i.e.,

Jnew=
1

(r �r�) �r�
; (6.37)

which can be further written as

Jnew=R(R�Z ¡R Z�); (6.38)

where the partial differential can be evaluated by using numerical differential
schemes. The results obtained by this way should agree with results obtained
from the analytical form of the Jacobian. This consistency check provide a verifi-
cation for the correctness of the theory derivation and numerical implementation.
In evaluating the Jacobian by using the analytical form, we may need to evaluate
r , which finally reduces to evaluating r	. The value of jr	j is obtained
numerically based on the numerical data of 	 given in cylindrical coordinate
grids. Then the cubic spline interpolating formula is used to obtain the value
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of jr	j at desired points. (Jnew calculated by the second method (i.e. using
analytic form) is used in the GTAW code; the first methods are also implemented
in the code for the benchmark purpose.) In the following sections, for notation
ease, the Jacobiban of the constructed coordinate system will be denoted by J ,
rather than Jnew.

6.4.8 Radial coordinate
The radial coordinate  can be chosen to be various surface function, e.g.,

volume, poloidal or toroidal magnetic flux within a magnetic surface. The fre-
quently used radial coordinates include 	, and 	

p
, where 	 is defined by

	= 	¡	0
	a¡	0

; (6.39)

where	0 and	a are the values of 	 at the magnetic axis and LCFS, respectively.
Other choices of the radial coordinates: the toroidal magnetic flux and its square
root, 	t, and 	t

p
, where 	t and 	t are defined by

d	t
d	

=2�q;	t(0)= 0 (6.40)
and

	t=
	t

	t(1)
; (6.41)

respectively, where 	t(0) and 	t(1) are the values of 	t at the magnetic axis
and LCFS, respectively.

If  = 	t
p

, then

d	
d 

= d	
d	t

d	t
d 

= 1
2�q

d	t
d 

= 1
2�q

d	t
d	t

d	t
d 

= 1
2�q

	t(1) 2 (6.42)

The cylindrical coordinates (R; �; Z) is a right-hand system, with the positive
direction of Z pointing vertically up. In GTAW code, the positive direction of �
is chosen in the anticlockwise direction when observers look along the direction of
�̂. Then the definition J ¡1=r �r� �r� indicates that (1) J is negative ifr 
points from the magnetic axis to LCFS; (2) J is positive if r points from the
LCFS to the magnetic axis. This can be used to determine the sign of Jacobian
after using the analytical formula to obtain the absolute value of Jacobian.

If  =	 or  = 	
p

, r points from the magnetic axis to LCFS.
The volume between magnetic surfaces can also be used as a radial coordi-

nate. The differential volume element is written as

d3V =Jd d�d�: (6.43)

Integrating over the toroidal angle, we obtain

d2V =2�Jd d� (6.44)

Further integrating over the poloidal angle, we obtain

d1V =2�d 
I
Jd�; (6.45)
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i.e.,
d1V
d 

=2�
I
Jd�: (6.46)

In codes I wrote, I stick to using 	 as the radial coordinate when doing compu-
tation, and transform to other radial coordinates when presenting the results if
needed.

7 Constructing magnetic surface coordinate system from
discrete 	(R;Z) data

Given an axisymmetric tokamak equilibrium in (R; �; Z) coordinates (e.g.,
2D data 	(R; Z) on a rectangular grids (R; Z) in G-file), we can construct a
magnetic surface coordinates ( ; �; �) by the following two steps. (1) Find out
a series of magnetic surfaces on (R; Z) plane and select radial coordinates for
each magnetic surface (e.g. the poloidal flux within each magnetic surface).
(2) Specify the Jacobian or some property that we want the poloidal angle to
have. Then calculate the poloidal angle of each point on each flux surface (on
the �= const plane) by using Eq. (6.16) (if the Jacobian is specified) or some
method specified by us to achieve some property we prefer for the poloidal angle
(if a Jacobian is not directly specified). Then we obtain the magnetic surface
coordinates system ( ; �; �).

7.1 Finding magnetic surfaces

Two-dimensional data 	(R; Z) on a rectangular grids (R; Z) is read from the
G_EQDSK file (G-file) of EFIT code. Based on the 2D array data, I use 2D
cubic spline interpolation to construct a interpolating function 	=	(R;Z). To
construct a magnetic surface coordinate system, I need to find the contours of
	, i.e., magnetic surfaces. The values of 	 on the magnetic axis, 	0, and the
value of 	 on the last closed flux surface (LCFS), 	b, are given in G-file. Using
these two values, I construct a 1D array �psival� with value of elements changing
uniform from 	0 to 	b. Then I try to find the contours of 	 with contour level
value ranging from 	0 to 	b. This is done in the following way: construct a
series of straight line (in the poloidal plane) that starts from the location of
the magnetic axis and ends at one of the points on the LCFS. Combine the
straight line equation, Z = Z(R), with the interpolating function 	(R; Z), we
obtain a one variable function h=	(R;Z(R)). Then finding the location where
	 is equal to a specified value 	i, is reduced to finding the root of the equation
	(R;Z(R))¡	i=0. Since this is a one variable equation, the root can be easily
found by using simple root finding scheme, such as bisection method (bisection
method is used in GTAW code). After finding the roots for each value in the
array �psival� on each straight lines, the process of finding the contours of 	 is
finished. The contours of 	 found this way are plotted in Fig. 7.1.
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Figure 7.1. Verification of the numerical code that calculates the contours of the
poloidal flux	. The bold line in the figure indicates the LCFS. The contour lines (solid
lines) given by the gnuplot program agrees well with the results I calculate by using
interpolation and root-finding method (the two sets of contours are indistinguishable
in this scale). My code only calculate the contour lines within the LCFS, while those
given by gnuplot contains additional contour lines below the X point and on the left
top in the figure. Eqdisk file of the equilibrium was provided by Dr. Guoqiang Li
(filename: g013606.07104).

In the above, we mentioned that the point of magnetic axis and points on
the LCFS are needed to construct the straight lines. In G-file, points on LCFS
are given explicitly in an array. The location of magnetic axis is also explicitly
given in G-file. It is obvious that some of the straight lines Z =Z(R) that pass
through the location of magnetic axis and points on the LCFS will have very
large or even infinite slope. On these lines, finding the accurate root of the
equation 	(R; Z(R))¡	i= 0 is difficult or even impossible. The way to avoid
this situation is obvious: switch to use function R=R(Z) instead of Z =Z(R)
when the slope of Z=Z(R) is large (the switch condition I used is jdZ /dRj>1).

In constructing the flux surface coordinate with desired Jacobian, we will
need the absolute value of the gradient of 	, jr	j, on some specified spatial
points. To achieve this, we need to construct a interpolating function for jr	j.
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The jr	j can be written as

jr	j=
�
@	
@R

�
2

+
�
@	
@Z

�
2

s
; (7.1)

By using the center difference scheme to evaluate the partial derivatives with
respect to R and Z in the above equation (using one side difference scheme for
the points on the rectangular boundary), we can obtain an 2D array for the value
of jr	j on the rectangular (R;Z) grids. Using this 2D array, we can construct
an interpolating function for r	 by using the cubic spline interpolation scheme.
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Figure 7.2. Grid points (the intersecting points of two curves in the figure) corresponding
to uniform poloidal flux and uniform poloidal arc length for EAST equilibrium shot 13606
at 7.1s (left) (G-file name: g013606.07104) and shot 38300 at 3.9s (right) (G-file name:
g038300.03900).
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Figure 7.3. jr	j as a function of the poloidal angle. The different lines corresponds
to the values of jr	j on different magnetic surfaces. The stars correspond to the values
on the boundary magnetic surface while the plus signs correspond to the value on the
innermost magnetic surface (the magnetic surface adjacent to the magnetic axis). The
equilibrium is for EAST shot 38300 at 3.9s.
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Figure 7.4. The Poloidal magnetic field Bp= jr	j/R (left) and toroidal magnetic
field B� = g/R (right) as a function of the poloidal angle. The different lines corre-
sponds to the values on different magnetic surfaces. The stars correspond to the values
on the boundary magnetic surface while the plus signs correspond to the value on the
innermost magnetic surface (the magnetic surface adjacent to the magnetic axis). The
equilibrium is for EAST shot 38300 at 3.9s.
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Figure 7.5. Equal-arc Jacobian as a function of the poloidal angle on different mag-
netic surfaces. The dotted line corresponds to the values of Jacobian on the boundary
magnetic surface. The equilibrium is for EAST shot 38300 at 3.9s.
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Figure 7.6. jr	j as a function of the poloidal angle. The different lines corresponds
to values of jr	j on different magnetic surfaces. The stars correspond to the values of
jr	j on the boundary magnetic surface while the plus signs correspond to the value
on the innermost magnetic surface (the magnetic surface adjacent to the magnetic
axis). The equilibrium is a Solovev equilibrium.
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Figure 7.7. Jacobian on differentmagnetic surfaces as a function of the poloidal angle.
The equilibrium is a Solovev equilibrium and the Jacobian is an equal-arc Jacobian.
The stars correspond to the values of Jacobian on the boundary magnetic surface
while the plus signs correspond to the value on the innermost magnetic surface (the
magnetic surface adjacent to the magnetic axis).

7.2 Expression of metric elements of magnetic coordinates ( ;�; �)

Metric elements of the ( ; �; �) coordinates, e.g., r � r�, are often needed in
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practical calculations. Next, we express these metric elements in terms of the
cylindrical coordinates (R;Z) and their partial derivatives with respect to  and
�. Note that, in this case, the coordinate system is ( ; �; �) while R and Z are
functions of  and �, i.e.,

R=R( ; �); (7.2)

Z =R( ; �): (7.3)

Then rR and rZ are written as

rR= R̂=R r +R�r�; (7.4)

rZ = Ẑ=Z r +Z�r�; (7.5)

wehre R �@R/@ , etc. Equations (7.4) and (7.5) can be solved to give

r = 1
R Z�¡Z R�

(Z�R̂¡R�Ẑ); (7.6)

r�= 1
Z R�¡R Z�

(Z R̂¡R Ẑ): (7.7)

Using the above expressions, the Jacobian of ( ; �; �) coordinates, J , is written
as

J ¡1 = r �r� �r�

= ¡ 1
(R Z�¡Z R�)2

(Z�R �̂¡R�Z �̂)�
�̂
R

= ¡ 1
(Z�R ¡R�Z )R

; (7.8)

i.e.,
J =R(R�Z ¡R Z�): (7.9)

Using this, Expressions (7.6) and (7.7) are written as

r =¡RJ (Z�R̂¡R�Ẑ) (7.10)
and

r�= R
J (Z R̂¡R Ẑ): (7.11)

Then the elements of the metric matrix are written as

jr j2= R2

J 2
(Z�2+R�2); (7.12)

jr� j2= R2

J 2
(Z 2 +R 2 ); (7.13)

and

r �r�=¡R
2

J 2
(Z�Z +R�R ): (7.14)

Equations (7.12), (7.13), and (7.14) are the expressions of the metric elements
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in terms of R, R , R�, Z , and Z�. [Combining the above results, we obtain

r �r�
jr j2 =¡Z�Z +R�R 

Z�
2+R�2

: (7.15)

Equation (7.14) is used in GTAW code. Using the above results, h��= J
R2
r� �r�

are written as
h  = J

R2
jr j2= 1

J (Z�
2+R�2) (7.16)

h��= J
R2
jr�j2= 1

J (Z 
2 +R 2 ); (7.17)

h �= J
R2
r �r�=¡ 1J (Z�Z +R�R ) (7.18)

As a side product of the above results, we can calculate the arc length in the
poloidal plane along a constant  surface, d`p, which is expressed as

d`p = (dR)2+(dZ)2
p

= (R d +R�d�)2+(Z d +Z�d�)2
q

:

Note that d = 0 since we are considering the arc length along a constant  
surface in (R;Z) plane. Then the above expression is reduced to

d`p = (R�d�)2+(Z�d�)2
p

= R�
2+Z�2

p
d�

= jJr j
R

d�; (7.19)

which agrees with Eq. (6.16).]

8 Constructing model tokamak magnetic field

In some cases (e.g., turbulence simulation), model tokamak magnetic field, which
is not an exact solution to the GS equation, is often used. In the model, the
safety factor profile q( ), toroidal field function g( ), and the magnetic surface
shape (R( ; �); Z( ; �)) are given. To use this model in a simulation, we need
to calculate its poloidal magnetic field, which is determined by the poloidal
magnetic flux function 	. To determine 	, we need to use Eq. (6.8), i.e.,

q( )=¡ 1
2�

g
	0

Z
0

2� J
R2
d�; (8.1)

and re-organize the formula as

d	
d 

=¡ 1
2�

g( )
q( )

Z
0

2� J
R2
d�; (8.2)

which can be integrated to obtain 	 and thus the poloidal magnetic field Bp=
r	 � r�, where J = [(r � r�) � r�]¡1. The toroidal magnetic field can
be obtained from g( ) by B� = g /R. In most papers, g( ) is chosen to be a
constant.
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A typical magnetic surface shape used in simulations is the Miller shape,
which is given by

R(r; �)=R0(r)+ r cos[�+(sin¡1�(r)) sin�]
Z(r; �)=�(r) r sin�

(8.3)

where r =  is the radial coordinate, R0(r), �(r), and �r(r) are the Shafronov
shift, triangularity, and elongation profiles, which can be arbitrarily specified.
For the special case of R0 being a constant, �(r) = 0, and �(r) = 1, this shape
reduces to a concentric-circular magnetic field. An example of calculating the
poloidal field of the model field is given in Sec. 12. This kind of model field can
be called theoretical physicists' tokamak. Computational physicists often use
this model for code benchmarking purpose. The famous DIII-D cyclone base
case is an example, which was extensively used for benchmarking gyrokinetic
simulation of ion temperature driven turbulence.

9 Magnetic surface averaging

9.1 Definition

The magnetic surface average of a physical quantity G( ; �; �) is defined by

hGi� lim
�	!0

 RR R
�	

Gd3VRR R
�	

d3V

!
; (9.1)

where the volume integration is over a small volume between two adjacent flux
surfaces with 	 differing by 4	. [This formula (with finite �	) is used in TEK
code to calculate the radial heat flux.]

The above 3D volume integration can also be written as a 2D surface inte-
gration. The differential volume element is given by d3V = jJ jd d�d�, where J
is the Jacobian of ( ; �; �) coordinates. Using this, equation (9.1) is written as

hGi = lim
�	!0

 RR R
�	

GjJ jd d�d�RR R
�	
jJ jd d�d�

!

=
RR

GjJ jd�d�RR
jJ jd�d� ; (9.2)

which is a 2D averaging over a magnetic surface and thus is called magnetic
surface average. Note that the surface averaging of any n=/ 0 harmonic is zero (n
is the toroidal mode number). Therefore the magnetic surface average contains
only the contribution from the n=0 component, i.e., axisymmetric component.
(On the other hand,m=/ 0 poloidal harmonics of G can contribute to the surface
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average since the Jacobian has a poloidal angle dependence.) Using this and
noting that J is axisymmetric, then expression (9.2) is written as

hGi=
R
G0( ; �)jJ jd�R

jJ jd�
; (9.3)

where G0(�) is defined by the following Fourier expansion:

G=
X

n=¡1

+1

Gn( ; �)exp(¡in�): (9.4)

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
�Zonal� and �mean� components
hGi is sometimes called the �zonal� component of G if the radial wavelength

of hGi is much smaller than the equilibrium scale length. If the radial wavelength
of hGi is comparable to the equilibrium scale length, hGi is usually called �mean�
component in tokamak literature. For example, mean flows are of system space
scale and thus are easy to be observed in experiments. On the other hand, the
�zonal� flow, which usually refers to the turbulence generated secondary flow,
is of much smaller radial scale (the radial wavelength of zonal flow is of several
Larmor radius) and thus is difficult to observe in experiments.

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Sometimes, we do not want the Jacobian to explicitly appear in the formula.

This can be achieved by writing the differential volume element as

d3V =Rd� d	
jr	jdlp: (9.5)

Using Bp= jr	j/R, the volume element is further written as

d3V = d�d	
Bp

dlp (9.6)

Using this, the averaging defined in Eq. (9.1) is written as

hGi = lim
�	!0

RR R
�	

Gd�
d	

Bp
dlpRR R

�	
d�

d	

Bp
dlp

=

RR
G

1

Bp
d�dlpRR 1

Bp
d�dlp

: (9.7)

If G is axisymmetric, then the above equation is written as

hGi=

H
G

1

Bp
dlpH 1

Bp
dlp

: (9.8)
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(Equation (9.8) is used in the GTAW code to calculate the magnetic surface
averaging.) Using Eq. (6.16) and Bp = jr	j /R, equation (9.8) can also be
written as

hGi=
R
0

2�
G jJ jd�R

0

2� jJ jd�
: (9.9)

Using the expression of the volume element d� = jJ jd�d�d , the volume within
a magnetic surface is written

V ( )=
Z
d� =

Z
jJ jd�d�d =2�

Z
 0

 Z
0

2�

jJ jd�d : (9.10)

Using this, the differential of V with respect to  is written as

V 0� dV
d 

=2�
Z
0

2�

jJ jd�: (9.11)

Using this, Eq. (9.9) is written as

hGi= 2�
V 0

Z
0

2�

G jJ jd�

9.2 Flux Surface Functions�to be deleted

Next, examine the meaning of the following volume integral

D( )�
Z
V

B �r�d� ; (9.12)

where the volume V = V ( ) is the volume within the magnetic surface labeled
by  . Using r�B=0, the quantity D can be further written as

D=
Z
V

r � (�B)d�: (9.13)

Note that � is not a single-value function of the spacial points. In order to
evaluate the integration in Eq. (9.13), we need to select one branch of �, which
can be chosen to be 06 � <2�. Note that function �= �(R;Z) is not continuous
in the vicinity of the contour of � = 0. Next, we want to use the Gauss's
theorem to convert the above volume integration to surface integration. Noting
the discontinuity of the integrand �B in the vicinity of the contour of �=0, the
volume should be cut along the contour, thus, generating two surfaces. Denote
these two surfaces by S1 and S2, then equation (9.13) is written as

D =
Z
S1

�B � dS+
Z
S2

�B � dS+
Z
S3

�B � dS;
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where the direction of surface S1 is in the negative direction of �, the direction
of S2 is in the positive direction of �, and the surface S3 is the toroidal magnetic
surface  = 0. The surface integration through S3 is obviously zero since B lies
in this surface. Therefore, we have

D =
Z
S1

�B � dS+
Z
S2

�B � dS+0

=
Z
S1

0B � dS+
Z
S2

2�B � dS

= 2�
Z
S2

B � dS: (9.14)

Eq. (9.14) indicates that D is 2� times the magnetic flux through the S2 surface.
Thus, the poloidal flux through S2 is written as

	p=
1
2�
D= 1

2�

Z
V

B �r�d� : (9.15)

Using the expression of the volume element d� = jJ jd�d�d , 	p can be further
written in terms of flux surface averaged quantities.

	p = 1
2�

Z
V

B �r� jJ jd�d�d 

=
Z
0

 

d 

Z
0

2�

B �r�jJ jd�

=
Z
0

 

d 

Z
0

2�

	0r �r� �r�jJ jd�

= ¡sign(J )
Z
0

 

d 

Z
0

2�

	0( )d�

= ¡2� sign(J )
Z
0

 

	0( )d 

= ¡2� sign(J )[	( )¡	(0)]: (9.16)

Note that the sign of the Jacobian appears in Eq. (9.16), which is due to the
positive direction of surface S2 is determined by the positive direction of �, which
in turn is determined by the sign of the Jacobian (In my code, however, the
positive direction of � is chosen by me and the sign of the Jacobian is determined
by the positive direction of �). We can verify the sign of Eq. (9.16) is exactly
consistent with that in Eq. (1.27).

Similarly, the toroidal flux within a flux surface is written as

	t=
1
2�

Z
V

B �r�d� ; (9.17)

the poloidal current within a flux surface is written as

K( )= 1
2�

Z
V

J �r�d� ; (9.18)
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and toroidal current within a flux surface is written as

I( )= 1
2�

Z
V

J �r�d�: (9.19)

(**check**)The toroidal magnetic flux is written as

	t = 1
2�

Z
B �r�jJ jd�d�d 

=
Z
0

 

d 

Z
0

2�

g
1
R2
jJ jd�

=
Z
0

 
�
g
V 0

2�

�
1
R2

��
d : (9.20)

)	t0= g
V 0

2�

�
1
R2

�

)d	t
dV

= g
1
2�

�
1
R2

�

)d	
dV

= g
2�q

1
2�

�
1
R2

�
: (9.21)

Next, calculate the derivative of the toroidal flux with respect to the poloidal
flux.

d	t
d	p

= 	t0

	p0

= ¡ gV 0

(2�)2	0

�
1
R2

�
; (9.22)

Comparing this result with Eq. (13.53) indicates that it is equal to the safety
factor, i.e.,

d	t
d	p

= q( ): (9.23)

By using the contravariant representation of current density (14.1), the poloidal
current within a magnetic surface is written as

K( ) = 1
2�

Z
J � r�Jd�d�d 

= 1
�0

Z
(¡g 0)r��r �r�Jd�d 

= ¡ 1
�0

Z
g 0d�d 

= ¡2�
�0

Z
0

 

g 0d 

= ¡2�
�0
[g( )¡ g(0)]: (9.24)
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Note that the poloidal current is proportional to g, which explains why g is
sometimes called poloidal current function in tokamak literature.

¡
��

	0 J
R2
jr j2

�
 

+
�
	0 J
R2
r �r�

�
�

�
r �r�¡ g 0r��r ;

The toroidal current is written as

I�( ) = 1
2�

Z
J �r�Jd�d�d 

= ¡ 1
2��0

Z ��
	0 J
R2 jr j

2

�
 

+
�
	0 J
R2r � r�

�
�

�
r � r� �

r�Jd�d�d 

= ¡ 1
�0

Z ��
	0 J
R2
jr j2

�
 

+
�
	0 J
R2
r �r�

�
�

�
d�d 

= ¡ 1
�0

Z ��
	0 J
R2
jr j2

�
 

�
d�d 

= ¡ 1
�0

Z
0

2�

d�

Z
0

 

d 

�
	0 J
R2
jr j2

�
 

= ¡ 1
�0

Z
0

2�

d�

�
	0 J
R2
jr j2¡ 0

�
: (9.25)

The last equality is due to r = 0 at  = 0. By using the flux surface average
operator, Eq. (9.25) is written

I�( )=¡
V 0	0

2��0

�
jr j2
R2

�
: (9.26)

Next, calculate another useful surface-averaged quantity,

hJ �Bi
hB �r�i =

D
g2

J

h�
1

g
	0 J

R2
jr j2

�
 
+
�
1

g
	0r �r� J

R2

�
�

iE
�0hg/R2i

=

2�

V 0

R
0

2�
d�g2

h�
1

g
	0 J

R2
jr j2

�
 
+
�
1

g
	0r �r� J
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=
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jr j2
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�0hR¡2i

(9.27)
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The differential with respect to  and the integration with respect to � can be
interchanged, yielding

hJ �Bi
hB �r�i =

2�

V 0
g
h
1

g
	0
�R

0

2�
d�

J
R2
jr j2

�i
 

�0hR¡2i

=

1

V 0
g
h
1

g
	0V 0

D
jr j2

R2

Ei
 

�0hR¡2i

= g

�0V 0hR¡2i

�
	0V 0

g

�
jr j2
R2

��
 

(9.28)

10 Magnetic coordinates ( ; �; �) with general toroidal
angle �

10.1 General toroidal angle �

In Sec. 6.1, we introduced the local safety factor q̂( ;�). Equation (6.4) indicates
that if the Jacobian is chosen to be of the particular form J =h( )R2, then the
local safety factor is independent of �, i.e., magnetic line is straight in (�; �)
plane. On the other hand, if we want to make field line straight in (�; �) plane,
the Jacobian must be chosen to be of the specific form J = h( )R2. We note
that, as mentioned in Sec. 6.3, the poloidal angle is fully determined by the choice
of the Jacobian. The specific choice of J =�( )R2 is usually too restrictive for
achieve a desired poloidal resolution (for example, the equal-arc poloidal angle
can not be achieved by this choice of Jacobian). Is there any way that we can
make the field line straight in a coordinate system at the same time ensure that
the Jacobian can be freely adjusted to obtain desired poloidal angle? The answer
is yes. The obvious way to achieve this is to define a new toroidal angle � that
generalizes the usual toroidal angle �. Define a new toroidal angle � by[10]

� = �¡ q( )�( ; �); (10.1)

where � = �( ; �) is a unknown function to be determined by the constraint of
field line being straight in (�; �) plane. Using Eq. (6.5), the new local safety
factor in ( ; �; �) coordinates is written as

q̂new � B �r�
B �r�

= (r��r + q̂r �r�) � r�
(r��r + q̂r �r�) �r�

= r��r �r� + q̂r �r� �r�
(r��r ) �r�
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= r��r �r(¡q�)+ q̂r �r� �r�
(r��r ) �r�

= ¡q @�
@�

+ q̂: (10.2)

To make the new local safety factor be independent of �, the right-hand side of
Eq. (10.2) should be independent of �, i.e.,

¡ q@�
@�

+ q̂= c( ); (10.3)

where c( ) can be an arbitrary function of  . A convenient choice for c( ) is
c( )= q, i.e., making the new local safety factor be equal to the original global
safety factor, i.e., q̂new= q. In this case, equation (10.3) is written as

@�
@�

= q̂
q
¡ 1; (10.4)

which, on a magnetic surface labed by  , can be integrated over � to give

�( ; �)= �( ; �ref)¡ (�¡ �ref)+
1
q

Z
�ref

�

q̂d�; (10.5)

where �ref is an starting poloidal angle arbitrarily chosen for the integration, and
�( ; �ref) is the constant of integration. In the following, both �ref and �( ; �ref)
will be chosen to be zero. Then the above equations is written

�=¡�+ 1
q

Z
0

�

q̂d�: (10.6)

Substituting the above expression into the definition of � (Eq. 10.1), we obtain

� = �+ q�¡
Z
0

�

q̂d�; (10.7)

which is the formula for calculating the general toroidal angle. If � is a straight-
field line poloidal angle, then � in Eq. (10.7) reduces to the usual toroidal angle �.

In summary, magnetic field line is straight in (�; �) plane with slope being q
if � is defined by Eq. (10.7). In this method, we make the field line straight by
defining a new toroidal angle, instead of requiring the Jacobian to take particular
forms. Thus, the freedom of choosing the form of the Jacobian is still available to
be used later to choose a good poloidal angle coordinate. Note that the Jacobian
of the new coordinates ( ; �; �) is equal to that of ( ; �; �). [Proof:

Jnew¡1 = r �r� �r�
= r �r� �r(�¡ q�)
= r �r� �r�¡r �r� �r(q�)
= r �r� �r�¡ 0
= J ¡1:
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] Also note that �( ; �) defined by Eq. (10.6) is a periodic function of �. [Proof:
Equation (10.6) implies that

�( ; �+2�) = 1
q

Z
0

�+2�

q̂d�¡ (�¡ �ref)¡ 2�

= 1
q

Z
0

�

q̂d�¡ (�¡ �ref)¡ 2�+
1
q

Z
�

�+2�

q̂d�

= �( ; �)¡ 2�+ 1
q

Z
�

�+2�

q̂d�

= �( ; �): (10.8)

]
[In numerical implementation, the term

R
0

� B �r�
B �r� d� appearing in � is com-

puted by usingZ
0

�B �r�
B � r� d� =

Z
0

� g
R2

J
	0
d �=

Z
0

� g
R2

1
	0

R
jr jdlp

=
Z
0

� g
R

1
jr	jdlp

=
Z
0

� 1
R

B�
Bp

d`p: (10.9)

For later use, from Eq. (10.6), we obtain

@(�q)
@ 

= ¡ d
d 

�
g
	0
�Z

0

� J
R2
d�¡ g

	0
@
@ 

Z
0

� J
R2
d�¡ dq

d 
�: (10.10)

This formula is used in GTAW code, where the derivative @(g / 	0) / @ is
calculated numerically by using the central difference scheme.]

10.2 Contravariant form of magnetic field in ( ; �; �) coordinates

Recall that the contravariant form of the magnetic field in ( ; �; �) coordinates
is given by Eq. (6.5), i.e.,

B=¡	0(r��r + q̂r �r�): (10.11)

Next, let us derive the corresponding form in ( ; �; �) coordinates. Using the
definition of �, equation (10.11) is written as

B = ¡	0r(� + q�)�r ¡	0q̂r �r�
= ¡	0r� �r ¡	0r(q�)�r ¡	0q̂r �r�

= ¡	0r� �r ¡	0q @�
@�
r��r ¡	0q̂r �r� (10.12)
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Using Eq. (10.4), the above equation is simplified as

B = ¡	0(r� �r + qr �r�): (10.13)

Equation (10.13) is the contravariant form of the magnetic field in ( ; �; �)
coordinates.

The expression of the magnetic field in Eq. (10.13) can be rewritten in terms
of the flux function 	p and 	t discussed in Sec. 9.2. Equation (10.13) is

B=r	�r� + qr��r	; (10.14)

which, by using Eq. (9.16), i.e., r	=r	p/(2�), is rewritten as

B= 1
2�
(r� �r	p+ qr	p�r�); (10.15)

which, by using Eq. (9.23), i.e., q= d	t/d	p, is further written as

B= 1
2�
(r� �r	p+r	t�r�): (10.16)

10.3 Relation between the partial derivatives in ( ; �; �) and ( ; �;
�) coordinates

Noting the simple fact that

d
dx

= d
d (x+ c)

; (10.17)

where c is a constant, we conclude that�
@f

@�

�
 ;�

=
�
@f

@�

�
 ;�

; (10.18)

(since �= � + q( )�( ; �), where the part q( )�( ; �) acts as a constant when
we hold  and � constant), i.e., the symmetry property with respect to the new
toroidal angle � is identical with the one with respect to the old toroidal angle
�. On the other hand, generally,�

@f
@ 

�
�;�

=/
�
@f
@ 

�
�;�

(10.19)

and �
@f
@�

�
 ;�

=/
�
@f
@�

�
 ;�

: (10.20)

In the special case that f is axisymmetric (i.e., f is independent of � in ( ; �;
�) coordinates), then two sides of Eqs. (10.19) and (10.20) are equal to each
other. Note that the partial derivatives @ /@ and @ /@� in Sec. 10.1 and 10.2 are
taken in ( ; �; �) coordinates. Because the quantities involved in Sec. 10.1 and
10.2 are axisymmetric, these partial derivatives are equal to their counterparts
in ( ; �; �) coordinates.
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10.4 Steps to construct a straight-line magnetic coordinate system

In Sec. 7, we have provided the steps to construct the magnetic surface coor-
dinate system ( ; �; �). Only one additional step is needed to construct the
straight-line flux coordinate system ( ; �; �). The additional step is to calculate
the generalized toroidal angle � according to Eq. (10.1), where � is obtained from
Eq. (10.6). Also note that the Jacobian of ( ; �; �) coordinates happens to be
equal to that of ( ; �; �) coordinates.

10.5 Form of operator B � r in ( ; �; �) coordinates

The usefulness of the contravariant form [Eq. (10.13] of the magnetic field lies
in that it allows a simple form of B � r operator in a coordinate system. (The
operator B0 � r is usually called magnetic differential operator.) In ( ; �; �)
coordinate system, by using the contravariant form Eq. (10.13), the operator is
written as

B �rf = ¡	0(r� �r ) �rf( ; �; �)¡	0q(r �r�) �rf( ; �; �)

= ¡	0J ¡1
�
@
@�

+ q
@
@�

�
f: (10.21)

Next, consider the solution of the following magnetic differential equation:

B �rf =h: (10.22)

where h= h( ; �; �) is some known function. Using Eq. (10.21), the magnetic
differential equation is written as�

@
@�

+ q( ) @
@�

�
f =¡ 1

	0
Jh( ; �; �): (10.23)

Note that the coefficients before the two partial derivatives of the above equation
are all independent of � and �. This indicates that different Fourier harmonics
in � and � are decoupled. As a result of this fact, if f is Fourier expanded as

f( ; �; �)=
X
m;n

fmn( )ei(m�¡n�); (10.24)

(note that, following the convention adopted in tokamak literature[10], the
Fourier harmonics are chosen to be ei(m�¡n�), instead of ei(m�+n�)), and the
right-hand side is expanded as

¡ 1
	0
Jh( ; �; �)=

X
m;n

mn( )ei(m�¡n�); (10.25)

Magnetic coordinates ( ; �; �) with general toroidal angle � 57



then Eq. (10.23) can be readily solved to give

fmn=
mn

i[m¡nq] : (10.26)

The usefulness of the straight line magnetic coordinates ( ; �; �) lies in that, as
mentioned previously, it makes the coefficients before the two partial derivatives
both independent of � and �, thus, allowing a simple solution to the magnetic
differential equation.

10.6 Resonant surface of a perturbation

Equation (10.26) indicates that, for the differential equation (10.22), there is
a resonant response to a perturbation ei(m�¡n�) on a magnetic surface with
m¡nq=0. Therefore, the magnetic surface with q=m/n is called the �resonant
surface� for the perturbation ei(m�¡n�).

The phase change of the perturbation ei(m�¡n�) along a magnetic field is
given by m��¡n��, which can be written as ��(m¡nq). Since m¡nq=0 on
a resonant surface, this indicates that there is no phase change along a magnetic
field line on a resonant surface, i.e., the parallel wavenumber kk is zero on a
resonant surface.

10.7 Helical angle used in tearing mode theory

Next, we discuss a special poloidal angle, which is useful in describling a per-
turnbation of single harmonic (m;n). This poloidal angle is defined by

�= �¡ n
m
�; (10.27)

where (m; n) are the mode numbers of the perturbation. The poloidal angle �
is often called helical angle and is special in that its definition is associated with
a perturbation (the mode numbers of the perturbation appear in the definition)
while the definition of the poloidal angles discussed previously only involve the
equilibrium quantities.

The poloidal angle � is designed to make 3D perturbations of the form
�f( ;m�¡n�) reduce to 2D perturbations, i.e.,

@f

@�

��������
 ;�

=0: (10.28)

It is ready to verify that the Jacobian of coordinates ( ; �; �) is equal to
that of coordinates ( ; �; �) [proof: (J 0)¡1 = r � r� � r� = r � r(� ¡
n�/m) �r� =r �r� �r� =J ¡1].
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The component of B along r� direction (i.e., the covariant component) is
written

B(�) � B �r�
= ¡	0(r� �r + qr �r�) � r(�¡n� /m)
= ¡	0(r� �r �r�)+	0 n

m
(qr �r� �r�)

= ¡	0J ¡1+	0 n
m
qJ ¡1

= 	0J ¡1
�
nq
m
¡ 1
�
: (10.29)

At the resonant surface q = m / n, equation (10.29) implies B(�) = 0. The
direction r� defines the reconnecting component of the magnetic field?

On the other hand, the component of B along r� direction is written

B(�) � B �r�
= ¡	0(r� �r + qr �r�) �r�
= ¡	0r� �r �r�
= ¡	0J ¡1: (10.30)

Using (10.30) and (10.29), the relation between B(�) and B(�) is written as

B(�)=B(�)
�
1¡ nq

m

�
: (10.31)

10.8 Covariant form of magnetic field in ( ;�; �) coordinate system

In the above, we have obtained the covariant form of the magnetic field in ( ; �;
�) coordinates (i.e., Eq. (6.2)). Next, we derive the corresponding form in ( ;
�; �) coordinate. In order to do this, we need to express the r� basis vector in
terms of r , r�, and r� basis vectors. Using the definition of the generalized
toroidal angle, we obtain

gr� = gr(� + q�)
= gr� + gqr�+ g�rq

= gr� + gq

�
@�
@ 
r + @�

@�
r�
�
+ g�q 0r 

=
�
gq
@�
@ 

+ g�q 0
�
r + gq

@�
@�
r�+ gr�

= g
@(q�)
@ 

r + gq
@�
@�
r�+ gr�: (10.32)

Using Eq. (10.32), the covariant form of the magnetic field, Eq. (6.2), is written
as

B=
�
	0 J
R2
r �r�+ g @(q�)

@ 

�
r +

�
gq
@�
@�
¡	0 J

R2
jr j2

�
r�+ gr�: (10.33)

Magnetic coordinates ( ; �; �) with general toroidal angle � 59



This expression can be further simplified by using equation (10.4) to eliminate
@�/@�, which gives

B =
�
	0 J
R2
r �r�+ g

@(q�)
@ 

�
r +

�
¡ g

2

	0
¡ gqR

2

J ¡	
0jr j2

�
J
R2
r�+ gr�

=
�
	0 J
R2
r � r� + g

@(q�)
@ 

�
r +

�
¡g

2+ jr	j2
	0

¡ gq
R2

J

�
J
R2
r� +

gr�: (10.34)

Using B2=(jr	j2+ g2)/R2, the above equation is written as

B =
�
	0 J
R2
r �r�+ g

@(q�)
@ 

�
r +

�
¡B

2R2

	0
¡ gqR

2

J

�
J
R2
r�+ gr�

=
�
	0 J
R2
r �r�+ g

@(q�)
@ 

�
r +

�
¡B

2

	0
J ¡ gq

�
r�+ gr�: (10.35)

Equation (10.35) is the covariant form of the magnetic field in ( ; �; �) coordi-
nate system. For the particular choice of the radial coordinate  =¡	 and the
Jacobian J =h( )/B2 (i.e., Boozer's Jacobian, discussed in Sec. 10.9), equation
(10.35) reduces to

B=
�
¡ J
R2
r �r�+ g

@(q�)
@ 

�
r + I( )r�+ g( )r� ; (10.36)

with I( )=h( )¡ gq. The magnetic field expression in Eq. (10.36) frequently
appears in tokamak literature[28]. In this form, the coefficients before both r�
and r� depends on only the radial coordinate. In terms of I( ), the Jabobian
can also be written as

J = gq+ I
B2

: (10.37)

10.9 Form of operator (B �r /B2) �r in ( ; �; �) coordinates

In solving the MHD eigenmode equations in toroidal geometries, besides the
B �r operator, we will also encounter another surface operator (B�r /B2) �r.
Next, we derive the form of the this operator in ( ; �; �) coordinate system.
Using the covariant form of the equilibrium magnetic field [Eq. (10.35)], we
obtain

B�r 
B2

= 1
B2

�
¡B

2

	0
J ¡ gq

�
r��r + g

B2
r� �r : (10.38)

Using this, the (B�r /B2) �r operator is written as

B�r 
B2

�r = 1
B2

�
B2

	0
J + gq

�
J ¡1 @

@�
+ g
B2
J ¡1 @

@�
(10.39)

=
�
1
	0

+ g
J ¡1
B2

q

�
@
@�
+ g

J ¡1
B2

@
@�
; (10.40)
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which is the form of the operator in ( ; �; �) coordinate system.

Examining Eq. (10.40), we find that the coefficients before the two partial
derivatives will be independent of � and � if the Jacobian J is chosen to be of
the form J =h( )/B2, where h is some magnetic surface function. It is obvious
that the independence of the coefficients on � and � will be advantageous to
some applications. The coordinate system ( ; �; �) with the particular choice
of J = h( ) /B2 is called the Boozer coordinates. The usefulness of the new
toroidal angle � is highlighted in Boozer's choice of the Jacobian, which makes
both B �r and (B�r /B2) �r be a constant-coefficient differential operator.
For other choices of the Jacobian, only theB �r operator is a constant-coefficient
differential operator.

10.10 Radial differential operator

In solving the MHD eigenmode equations in toroidal geometry, we also need the
radial differential operator r � r. Next, we derive the form of the operator in
( ; �; �) coordinates. Using

rf = @f
@ 
r + @f

@�
r�+ @f

@�
r� ;

the radial differential operator is written as

r �rf = jr j2 @f
@ 

+(r� � r )@f
@�

+(r� �r )@f
@�

= jr j2 @f
@ 

+(r� � r )@f
@�

+ fr[�¡ q�( ; �)] �r g@f
@�

= jr j2 @f
@ 

+(r� � r )@f
@�
¡r[q�] �r @f

@�

= jr j2 @f
@ 

+(r� � r )@f
@�
¡ [qr�+ �rq] �r @f

@�

= jr j2 @f
@ 

+(r� � r )@f
@�
¡
�
q

�
@�
@ 
r + @�

@�
r�
�
+ �q 0r 

�
�r @f

@�

= jr j2 @f
@ 

+ (r� � r )@f
@�

¡
�
@(q�)
@ 

jr j2 + q
@�

@�
r� � r 

�
@f

@�
;

(10.41)

where @(q�)/@ and q@�/@� are given respectively by Eqs. (10.10) and (10.4).
Using the above formula, r �r� is written as

r �r� =¡
�
@(q�)
@ 

jr j2+ q
@�
@�
r� �r 

�
: (10.42)

This formula is used in GTAW code.
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11 Field-line-following coordinates

11.1 Definition of the field-line-following coordinates ( ; �; �)

In ( ;�; �) coordinates, a magnetic field line is straight in (�; �) plane with slope
being q. Then the equation for a magnetic field line is written as

� = q�+�; (11.1)

where � is a constant in (�; �) plane and can be used to label magnetic field lines
on a magnetic surface. This motivates us to use �, i.e.,

�� � ¡ q�; (11.2)

to replace �. Then the magnetic field in Eq. (10.13) is written as

B=	0r �r�; (11.3)

which is called the Clebsch form. The direction

@r
@�
j ;�=Jr��r ; (11.4)

is parallel (or anti-parallel) to the magnetic field direction. Due to this fact, ( ;
�; �) coordinates are usually called �field-line-following coordinates� or �field-
aligned coordinates� [2, 6].

Equation (11.3) implies that

B �r�=0; (11.5)

and

B � r =0; (11.6)

i.e., both � and  are constant along a magnetic field line. Taking scalar product
of Eq. (11.3) with r�, we obtain

B �r�=¡	
0

J ; (11.7)

which is nonzero, i.e., only � among ( ; �; �) is changing along a magnetic field
line. (Here J =(r �r� �r�)¡1 is the Jacobian of the coordinate system ( ;
�; �), which happens to be equal to the Jacobian of ( ; �; �) coordinates.)

Using Eq. (11.3), the magnetic differential operator B � r in the new coor-
dinate system ( ; �; �) is written

B �rf =¡	
0

J
@
@�
f ; (11.8)

which is just a partial derivative over �, as is expected, since only � is changing
along a magnetic field line.

By the way, note that (B �r�)/(B �r�)=0, i.e., the magnetic field lines are
straight with zero slope on (�; �) plane.
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Using Eqs. (11.2) and (10.7), � can be written as

� = �¡
Z
0

�

q̂ d �; (11.9)

where q̂ =B � r�/B � r� is the local safety factor. (If we choose the straight-
field-line �, then � is written as �= �¡ q�.) Define �=

R
0

�
q̂ d �, which is called

tor_shift in TEK code, then � = � ¡ �. In TEK, I choose � 2 [¡�; �) with
�=¡� corresponding to the high-field-side midplane, and � is increasing along
the counter-clockwise direction viewed along r�. The � cut (i:e:; � = ��)
is far away from the low-field-side where ballooning modes often have larger
amplitude. The (x; y) grid near the � cut is highly twisted in real space and
interplation is needed in mapping physical quantity from the grid at �=¡� plane
to that at �=+�. Numerical errors more likely appear there. So we prefer that
the � cut is located in less important area (area where mode amplitude is small).

It is widely believed that turbulence responsible for energy transport in
tokamak plasmas usually has kk � k?, where kk and k? are the parallel and
perpendicular wavenumbers, respectively. Due to this elongated structure along
the parallel direction, less grids can be used in the parallel direction than that
in the perpendicular direction in turbulence simulation. In this case, the field-
aligned coordinates ( ; �; �) provide suitable coordinates to be used, where
less gridpoints can be used for � coordinate in simulations and even some @ /
@� derivatives can be neglected (high-n approximation), which simplifies the
equations that need to be solved. However, there is a more important reason
why almost all gyrokinetic codes use field-aligned coordinates: the stability
of numerical algorthims is improved when we use coarse grids in the parallel
direction because the parallel Courant condition (for explicit schemes) �t 6
�Lk/vk can be more easily satisfied (especially for the cases with kinetic elec-
trons), where �Lk is the parallel grid spacing, which is larger when coarse grids
are used in the parallel direction. This is also mentioned in Ref. [21] and it
seems to be right from my experiences of testing several algorithm but a strict
test is needed to verify this. This can also be understood in the following way:
the coarse parallel grid automatically filters out physically irrelevant but numer-
ically problematic high-kk modes, permitting much longer time steps for explicit
time stepping, in both particle and fluid codes[12].

11.2 Some discussions

The fact B �r�=0 implies that � is constant along a magnetic field line. At first
glance, a magnetic line on an irrational surface seems to sample all the points
on the surface. This seems to indicate that � is a flux surface label for irrational
surface. However, � must be a non-flux-surface-function so that it can provide
a suitable toroidal coordinate. I had once been confused by this conflict for a
long time. The key point to resolve this confusion is to realize that it is wrong
to say there is only one magnetic line on an irrational surface, i.e. it is wrong to
say a magnetic line on an irrational surface samples all the points on the surface.
There are still infinite number of magnetic field lines that can not be connected
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with each other on an irrational surface. Then the fact B �r�=0 does not imply
that � must be the same on these different magnetic field lines. In fact, although
B � r�= 0, the gradient of � on a flux-surface along the perpendicular (to B)
direction is nonzero, i.e., B�r	 �r�=/ 0. [Proof:

B�r	 �r� = r	�r� �B
= B2 (11.10)

which is obviously nonzero.] This indicates that � is not constant on a flux-
surface.

In ( ; �; �) coordinates, r� is perpendicular to r . However, in field-line-
following coordinates ( ; �; �), r� is not perpendicular to r . Therefore r�
is not along the binormal direction B�r .

11.3 Expression of r�

Next, let us calculate the gradient of the generalized toroidal angle �, which is
defined by Eq. (11.9), i.e., �= �¡ �, where �=

R
0

�
q̂d�=

R
0

�B �r �/(B �r �) d �.
The gradient of � is written as

r� = r�¡r�

= �̂
R
¡ @�
@ 
r ¡ @�

@�
r�: (11.11)

Using Eqs. (7.10) and (7.11), the above expression is written as

r� = �̂
R
+ @�
@ 

R
J (Z�R̂¡R�Ẑ)¡

@�
@�
R
J (Z R̂¡R Ẑ)

= �̂
R
+
�
@�
@ 

R
JZ�¡

@�
@�
R
JZ 

�
R̂+

�
@�
@�
R
JR ¡

@�
@ 

R
JR�

�
Ẑ: (11.12)

(Note that @�/@ is discontinuous across the � cut.) Then
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�
¡RJZ�R̂+ R
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�
�
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�
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�
Ẑ

#
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�
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R
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�
: (11.13)
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�
R̂ +

�
@�
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R
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Ẑ:
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Figure 11.1. The value of �, � and their gradients on an annulus on the poloidal plane
(R;Z). Note thatr� is single-valued while @�/@R andr� are multi-valued and thus there
is a jump near the branch cut when a single branch is chosen.
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Figure 11.2. The same as Fig. 11.1, but gradients are computed in cylindrical coordinates.
The results agrees with those of Fig. 11.1, which provides the confidence in the correctness
of the numerical implementation.
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11.4 Field-aligned coordinates in GEM[7] and GENE[13] codes

In GEM[7] and GENE[13] codes, the field-aligned coordinates (x; y; z) are
defined by

x= r¡ r0; (11.15)

y=�r0
q0
; (11.16)

z= �q0R0; (11.17)

where r is an arbitrary flux surface label with length dimension, which is often
chosen in GEM to be the minor radius of a magnetic surface in the midplane. Here
r0 and R0 are constant quantities of length dimension, r0 is the minor radius of
a reference magnetic surface (usually corresponding to the center of the radial
simulation box), R0 is the major radius of the magnetic axis, q0 is the safety
factor value on the r = r0 surface. The constant length q0R0 introduced in the
definition of z is to make z approximately correspond to the length along the
field line in the large-aspect ratio limit. The constant length r0/ q0 introduced
in the definition of y is to make y corresponds to the arc-length in the poloidal
plane traced by a field line when its usual toroidal angle increment �� is �.
This explanation makes y look like a poloidal coordinate whereas y is actually
a toroidal coordinate.

Next, let us calculate the wave number along the y direction, ky, for a mode
with toroidal wave number n. The wavelength along the y direction, �y, is given
by

�y=
2�
n
r0
q0
: (11.18)
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Then the wavenumber ky is written as

ky=
2�
�y

= nq0
r0
: (11.19)

On the other hand, the poloidal wavenumber k� is given by

k�=
2�
��
� 2�
2�r0/m

= m
r0
: (11.20)

where m is the poloidal mode number of the mode in ( ; �; �) coordinates. If
the mode has the property kk� 0, i.e., m�nq0, then k� is equal to the ky. The
motivation of introducing the constant length r0/ q0 in the definition of y is to
make ky� k� for a mode with kk� 0.

Some authors call ky or k� by the name �binormal wavenumber�, which is not
an appropriate name in my opinion. Some authors call y the binormal direction,
which is also an inappropriate name since neither ry nor @r/@y is along the
binormal direction B0�r .

11.5 Visualization of gridpoints in field aligned coordinate system

In this section, I try to visualize gridpoints in the field aligned coordinates. The
directions of the covariant basis vectors of ( ; �; �) coordinates are as follows:

@r
@�
j ;�¡!usual toroidal direction; �̂; (11.21)

@r
@�
j ;�¡! (parallel or antiparallel to)field line direction (11.22)

@r
@ 
j�;�¡! combination of the usual radial and toroidal direction (11.23)

Here @r/@ j�;� is a combination of the usual radial and toroidal direction, which
needs some clarification. Note that, � is related to � by Eq. (11.9), i.e.,

�=�+
Z
0

�B �r �
B �r �

d ���+ q( )�; (11.24)

(where the second equality becomes exact if � is the straight-field-line poloidal
angle defined in Sec. 6.4.5.), which indicates that, for q 0( ) =/ 0 and � =/ 0, the
usual toroidal angle � is changing when changing  and holding � and � fixed.
Figure 11.3b shows how the usual toroidal angle � changes when we change  
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and hold � and � fixed.
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Figure 11.3. (a): A � contour on � = 0 plane. Here � = 9 � 2� / 63. This is the
direction of @r/@ j�;�. (b):  coordinate lines in ( ; �; �) coordinates ( @r/@ j�;�
are the tangent lines to these curves) on the isosurface of �=9�2�/63. Here different
lines correspond to different values of �. (c): � coordinate lines (@r/@�j ;� are tangent
lines to these curves), which are along the usual toroidal direction �̂. (d): Grid on the
isosurface of �=9� 2�/63, where the red lines are � coordinate lines while the blue
lines are  coordinate lines. Magnetic field from EAST discharge #59954@3.03s.

The relation ���+ q( )� given by Eq. (11.24) indicates that the toroidal
shift along @r/@ j�;� for a radial change form  1 to  2 is given by (q( 2) ¡
q( 2))�, which is larger on � isosurface with larger value of �. An example for
this is shown in Fig. 11.4 for �=19�2�/63, where @r/@ j�;� has larger toroidal
shift than that in Fig. 11.3 for �=9� 2�/63.
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Figure 11.4. (a) �=19�2�/63 contour on �=0 plane, (b) @r/@ curves, (c) @r/@�
curves on isosurface of � = 19� 2�/63. @r/@� lines are identical with @r/@� lines.
(d): Grid on the isosurface of �= 19� 2�/63, which are the combinations of @r/@ 
curves and @r/@� curves.

The @r/@ j�;� curves can be understood from another perspective. Examine
a family of magnetic field lines that start from � = 0 and � = �1 but different
radial coordinates. These starting points all have the same value of �, which
is equal to �1. When following these field lines to another isosurfce of �, the
intersecting points of these field lines with the � isosurface will trace out a
@r / @ j�;� line with � = �1. Examine another family of magnetic field lines
similar to the above but with the starting toroidal angle �= �2. They will trace
out another @r / @ j�;� line (with � = �2) on the � isosurface. Continue the
process, we finally get those curves in Fig. 11.3b and Fig. 11.4b.

11.5.1 Radial wavenumber in field-aligned coordinates ( ; �; �)
For a harmonic in ( ; �; �) coordinates given by A( ; �; �) = exp(ik  +

im� + in�), the radial wave number is k . Let us calculate the corresponding
radial wavenumber k ? in the new coordinates ( ; �; �), which is defined by

k 
?=@phase

@ 

��������
�;�

; (11.25)
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where the phase is given by phase=k  +m�+n�. Then the above expression
is written as

k 
? =

@(k  +m�+n�)
@ 

��������
�;�

= k +n
@�

@ 

��������
�;�

(11.26)

Using Using ���+ q( )�, the above expression is written as

k 
? = k +nq 0�; (11.27)

where q 0 = dq / d . This result indicates that, compared with the radial
wavenumber in coordinate system ( ; �; �), the radial wavenumber in the new
coordinate system ( ; �; �) has an increment n�q 0. For nonzero magnetic shear
(q 0 =/ 0) and nonzero poloidal location (� =/ 0), the increment n�q 0 can be
large for modes with toroidal mode number n� 1. Then we need to use more
radial grid number (compared what is needed in ( ;�; �) coordinates) to resolve
the radial variation. This is one of disadvantage of using field-aligned coor-
dinates. If the saving associated with using less parallel grid number out-weights
the cost associated with using more radial grid number, we obtain a net saving
in using the field-aligned coordinates.

Let us examine how many  grid points are needed to resolve the  depen-
dence in ( ;�;�) coordinates on the high-field side (�=�). Assume k �0, then
k 
? at � = � is given by k ? = n�q 0. The corresponding wave-length is given by
� 
? = 2�/k ? . The grid spacing � should be less than half of this wave-length

(sampling theorem). Then the grid number should satisfy that

N 
?=

L 
� 

> L 
� 
? /2

=nq 0L ; (11.28)

where L is the radial width of the computational domain.
The number of Fourier harmonics that need to be included is given by

Nk ? =
k 
?

2�/L 
=
nq 0L 
2

: (11.29)

For DIII-D cyclone base case, choose the radial coordinate  as r. At the radial
location  = r0= 0.24m, q0= 1.4, ŝ0= 0.78, then q0

0 = s0q0/r0= 4.5m¡1. Then
Nr
?=n� 0.45 for the radial width Lr= 0.10m.

Figure 11.5 plots @r / @ j�;� lines on the � = 0; 2� isosurfaces, which are
chosen to be on the low-field-side midplane. On �=0 surface, @r/@ j�;� lines are
identical to @r/@ j�;� lines. On �=2� surface, each @r/@ j�;� line has large �
shift. In old version of my code, �=0;2� surfaces are chosen as the � cuts (in the
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new version �=[¡�;�]). A connection condition for the perturbations is needed
between these two surfaces. This connection condition is discussed in Sec. 11.5.2.
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Figure 11.5. (a) �= 0 contour (blue line) in �= 0 plane; (b) a series of @r/@ j�;�
curves (with �j= j2�/20, j=0;1; 2; :::;20) on �=0 isosurface, (c) a single @r/@ j�;�
curve (with � = 0) on � = 2� isosurface. This curve finish about 4 torodial loops
because (qmax¡ qmin)2�=(5.56¡1.79)�2��4�2�. The radial range is  =0.2!0.9,
where  is the normalized poloidal magnetic flux. Magnetic field fromEAST discharge
#59954@3.03s (gfile g059954.003030 provided by Hao BaoLong).

11.5.2 Periodic conditions of physical quantity along � and � in field-
line-following coordinates ( ; �; �)

Since ( ; �; �) and ( ; � + 2�; �) correspond to the same spatial point, a
real space continuous quantity f expressed in terms of coordinates ( ; �; �), i.e.,
f = f( ; �; �), must satisfy the following periodic conditions along �:

f( ; �+2�; �)= f( ; �; �): (11.30)

Since ( ; �; �) and ( ; �; �+2�) correspond to the same spatial point, f must
satisfy the following periodic conditions along �:

f( ; �; �+2�)= f( ; �; �): (11.31)

Since ( ; �; �) and ( ; �; � + 2�) correspond to the same spatial point, a real
space continuous quantity g expressed in terms of field-line-following coordinates
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( ;�;�), i.e., g= g( ;�;�), must satisfy the following periodic condition along �:

g( ; �; �+2�)= g( ; �; �): (11.32)

However, generally there is no periodic condition along �,

g( ; �+2�; �)=/ g( ; �; �); (11.33)

because P1=( ; �; �) and P2=( ; �+2�;�) are generally not the same spatial
point. In fact, equation (11.9) implies, for point P1, its toroidal angle �1 is given
by

�1=�+
Z
0

�B �r �
B �r � d�; (11.34)

while for point P2, its toroidal angle �2 is given by

�2=�+
Z
0

�+2�B �r �
B �r � d�= �1+2�q; (11.35)

i.e., �1 and �2 are different by 2�q. From this, we know that ( ; �; �) and
( ; �+2�;�¡2�q) correspond to the same spatial point. Therefore we have the
following periodic condition:

g( ; �; �)= g( ; �+2�; �¡ 2�q); (11.36)

or equivalently

g( ; �+2�; �)= g( ; �; �+2�q): (11.37)

11.5.3 Numerical implementation of periodic condition (11.36)

For the fully kinetic ion module of GEM code that I am developing, � is
chosen in the range [0:2�]. The condition (11.37) imposes the following boundary
condition:

g( ; 2�; �)= g( ; 0; �+2�q): (11.38)

If � is on a grid, �+2�q is usually not on a grid. Therefore, to get the value of
g( ;0;�+2�q), an interpolation of the discrete date over the generalized toroidal
angle � (or equivalently �) is needed, as is shown in Fig. 11.6.
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Figure 11.6. Twenty magnetic field lines (on  = 0.2 magnetic surface) starting at
different toroidal angle (blue points) on the midplane (� = 0) go a full poloidal loop
(i.e., ��=2�), arriving at a toroidal angle (red points) which are different from their
respective starting toroidal angle. The field values on the red points can be obtained
by interpolating the field values on the blue points. The safety factor of the magnetic
surface q= 1.79. Magnetic field from EAST discharge #59954@3.03s.

11.5.4 � contours on a magnetic surface
Figure 11.7 compares a small number of � contours and � contours on a

magnetic surface.
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Figure 11.7. Comparison between a series of � contours (left) and a series of �
contours (right) on a magnetic surface. Here contour levels are �j = �j = (j ¡
1)2� /4/ (10 ¡ 1) with j = 1; 2; :::; 10, i.e., only 1/4 of the full torus. Every � and
� contour start from the lower-field-side midplane and go one full poloidal loop.
Magnetic field from EAST discharge #59954@3.03s.

As is shown in the left panel of Fig. 11.7, with � fixed, an � curve reaches
its starting point when � changes from zero to 2�. However, as shown in the
right panel of Fig. 11.7, with � fixed, an � curve (i.e. a magnetic field line) does
not necessarily reach its starting point when � changes from zero to 2�. There
is a toroidal shift, 2�q, between the starting point and ending point. Therefore
there is generally no periodic condition along � since q is not always an integer.
A mixed periodic condition involves both � and � is given in (11.36).
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In field-line-following coordinates ( ; �;�), a toroidal harmonic of a physical
perturbation can be written as

�A( ; �; �)= �A0( )cos(m0�+n�+�0) (11.39)

where n is the toroidal mode number, m0, which is not necessary an integer, is
introduced to describe the variation along a field line. The periodic condition
given by Eq. (11.36) requires that

cos(m0�+n�+�0)= cos[m0(�+2�)+n(�¡ 2�q)+�0]; (11.40)

To satisfy the above condition, we can choose

m02�¡n2�q=N2�; (11.41)

where N is an arbitrary integer, i.e.,

m0=N +nq: (11.42)

We are interested in perturbation with a slow variation along the field line
direction (i.e., along @r/@� j ;�) and thus we want the value of m0 to be small.
One of the possible small values given by expression (11.42) is to choose N =
¡n�NINT((qmax+ qmin)/2), so that m0 is given by

m0( )=nq¡n�NINT
�
qmax+ qmin

2

�
; (11.43)

where NINT is a function that return the nearest integer of its argument, qmax
and qmin is the maximal and minimal value of the safety factor in the radial
region in which we are interested. [In the past, I choosem0( )=nq¡NINT(nq).
However, m0( ) in this case is not a continuous function of  and thus is not
physical.] This form is used to set the initial density perturbation in the fully
kinetic code I am developing. Note that m0 in Eq. (11.43) depends on the radial
coordinate  through q( ). Also note that m0 here is different from the poloidal
mode number m in ( ; �; �) coordinate system. It is ready to show that the
perturbation given by Eq. (11.39) withm0�1 and n�1 has large poloidal mode
number m when expressed in ( ; �; �) coordinates. [Proof: Expression (11.39)
can be written as

�A= �A0( )cos[m0�+n(�¡ �( ; �))+�0] (11.44)

If � is the straight-field-line poloidal angle in ( ; �; �) coordinate system, then
�( ; �)= q� and the above equation is written as

�A= �A0( )cos[(m0¡nq)�+n�+�0]; (11.45)

which indicates the poloidal mode number m in ( ; �; �) coordinates is given by
m=m0¡nq. For the case with m0� 1 and n� 1, m is much larger than one.]

Since � contours on a magnetic surface are magnetic field lines, they span out
the 3D shape of magnetic surface when there are many � contours on a magnetic
surface, as is shown by the right-panel of Fig. 11.8.
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Figure 11.8. Comparison between a series of � contours(left) and a series of � contours
(left) on a magnetic surface. The � contours correspond to magnetic field lines. Here the �
values of adjacent � contours differ by d�=2�/20 and each � contour goes one full poloidal
loop. Magnetic field from EAST discharge #59954@3.03s.

11.5.5 � contours in a toroidal annulus
Figure 11.9 compares the � coordinate surface of ( ; �; �) coordinates with

the � coordinate surface of ( ; �; �) coordinates.
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Figure 11.9. Comparison between isosurface of � = 2� /8 (projection of magnetic field
lines onto �=2�/8 plane) and isosurface of �=2�/8. The � isosurface is made of a family
of contours of �= 2�/8, which are all magnetic field lines. These field lines are traced by
starting from a series of points on the low-field-side midplane (� = 0) at different radial
locations and the field lines are followed by a complete poloidal loop. The radial range is
given by  N 2 [0.4:0.5], where  N is the normalized poloidal magnetic flux. Magnetic field
from EAST discharge #59954@3.03s.
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where  N is the normalized poloidal magnetic flux.
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Figure 11.12. Gridpoints for a fixed value of � (upper pannel). The full grid (lower
pannel), which is formed by rotating the gridpoinst toroidally, and recording points
at every toroidal angle interval 2�/mtor, where mtor is the number of grids along the
toroidal direction. In the case shown here mtor=16. Radial and poloidal resolution
are 64� 16.

11.6 Field-line-following mesh in gyrokinetic turbulence simulation
codes

Most gyrokinetic simulation codes use field-line-following coordinates in con-
structing spatial mesh. The mesh is conceptually generated by the following
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three steps: (1) selecting some initial points; (2) tracing out magnetic-field-lines
passing through these points; (3) choose the intersecting points of these field-
lines with a series of chosen surfaces as the final grid-points. The initial points
and the chosen surfaces differ among various codes and thus the resulting grid
differs. Next, let us discuss some examples.

11.6.1 Mesh in GENE, GYRO, and GEM codes
Given the definition of ( ; �) coordinates, choose toroidally symmetrical

points (can be a toroidal wedge) in �=0 plane (�=0 plane is usually chosen to
be the low-field-side midplane). Then trace out the magnetic-field-lines passing
through these points for one poloidal circuit (usually chosen in the range �2 [¡�;
�]) and record the intersection points of these field-lines with various �= const
planes. Note that the gridpoints in �=¡� plane usually do not coincide those in
�=+� plane due to the toroidal shift arising when the safety factor is irrational.
Interpolation can be used to map physical variables defined on gridpoints in
�=¡� plane to those in �=+� plane.

11.6.2 Mesh in GTC and GTS codes[26]
Given the definition of ( ; �) coordinates, 2D grid-points can be chosen on

�=0 plane based on ( ; �) coordinates. Then trace out the magnetic-field-lines
starting from these points for one toroidal circuit and record the intersection
points of these field-lines with �j = j�� planes, where j = 1; 2; :::; Nt ¡ 1,
�� = 2� / (Nt ¡ 1). It is obvious that the resulting mesh are not toroidally
symmetrical. And also the grids on �=0 plane differ from those on �=2� plane.
Interpolation can be used to mapping physical variables defined on grid-points of
�=0 to those of �=2� plane. In this case, the number of �toroidal grid-points�
Nt (i.e., the number of poloidal planes) is actually the number of grid-points in
the parallel direction within one toroidal circuit.

11.6.3 Mesh in XGC1 code ***check**
XGC1 can handle the region outside of the LCFS. Here we only discuss the

region inside the LCFS. At each radial gridpoint on � = 0 plane, follow the
magnetic field line starting form this point for one poloidal loop and record the
intersection points of this field-line with �j= j�� planes, where j=1; 2; :::; Nt,
��=2�/Nt. For the case q >1, one magnetic-field-line will have more than one
intersection points on some poloidal planes. Repeat tracing the field line for each
radial location. Then project (toroidally) all the intersection points on different
poloidal planes to a single poloidal plane and rotate (toroidally) these 2D grids
to define a 3D grid that are toroidally symmetrical.

11.7 Numerical verification of the field-aligned coordinates

The generalized toroidal angle � is numerically calculated in my code. To verify
B � r� = 0 along a magnetic field-line, figure 11.13 plots the values of � along
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a magnetic field line, which indicates that � is constant. This indicates the
numerical implementation of the field-aligned coordinates is correct.
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Figure 11.13. Left: Projection of a field line on the poloidal plane. Right: the value
of � and � along the magnetic field line. Here � is defined by �= �¡�, where � is
the usual cylindrical toroidal angle and �=

R
0

�B � r �

B � r � d �.

11.7.1 Binormal wavenumber
Let us introduce the binormal wavenumber, which is frequently used in pre-

senting turbulence simulation results. Define the binormal direction s by

s= B�r	
jB�r	j ;

which is a unit vector lying on a magnetic surface and perpendicular to B. The
binormal wavenumber of a mode is defined by

kbn= s �rp; (11.46)

where p is the phase of the mode. Consider a mode given by exp(ik  + im�¡
in�), then the phase p= k  +m�¡n�. Then kbn is written as

kbn = B�r	
jB�r	j �r(k  +m�¡n�)

= B�r	
jB�r	j �r(m�¡n�); (11.47)

80 Section 11



where the radial phase k  does not appear since B�r	 �r =0. The above
expression can be further written as

kbn = 1
jB�r	j [mB�r	 �r�¡nB�r	 �r�]

= 1
jB�r	j [mB �r	�r�¡nB � r	�r�]

= nB �
jB�r	j

h
m
n
r	�r�¡r	�r�

i
: (11.48)

Equation (11.48) is the general expression of the binormal wavenumber. On the
resonant surface of the mode, i.e., q( ) = m /n, then the above expression is
written as

kbn=
nB �

jB�r	j [qr	�r�¡r	�r�]: (11.49)

Using Eq. (10.12), i.e., B=¡(r� �r	+ qr	�r�), the above expression is
written as

kbn = ¡nB �
jB�r	jB

= ¡n B
jr	j

Using Bp= jr	j/R, the above equation is written

kbn=¡n
B
RBp

(11.50)

which indicates the binormal wavenumber generally depends on the poloidal
angle. For large aspect-ratio tokamak, we have B��B, q�B�r/(BpR). Then
Eq. (11.50) is written

kbn�¡
nq
r
; (11.51)

which indicates the binormal wavenumber are approximately independent of the
poloidal angle. Sincem=nq on a resonant surface, the above equation is written
jkbnj�m/r, which is the usual poloidal wave number. Due to this relation, the
binormal wavenumber kbn is often called the poloidal wavenumber and denoted
by k� in papers on tokamak turbulence. In the GENE code, y coordinate is
defined by y = �r0/ q0. Then the ky of a mode of toroidal mode number n is
given by ky=2�/�y where �y=��r0/q0 and ��=2�/n. Then ky is written as
ky=nq0/r0, which is similar to the binormal defined above. For this reason, ky
of GENE code is also called binormal wave-vector, which is in fact not reasonable
because neither @r/@y or ry is along the binormal direction.
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12 Concentric-circular magnetic configuration with a given
safety factor profile

Assume magnetic surfaces of a magnetic configuration are known and given by

R(r; �)=R0+ r cos�; (12.1)

Z(r; �)= r sin�; (12.2)

where (r; �) are two parameters and r is magnetic surface label (i.e., @	 /
@�jr=0). The above parametric equations specify a series of concentric-circular
magnetic surfaces.

Assume the toroidal field function g(r) = RB� is given. Then the toroidal
magnetic field is determined by B� = g /R. Further assume the safety factor
profile q(r) is given, then the magnetic field is fully determined. Next, let us
derive the explicit form of the poloidal magnetic field Bp, which is given by

Bp=r	�r�=
1
2�
r	p�r�; (12.3)

which involves the poloidal magnetic flux 	p. Therefore our task is to express
	p in terms of q and g. Using q(r)= d	t/d	p, we obtain

d	p=
1
q
d	t;

Integrate the above equation over r, we obtainZ
0

r

d	p=
Z
0

r1
q
d	t; (12.4)

which an be written as

	p(r)¡	p(0)=
Z
0

r 1
q(r)

d

�Z
0

rZ
¡�

�

B�rdrd�

�
; (12.5)

where use has been made of 	t =
R
0

rR
¡�
�
B�rdrd�. Using B� = g / R and

R=R0+ r cos�, the above equation is written

	p(r)¡	p(0)=
Z
0

r 1
q(r)

d

�Z
0

rZ
¡�

� g
R0+ r cos�

rdrd�

�
(12.6)

Using maxima (an open-source computer algebra system), the above integration
over � can be performed analytically, givingZ

¡�

� 1
R0+ r cos�

d�= 2�
R0
2¡ r2

p : (12.7)

Using this, equation (12.6) is written as

	p(r)¡	p(0)=
Z
0

r 1
q(r)

d

 Z
0

r 2�gr
R0
2¡ r2

p dr

!
; (12.8)
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which can be simplified as

	p(r)¡	p(0)=
Z
0

r 1
q(r)

2�gr
R0
2¡ r2

p dr: (12.9)

This is what we want�the expression of the poloidal magnetic flux in terms of
q and g. [Another way of obtaining Eq. (12.9) is to use Eq. (6.8), i.e.,

d	p
dr

=¡g
q

Z
0

2� J
R2
d�; (12.10)

where J is the Jacobian of the (r; �; �) coordinates and is given by J =
R(R�Zr¡RrZ�)=¡Rr. Then Eq. (12.10) is simplified as

d	p
dr

= g

q

Z
0

2� r

R
d�= g

q

Z
0

2� r

R0+ r cos�
d�= g

q
r

2�
R0
2¡ r2

p ; (12.11)

which, after being integrated over r, gives Eq. (12.9).]
Using Eq. (12.9), the poloidal magnetic field in Eq. (12.3) is written as

Bp = rr�r�
2�

@
@r

 Z
0

r 1
q(r)

2�gr
R0
2¡ r2

p dr

!

= rr�r� 1
q(r)

gr

R0
2¡ r2

p : (12.12)

[Using the formulas rr = ¡R

J (Z�R̂ ¡ R�Ẑ) and J = R(R�Zr ¡ RrZ�), where
J is the Jacobian of the (r; �; �) coordinates, we obtain J = ¡Rr and rr =
cos�R̂+ sin�Ẑ, r�= �̂/R. Then Eq. (12.12) is written as

Bp=
cos�Ẑ¡ sin�R̂

R

1
q(r)

gr

R0
2¡ r2

p (12.13)

This is the explicit form of the poloidal magnetic field in terms of g and q. The
magnitude of Bp is written as

Bp=
1

(R0+ r cos�)
1
q(r)

gr

R0
2¡ r2

p (12.14)

Note that both Bp and B� depend on the poloidal angle �.]
I use Eq. (12.9) to compute the 2D data of 	 (	 = 	p / 2�) on the

poloidal plane when creating a numerical G-eqdsk file for the above magnetic
configuration (Fortran code is at /home/yj/project_new/circular_config-
uration_with_q_given).

Assume that the poloidal plasma current is zero, then g(r) = RB� is a
constant independent of r. This is always assumed by the authors who use
concentric-circular configuration but is seldom explicitly mentioned.

In analytical work, 1/R dependence on (r; �) is often approximated as

1
R
= 1
R0+ r cos�

= 1
R0

1
1+ "cos�

� 1
R0

(1¡ "cos�);
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where "= r/R0 is the local inverse aspect ratio.

12.1 Is the above B divergence-free?

Since the above field is derived from the general form given by Eq. (1.10), it is
guaranteed that the field is divergence-free. In case of any doubt, let us directly
verify this. Write B as

B=B(1)Jr��r�+B(2)Jr��rr+B(3)Jrr�r�; (12.15)

where J is the Jacobian of (r;�; �) coordinates; B(1), B(2), and B(3) are given by

B(1)=B �rr (12.16)

B(2)=B �r� (12.17)

B(3)=B �r� (12.18)

Use Bp given by (12.12), then B(1), B(2), and B(3) are written as

B(1)=0; (12.19)

B(2)=¡ 1J
1
q(r)

g0r

R0
2¡ r2

p ; (12.20)

and

B(3)=
B�
R
; (12.21)

respectively. Then, by using the divergence formula in (r;�; �) coordinates,r�B
is written as

r �B = 1
J

 
@B(1)J
@r

+ @B(2)J
@�

+ @B(3)J
@�

!

= 1
J

 
0+ @B(2)J

@�
+0

!

= 1
J
@
@�

 
¡ 1
q(r)

g0r

R0
2¡ r2

p !
= 0 (12.22)

i.e., B in this case is indeed divergence-free.

12.2 Is the above B a solution to the GS equation?

The answer is no. It is ready to verify that the poloidal magnetic flux function
	=	p/2� given by Eq. (12.9) is not a solution to the GS equation (A.82) even
if the plasma pressure in the GS equation is set to zero. The above expression is
a solution to the GS equation in the limit of infinite aspect ratio and zero plasma
pressure. The finite aspect ratio and plasma pressure requires the magnetic
surfaces to have the Shafranov shift in order to satisfy the GS equation (see Sec.
A.13).
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12.3 Explicit expression for the generalized toroidal angle

For the above magnetic field, the toroidal shift involved in the definition of
the generalized toroidal angle can be expressed in simple analytical form. The
toroidal shift is given by

�=
Z
0

�

q̂d�; (12.23)

where the local safety factor q̂ can be written as

q̂ =¡ g0
R2

J
	0
: (12.24)

Using J =¡Rr and

	0= 1
q(r)

g0r

R0
2¡ r2

p (12.25)

The local safety factor q̂ in Eq. (12.24) is written as

q̂= q R0
2¡ r2

p 1
R
: (12.26)

Using this, expression (12.23) is written

�= q R0
2¡ r2

p Z
0

� 1
R
d� (12.27)

Assume �2(¡�;�), then the integration
R
0

�1/Rd� can be analytically performed
(using maxima), yielding

Z
0

� 1
R
d�=

2arctan
�

sin�(R0¡ r)
(cos�+1) R0

2¡ r2
p

�
R0
2¡ r2

p : (12.28)

Then expression (12.27) is written

�=2q arctan

 
(R0¡ r)
R0
2¡ r2

p tan
�
�
2

�!
; (12.29)

where use has been made of sin� / (cos� + 1) = tan(� / 2). Using this, the
generalized toroidal angle can be written as

� = �¡ �

= �¡ 2q arctan

 
(R0¡ r)
R0
2¡ r2

p tan
�
�
2

�!
: (12.30)

The results given by the formula (12.29) are compared with the results from
my code that assumes a general numerical configuration. The results from the
two methods agree with each other, as is shown in Fig. 12.1, which provides
confidence in both the analytical formula and the numerical code.
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Figure 12.1. The results of �=
R
0

�
q̂ d � computed by using formula (12.29) and the

numerical code agree with each other. The different lines correspond to values of � on
different magnetic surfaces. In the numerical code, two kinds of poloidal angles can be
selected: one is the equal-volume poloidal angle, and another is the equal-arch-length
angle. Make sure that the latter is selected when doing the comparison because the
the poloidal angle � appearing in the analytical formula is the equal-arc-length poloidal
angle.

In passing, we note that the straight-field-line poloidal angle �f can also be
considered to be defined by

�= �¡ q�f ; (12.31)

i.,e,

�f =
1
q
(�¡�)= �

q
: (12.32)

Then using Eq. (12.30), �f is written as

�f =2 arctan

 
(R0¡ r)
R0
2¡ r2

p tan
�
�
2

�!
; (12.33)

which agrees with Eq. (A2) in Gorler's paper[13].

12.4 Metric elements

Let  = r and define h R=r � R̂, h�R=r� � R̂, etc. Explicit expressions for
these elements can be written as

h R = r � R̂
= rr � R̂

= ¡RJ (Z�R̂¡R�Ẑ) � R̂
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= ¡RJZ�

= cos� (12.34)

h Z = r � Ẑ
= rr � Ẑ

= ¡RJ (Z�R̂¡R�Ẑ) � Ẑ

= R
JR�

= sin�

h � = r � �̂
= 0

h�R = r� � R̂

= R
J (Z R̂¡R Ẑ) � R̂

= R

JZ 

= ¡1
r
sin�

h�Z = r� � Ẑ

= R

J (Z R̂¡R Ẑ) � Ẑ

= ¡RJR 

= 1
r
cos�

h�� = r� � �̂
= 0

h�R = r� � R̂

=

"
�̂
R
+
�
@�
@ 

R
JZ�¡

@�
@�
R
JZ 

�
R̂+

�
@�
@�
R
JR ¡

@�
@ 

R
JR�

�
Ẑ

#
� R̂

= @�
@ 

R
JZ�¡

@�
@�
R
JZ 

= @�

@ 

R

J r cos�¡
@�

@�

R

J sin�
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= ¡ @�
@ 

cos�+ @�
@�

1
r
sin�

= ¡@�
@r

cos�+ q̂
1
r
sin�

h�Z = r� � Ẑ

=

"
�̂
R
+
�
@�
@ 

R
JZ�¡

@�
@�
R
JZ 

�
R̂+

�
@�
@�
R
JR ¡

@�
@ 

R
JR�

�
Ẑ

#
� Ẑ

= @�
@�
R
JR ¡

@�
@ 

R
JR�

= ¡q̂ 1
r
cos�¡ @�

@r
sin�

h��= 1
R
: (12.35)

Using expression (12.29), d�/dr can be evaluated analytically, yielding

d�

dr
= 2dq

dr
arctan

 
(R0¡ r)
R0
2¡ r2

p tan
�
�

2

�!
+2q 1

1+
�

(R0¡ r)
R0
2¡ r2

p tan
�
�

2

��2tan� �2
�
d

dr

"
(R0¡ r)
R0
2¡ r2

p #

= 2dq
dr

arctan

 
(R0¡ r)
R0
2¡ r2

p tan
�
�
2

�!

+ 2q 1

1+
�

(R0¡ r)
R0
2¡ r2

p tan
�
�

2

��2tan� �2
�

¡R0
(R0+ r) R0

2¡ r2
p

where use has been made of

d
dx

arctan(x)= 1
1+x2

(I did not remember this formula and I use SymPy to obtain this.) These expres-
sions are used to benchmark the numerical code that assume general flux surface
shapes. The results show that the code gives correct result when concentric
circular flux surfaces are used.

Taking the � derivative of �, equation (12.29) is written as (using Sympy)

@�
@�

=2qA

0@ tan2
�
�

2

�
2

+ 1
2

1A 1

A2tan2
�
�

2

�
+1

(12.36)
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where

A= (R0¡ r)
R0
2¡ r2

p (12.37)

Equation (12.26) should be equal to q̂ given by Eq. (12.26). This was verified
numerically.

Taking the r derivative of Eq. (12.9), we obtain

d	p
dr

= 1
q(r)

2�g0r
R0
2¡ r2

p (12.38)

i.e.,
d	
dr

= 1
q(r)

g0r

R0
2¡ r2

p : (12.39)

d 

dr
= 1
	(a)¡	(0)

1
q(r)

g0r

R0
2¡ r2

p : (12.40)
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Figure 12.2. @�/@� and @�/@ . Numerical and analytical results are plotted, which are so
close to each other that they can not be distinguished by eyes. @�/@� is equal to the local
safety factor q̂. Note that @�/@ is discontinuous at the � cut, which in this case is on the
high-field-side.

12.5 Safety factor profile

The magnetic shear for a concentric-circular configuration is defined by

ŝ=
dq

dr

r

q
; (12.41)
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where r is the minor radius of a magnetic surface. The above expression can be
re-arranged as

ŝ
dr

r
= dq

q
(12.42)

Integrating the above equation over r and assuming ŝ is a constant, we obtain

ŝ

Z
r0

rdr
r
=
Z
r0

rdq
q
; (12.43)

Performing the integration, the above equation is written as

ŝ(ln r¡ ln r0)= ln q¡ ln q0; (12.44)

where q0= q(r0). Equation (12.44) can be finally written as

q= q0

�
r
r0

�
ŝ

: (12.45)

This is a profile with a constant magnetic shear s. In Ben's toroidal ITG simu-
lation, the following q profile is used:

q= q0+(r¡ r0)q 0(r0); (12.46)

with q 0(r0)= ŝq0/r0. This is a linear profile over r, with the values of q and the
shear at r= r0 being q0 and ŝ, respectively.

13 Fixed boundary tokamak equilibrium problem

The fixed boundary equilibrium problem (also called the �inverse equilibrium
problem� by some authors) refers to the case where the shape of a boundary
magnetic surface is given and one is asked to solve the equilibrium within this
magnetic surface. To make it convenient to deal with the shape of the boundary,
one usually uses a general coordinates system which has one coordinate surface
coinciding with the given magnetic surface. This makes it trivial to deal with
the irregular boundary. To obtain the equilibrium, one needs to solve the GS
equation in the general coordinate system.

13.1 Toroidal elliptic operator in general coordinates

Next we derive the form of the GS equation in a general coordinate system. The
main task is to derive the form of the toroidal elliptic operator in the general
coordinate system. The toroidal elliptic operator takes the form

4�	�R2r �
�
1
R2
r	

�
(13.1)
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For an arbitrary general coordinate system ( ; �; �) (the ( ; �; �) coordinate
system here is an arbitrary general coordinate system except that r� is perpen-
dicular to both r and r�), the toroidal elliptic operator is written

4?	= R2

J

��
	 

J
R2
jr j2

�
 

+
�
	�
J
R2
jr� j2

�
�

+
�
	 

J
R2

(r �r�)
�
�

+
�
	�
J
R2
r� �

r 
�
 

�
; (13.2)

where the subscripts denotes partial derivatives, J is the Jacobian of the coor-
dinate system ( ; �; �). [Next, we provide the proof of Eq. (13.2). The gradient
of 	 is written as (note that 	 is independent of �)

r	= @	
@ 
r + @	

@�
r� (13.3)

Using this expression and the divergence formula (4.37), the elliptic operator in
Eq. (13.1) is written

4�	 = R2r�
�
1
R2

@	
@ 
r + 1

R2
@	
@�
r�
�

= R2
1
J
@
@ 

�
J 1
R2

@	
@ 
r �r +J 1

R2
@	
@�
r� �r 

�
+ R2

1
J
@
@�

�
J 1
R2

@	
@ 
r � r�+J 1

R2
@	
@�
r� �r�

�
= R2

J

��
	 

J
R2
jr j2

�
 

+
�
	�
J
R2
r � r�

�
 

+
�
	 

J
R2
r � r�

�
�

+�
	�
J
R2
jr�j2

�
�

�
; (13.4)

which is Eq. (13.2).]
Using Eq. (13.2), the GS equation (3.12) is written

R2

J

��
	 

J
R2
jr j2

�
 

+
�
	�
J
R2
jr� j2

�
�

+
�
	�
J
R2
r � r�

�
 

+
�
	 

J
R2
r �

r�
�
�

�
=¡�0R2

dP
d	

¡ dg
d	

g; (13.5)

which is the form of the GS equation in ( ; �; �) coordinate system.

13.2 Finite difference form of toroidal elliptic operator in general
coordinate system

The toroidal elliptic operator in Eq. (13.2) can be written

4�	= R2

J [(h  	 ) +(h��	�)�+(h �	�) +(h �	 )�]; (13.6)

Fixed boundary tokamak equilibrium problem 91



where ha� is defined by Eq. (5.5), i.e.,

h��= J
R2
r� �r�: (13.7)

Next, we derive the finite difference form of the toroidal elliptic operator. The
finite difference form of the term (h  	 ) is written

(h  	 ) ji;j = 1
� 

�
hi;j+1/2
  

�
	i;j+1¡	i;j

� 

�
¡hi;j¡1/2

  

�
	i;j¡	i;j¡1

� 

��
= Hi;j+1/2

  (	i;j+1¡	i;j)¡Hi;j¡1/2
  (	i;j¡	i;j¡1); (13.8)

where

H  = h  

(� )2
: (13.9)

The finite difference form of (h��	�)� is written

(h��	�)� ji;j = 1
��

�
hi+1/2;j
��

�
	i+1;j¡	i;j

��

�
¡hi¡1/2;j��

�
	i;j¡	i¡1;j

��

��
= Hi+1/2;j

�� (	i+1;j¡	i;j)¡Hi¡1/2;j
�� (	i;j¡	i¡1;j); (13.10)

where

H��= h��

(��)2
: (13.11)

The finite difference form of (h �	�) is written as

(	�h �) ji; j = 1
� 

�
hi;j+1/2
 �

�
	i+1;j+1/2¡	i¡1;j+1/2

2��

�
¡

hi;j¡1/2
 �

�
	i+1;j¡1/2¡	i¡1;j¡1/2

2��

��
: (13.12)

Approximating the value of 	 at the grid centers by the average of the value of
	 at the neighbor grid points, Eq. (13.12) is written as

(	�h �) ji; j = Hi;j+1/2
 � (	i+1;j + 	i+1;j+1 ¡ 	i¡1; j ¡ 	i¡1; j+1) ¡

Hi;j¡1/2
 � (	i+1;j¡1+	i+1;j¡	i¡1;j¡1¡	i¡1;j): (13.13)

where

H �= h �

4� d�
: (13.14)
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Similarly, the finite difference form of (h �	 )� is written as

(	 h �)� ji;j = 1
��

�
hi+1/2;j
 �

�
	i+1/2;j+1¡	i+1/2;j¡1

2� 

�
¡

hi¡1/2;j
 �

�
	i¡1/2;j+1¡	i¡1/2;j¡1

2� 

��
= Hi+1/2;j

 � (	i+1;j+1 + 	i;j+1 ¡ 	i+1; j¡1 ¡ 	i;j¡1) ¡
Hi¡1/2;j
 � (	i;j+1+	i¡1;j+1¡	i;j¡1¡	i¡1;j¡1): (13.15)

Using the above results, the finite difference form of the operator J4?	/R2 is
written as

J
R2
4�	

��������
i;j

= (h �	�) +(h  	 ) +(h��	�)�+(h �	 )�

= Hi;j+1/2
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Hi¡1/2;j
 � )

+ 	i;j+1(Hi;j+1/2
  + Hi+1/2;j

 � ¡ Hi¡1/2;j
 � ) + 	i+1;j+1(Hi;j+1/2
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The coefficients are given by

h  = J
R2
jr j2= 1

J (R�
2+Z�2); (13.16)

h��= J
R2
jr� j2= 1

J (R 
2 +Z 2); (13.17)

and

h �= J
R2
r �r�=¡ 1J (R�R +Z�Z ); (13.18)
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where the Jacobian

J =R(R�Z ¡R Z�): (13.19)

The partial derivatives, R�, R , Z�, and Z , appearing in Eqs. (13.16)-(13.19)
are calculated by using the central difference scheme. The values of h  , h��,
h � and J at the middle points are approximated by the linear average of their
values at the neighbor grid points.

13.3 Special treatment at coordinate origin, wrong! to be deleted

	� a00+ a10R+ a01Z + a11RZ + a20R2+ a02Z2: (13.20)

R=R0+ b11  
p

cos� (13.21)

Z=Z0+ c11  
p

sin� (13.22)

	 � a00 + a10
¡
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�
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�
c11  
p

sin�+ a20
¡
R0+ b11  

p
cos�

�
2+ a02

¡
c11  
p

sin�
�
2

= a00 + a10R0 + a10b11  
p

cos� + a01c11  
p

sin� + a11R0c11  
p
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1
2
a11b11  

p
c11  
p

sin2�+2a20R02+a20(b11)2 cos2�+2a20R0b11  
p

cos�+

a02(c11)2 sin2�

= d0+ d1  
p

cos�+ d2  
p

sin�+ d3 sin2�+ d4 cos2�+ d5 sin2�

	= d0+ d1  
p

cos�+ d2  
p

sin�

R=R0+b11  
p

cos�+ b12  
p

cos2�+b21
¡

 
p �

2cos�+b22
¡

 
p �

2cos2� (13.23)

Z =Z0+ c11  
p

sin�+ c12  
p

sin2�+ c21
¡

 
p �

2sin�+ c22
¡

 
p �

2sin2� (13.24)

13.4 Pressure and toroidal field function profile

The function p(	) and g(	) in the GS equation are free functions which must
be specified by users before solving the GS equation. Next, we discuss one way
to specify the free functions. Following Ref. [16], we take P (	) and g(	) to be
of the forms

P (	)=P0¡ (P0¡Pb)p̂(	); (13.25)

1
2
g2(	)= 1

2
g0
2(1¡ ĝ(	)); (13.26)
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with p̂ and ĝ chosen to be of polynomial form:

p̂(	)=	�; (13.27)

ĝ(	)=	� ; (13.28)

where

	� 	¡	a
	b¡	a

; (13.29)

with 	b the value of 	 on the boundary, 	a the value of 	 on the magnetic axis,
�, �, , P0, Pb, and g0 are free parameters. Using the profiles of P and g given
by Eqs. (13.25) and (13.26), we obtain

dP (	)
d	

=¡ 1
�
(P0¡Pb)�	�¡1 (13.30)

where �=	b¡	a, and

g
dg

d	
=¡1

2
g0
2
1
�
�	�¡1: (13.31)

Then the term on the r.h.s (nonlinear source term) of the GS equation is written

¡�0R2
dP
d	

¡ dg
d	

g= �0R
2

�
1
�
(P0¡Pb)�	�¡1

�
+ 1
2
g0
2
1
�
�	�¡1: (13.32)

The value of parameters P0, Pb, and g0 in Eqs. (13.25) and (13.26), and the
value of � and � in Eqs. (13.27) and (13.28) can be chosen arbitrarily. The
parameter  is used to set the value of the total toroidal current. The toroidal
current density is given by Eq. (A.44), i.e.,

J�=R
dP
d	

+ 1
�0

dg
d	

g
R
; (13.33)

which can be integrated over the poloidal cross section within the boundary
magnetic surface to give the total toroidal current,

I� =
Z
J�dS

=
Z �

R
dP
d	

+ 1
�0

dg
d	

g
R

�
dRdZ

=
Z �

R

�
¡ 1
�

�
(P0¡Pb)p̂0(	)¡

1
�0R

1
2
g0
2
1
�
ĝ 0(	)

�
dRdZ (13.34)
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Using

dRdZ = 1
R
Jd d�; (13.35)

Eq. (13.34) is written as

I�=
Z ��

¡ 1
�

�
(P0¡Pb)p̂0(	)¡

1
�0R2

1
2
g0
2
1
�
ĝ 0(	)

�
Jd d�; (13.36)

from which we solve for , giving

=
¡�I�¡ (P0¡Pb)

R
[p̂0(	)]Jd d�

1

2�0
g0
2
R � 1

R2
ĝ 0(	)

�
Jd d�

: (13.37)

If the total toroidal current I� is given, Eq. (13.37) can be used to determine
the value of .

13.5 Boundary magnetic surface and initial coordinates

In the fixed boundary equilibrium problem, the shape of the boundary magnetic
surface (it is also the boundary of the computational region) is given while the
shape of the inner flux surface is to be solved. A simple analytical expression for
a D-shaped magnetic surface takes the form

R=R0+ a cos(�+�sin�); (13.38)

Z =�a sin�; (13.39)

with � changing from 0 to 2�. According to the definition in Eqs. (1.29), (1.30),
and (1.32) we can readily verify that the parameters a, R0, � appearing in Eqs.
(13.38) and (13.39) are indeed the minor radius, major radius, and ellipticity,
respectively. According to the definition of triangularity Eq. (1.31), the triangu-
larity � for the magnetic surface defined by Eqs. (13.38) and (13.39) is written as

�= sin�: (13.40)

Another common expression for the shape of a magnetic surface was given by
Miller[8, 20], which is written as

R=R0+ a cos[�+ arcsin(�sin�)]; (13.41)

Z =�a sin�: (13.42)

Note that Miller's formula is only slightly different from the formula (13.38).
For Miller's formula, it is easy to prove that the triangularity � is equal to �
(instead of �= sin� as given in Eq. (13.40)).
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In the iterative metric method[11] for solving the fixed boundary equilibrium
problem, we need to provide an initial guess of the shape of the inner flux surface
(this initial guess is used to construct a initial generalized coordinates system).
A common guess of the inner flux surfaces is given by

R=  �(RLCFS¡R0)+R0; (13.43)

Z =  �ZLCFS; (13.44)

where � is a parameter,  is a label parameter of flux surface. If the shape of
the LCFS is given by Eqs. (13.38) and (13.39), then Eqs. (13.43) and (13.44)
are written as

R=R0+  �a cos(�+�sin�); (13.45)

Z =  a�a sin�: (13.46)

Fig. 13.1 plots the shape given by Eqs. (13.45) and (13.46) for a= 0.4, R0=1.7,
�= 1.7, �= arcsin(0.6), and �=1 with  varying from zero to one.
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Figure 13.1. Shape of flux surface given by Eqs. (13.45) and (13.46). Left figure: points
with the same value of  are connected to show  coordinate surface; Right figure: dot
plot. Parameters are a= 0.4m, R0= 1.7m, �= 1.7, �= arcsin(0.6), �=1 with  varying
from zero (center) to one (boundary). The shape parameters of LCFS are chosen according
to the parameters of EAST tokamak.

13.6 Fixed boundary equilibrium numerical code

The tokamak equilibrium problem where the shape of the LCFS is given is called
fixed boundary equilibrium problem. I wrote a numerical code that uses the
iterative metric method[11] to solve this kind of equilibrium problem. Figure
13.2 describes the steps involved in the iterative metric method.
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Figure 13.2. Upper left figure plots the initial coordinate surfaces. After solving the
GS equation to obtain the location of the magnetic axis, I shift the origin point of the
initial coordinate system to the location of the magnetic axis (upper right figure). Then,
reshape the coordinate surface so that the coordinate surfaces  = const lies on magnetic
surfaces (middle left figure). Recalculate the radial coordinate  that is consistent with
the Jacobian constraint and interpolate flux surface to uniform  coordinates (middle
right figure). Recalculate the poloidal coordinate � that is consistent with the Jacobian
constraint and interpolate poloidal points on every flux surface to uniform � coordinates
(bottom left figure).

13.7 Benchmark of the code

To benchmark the numerical code, I set the profile of P and g according to Eqs.
(A.7) and (A.8) with the parameters c2=0, c1=B0(�02+1)/(R02�0q0), �0= 1.5,
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and q0 = 1.5. The comparison of the analytic and numerical results are shown
in Fig. 13.3.
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Figure 13.3. Agreement between the magnetic surfaces (contours of 	) given by
the Solovev analytic formula and those calculated by the numerical code. The two
sets of magnetic surfaces are indistinguishable at this scale. The boundary magnetic
surface is selected by the requirement that 	=0.11022 in the Solovev formula (A.16).
Parameters: �0=1.5, q0= 1.5.

Note that the parameter c0 in the Solovev equilibrium seems to be not needed
in the numerical calculation. In fact this impression is wrong: the c0 parameter is
actually needed in determining the boundary magnetic surface of the numerical
equilibrium (in the case considered here c0 is chosen as c0=B0/(R02�0q0)).

13.8 Low-beta equilibrium vs. high-beta equilibrium

With the pressure increasing, the magnetic axis usually shifts to the low-field-
side of the device, as is shown in Fig. 13.4.
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Figure 13.4. Comparison of two equilibria obtained with P0 = 104Pasca (left) and
P0=105Pasca (right), respectively, where P0 is the pressure at the magnetic axis. All the
other parameters are the same for the two equilibria, � = 1.0, � = 1.0, Pb = 10¡1Pasca,
g0= 1.0Tm, I�= 500kA, and the LCFS is given by miller's formulas (13.41) and (13.42)
with R0= 1.7, a=0.45, �= 1.7, and �= 0.6.
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13.9 Analytical form of Jacobian (need cleaning up)

Consider the Jacobian of the form

J = �

�
R
R0

�m
 n; (13.47)

where m and n are arbitrary integers which can be appropriately chosen by
users, �0 and R0 are constants included for normalization. In the iterative metric
method of solving fixed boundary equilibrium problem, we first construct a
coordinates transformation (�;  ) ! (R(�;  ); Z(�;  )) (this transformation
is arbitrary except for that surface  = 1 coincides with the last closed flux
surface), then solve the GS equation in (�;  ) coordinate system to get the value
of 	 at grid points, and finally adjust the value of (R(�;  ); Z(�;  )) to make
surface  = const lies on a magnetic surface. It is obvious the Jacobian of the
final transformation we obtained usually does not satisfy the constraint given
by Eq. (13.47) since we do not use any information of Eq. (13.47) in the above
steps. Now comes the question: how to make the transformation obtained above
satisfy the constraint Eq. (13.47) through adjusting the values of �? To make
the constraint Eq. (13.47) satisfied, � and  should satisfy the relation

J (�;  )= �

�
R(�;  )
R0

�m
 n; (13.48)

which

Using Eq. (), we obtainZ
0

�

d�=
Z
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�

d�
J
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1
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�m
�=
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(13.49)

normalized to 2�, the normalized � is written as

�=2�
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�
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R
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2�d�
J
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R
0

�
d�J

¡ 1
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2�d�J
¡ 1
R

�
m

(13.50)

13.10 Grad-Shafranov equation with prescribed safety factor profile
(to be finished)

In the GS equation, g(	) is one of the two free functions which can be prescribed
by users. In some cases, we want to specify the safety factor profile q(	), instead
of g(	), in solving the GS equation. Next, we derive the form of the GS equation
that contains q(	), rather than g(	), as a free function. The safety factor defined
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in Eq. (6.8) can be written

q( ) = ¡ 1
2�

g
	0

Z
0

2� J
R2
d� (13.51)

= ¡ 1
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g

	0

R
0
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Jd�
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	0
hR¡2i

Z
0

2�

Jd� (13.52)

= ¡sgn(J ) V 0

(2�)2
hR¡2i
	0

g: (13.53)

Equation (13.53) gives the relation between the safety factor q and the toroidal
field function g. This relation can be used in the GS equation to eliminate g in
favor of q, which gives

g=¡sgn(J ) (2�)2

V 0hR¡2i	
0q: (13.54)

) dg
d	

g= (2�)2

V 0hR¡2i q
�

(2�)2

V 0hR¡2i q	
0
�
 

: (13.55)

Note that this expression involves the flux surface average, which depends on
the flux surface shape and the shape is unknown before 	 is determined.

Multiplying Eq. (A.65) by R¡2 gives
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Surface-averaging the above equation, we obtain
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Substitute Eq. (13.55) into the above equation to eliminate gdg/d	, we obtain
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Eq. (13.62) agrees with Eq. (5.55) in Ref. [16].
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where
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The GS equation is
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Using Eq. (13.64) to eliminate 	00 in the above equation, the coefficients before
(¡�0dp/d	) is written as
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Substituting the expression of D into the above equation, we obtain
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which is equal to the expression (5.58) in Ref. [16]. The coefficient before 	0 is
written as
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Define
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Using
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Eq. () is written as
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But the expression of A is slightly different from that given in Ref. [16] [Eq.
(5.57)]. Using the above coefficients, the GS equation with the q-profile held
fixed is written as �

�?¡A @
@ 

�
	=¡B�0

dp
d	

: (13.84)

14 Misc contents

14.1 Expression of current density

Let us derive the contravariant expression for the current density. Using

�0J=r�B;

along with magnetic field expression (6.2) and the curl formula (4.43), we obtain
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(14.1)

which is the contravariant form of the current density vector. Next, for later
use, calculate the parallel current. By using Eqs. (6.2) and (14.1), the parallel
current density is written as

�0J �B = ¡
��

	0 J
R2
jr j2

�
 

+
�
	0 J
R2
r � r�

�
�

�
gr � r� � r� ¡

g 0
�
¡	0 J

R2
jr j2

�
r��r �r�

= ¡
��

	0 J
R2
jr j2

�
 

+
�
	0 J
R2
r �r�

�
�

�
gJ ¡1+ g 0J ¡1	0 J

R2
jr j2

= ¡g2J ¡1
�
1
g

�
	0 J
R2
jr j2

�
 

+ 1
g

�
	0 J
R2
r �r�

�
�

¡ g 0

g2
	0 J
R2
jr j2

�
= ¡g2J ¡1

��
	0

g
J
R2
jr j2

�
 

+
�
	0

g
J
R2
r �r�

�
�

�
: (14.2)
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14.2 Normalized internal inductance

The self-inductance of a current loop is defined as the ratio of the magnetic flux
� traversing the loop and its current I:

L= �
I
; (14.3)

where

�=
Z
S

B � dS: (14.4)

It can be proved that L is independent of the current I in the loop, i.e., L is
fully determined by the shape of the loop.

On the other hand, the energy contained in the magnetic field produced by
the loop current is given by

W =
Z
V0

B2

2�0
dV; (14.5)

where the volume includes all space where B is not negligible. It can be proved
that (to be proved) W , L, and I are related to each other by:

W = 1
2
LI2; (14.6)

i.e.,

L= 2W
I2

; (14.7)

which can be considered an equivalent definition of the self-inductance.
The internal inductance Li of tokamak plasma is defined in such a way

that W only includes the magnetic energy within the plasma. Specifically, Li is
defined by

Li�
2Wi

I2
= 2
I2

Z
P

B�
2

2�0
dV (14.8)

where the integration over the plasma volume P and only the poloidal field
B� appears in the integration since plasma current produces only the poloidal
magnetic field.

The normalized internal inductance li is defined as

li�
Li

�0R0/2
; (14.9)

where R0 is the major radius of the device (equal to R of the magnetic axis).
Using Eq. (14.8), expression (14.9) is written as
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1

�0R0/2
2
I2

Z
P

B�
2

2�0
dV= 2V

I2�0
2R0

R
P
B�
2dV
V

; (14.10)

which is the definition of li used in the ITER design.
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Another way of defining the normalized internal inductance is

li=
hB�2iP
hB�2iS

; (14.11)

where h:::iS is the surface average over the plasma boundary. For circular cross
section with minor radius a and assuming B� is independent of the poloidal
angle, then, Ampere's law gives B�(a)=�0I /(2�a). Then hB�2iS is approximated
as

hB�2iS�B02(a)=
�0
2I2

4�2a2
(14.12)

Using this and V ��a22�R0, Eq. (14.11) is written as

li=
4�2a2

�0
2I2

hB�2iP =
4�2a2R0
�0
2I2R0

hB�2iP =
2V

�0
2I2R0

hB�2iP ; (14.13)

which agrees with the definition in Eq. (14.10).
The normalized internal inductance reflects the peakness of the current den-

sity profile in the toroidal plasma: a small value of li corresponds to a broad
current profile.

14.3 Cylindrical tokamak

For a large aspect-ratio, circular cross section tokamak, the R on a magnetic sur-
face is nearly constant, R�R0. The poloidal angle dependence of the magnetic
field can be neglected, i.e., B�(r; �)�B�(r), and Bp(r; �)�Bp(r), where r is the
minor radius of the relavent magnetic surface. Using these, the safety factor in
Eq. (1.37) is approximated to

q = 1
2�

I
1
R

B�
Bp

d`p �
1
2�
B�(r)
Bp(r)

1
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I
d`p =

1
2�
B�(r)
Bp(r)

1
R0

2�r = r

R0

B�(r)
Bp(r)

;

(14.14)

14.4 Coils system of EAST tokamak

14.4.1 Poloidal field (PF) coils
EAST has 12 independently powered superconducting poloidal field (PF)
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coils, as is shown in Fig. 14.1.
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Figure 14.1. Coils system of EAST tokamak. Coils PF1 to PF6 are Central Solenoide
(CS) coils with 120 turns/coil. Both PF11 and PF12 have 64 turns, Both PF13 and
PF14 have 32 turns. PF7 and PF9 are adjacent to each other and connected in series
and thus are considered as one independent coil, with total turns being 248. Similarly
PF8 and PF10 are connected in series with total 248 turns. All the PF coils can
be considered as shaping coils since they all have effects in shaping the plasmas. In
practice, they are further classified according to their main roles. PF1 to PF6 form a
solenoid in the center of the torus and thus called Central Solenoide (CS) coils. Their
main role is to induce electric field to drive current in the plasma and heat the plasma.
As a result, they are often called �Ohm heating coils�. PF13 and PF14 are mainly used
to control (slow) vertical plasma displacement and thus are often called �vertical field
coils� or �position control coils�. PF11 and PF12 are used to triangularize the plasma
and thus is called �shaping coils�. PF7+PF9 andPF8+PF10 are often called (by EAST
operators) as �big coils� or �divertor coils� since they have the largest number of turns
and current and are used to elongate/shape the plasma to diverter configurations. IC1
and IC2 are copper coils (2turn/coil), which are connected in anti-series and thus have
opposite currents. They are close to the plasma (just behind the first wall and within
the vacuum vessel) and are used to control fast plasma displacements, specifically
VDEs (vertical displacement events). IC1 and IC2 are often called �fast control coils�.
Maximum current per turn in PF coils is 14.5kA. Locations of PF coils are from Refs.
[24][9]. The inner green D-shaped structure corresponds to the vaccum vessel wall and
the outer red dashed D-shape corresponds to the TF-coils. Note that PF1-14 coils are
all located outside of the TF-coils. The small blue circles are �flux loops� measuring
the poloidal magnetic flux. Red coils are RMP copper coils.

14.4.2 Toroidal magnetic Field (TF) coils and toroidal magnetic field
of EAST tokamak
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Using Ampere's circuital lawI
B � dl= �0I ; (14.15)

along the toroidal direction and assuming perfect toroidal symmetry, we obtain

2�RB�= �0I ; (14.16)

which gives

B�=
�0I

2�R
=2� 10¡7

I

R
: (14.17)

Neglecting the poloidal current contributed by the plasma, the poloidal current
is determined solely by the current in the TF coils. The EAST tokamak has 16
groups of TF coils with 132turns/coil (I got to know the number of turns from
ZhaoLiang Wang: ' �R= 12� 11= 132). Denote the current in a single turn
by Is, then Eq. (14.17) is written

B�=
�0� 16� 132� Is

2�R
= 4.224� 10¡4

Is
R

(14.18)

Using this formula, the strength of the toroidal magnetic field at R= 1.8m for
Is=104A is calculated to be B�=2.34T . This was one of the two scenarios often
used in EAST experiments (another scenario is Is=8�103A). (The limit of the
current in a single turn of the TF coils is 14.5kA (from B. J. Xiao's paper [29]).

Note that the exact equilibrium toroidal magnetic field B� is given by B�=
g(	) / R. Compare this with Eq. (14.17), we know that the approximation
made to obtain Eq. (14.18) is equivalent to g(	) � �0ITF / 2�, i.e. assuming
g is a constant. The poloidal plasma current density jpol is related to g by
jpol= g 0(	)Bp/�0. The constant g corresponds to zero plasma poloidal current,
which is consistent to the assumption used to obtain Eq. (14.18).

Let us estimate the safety factor value near the plasma edge using the total
plasma current and the current in a single turn of TF coils Is. For divertor
magnetic configuration, the plasma edge is at the saperatrix, where q!1. To
get a characteristic safety factor value that is finite, one often chooses the edge to
be the magnetic surface that encloses 95% of the poloidal magnetic flux. Denote
this surface by S95 and the value of q at this surface by q95, which is given by

q95�
B�;axis
Bp

a
Raxis

; (14.19)

where a is the minor radius of the surface S95, and Raxis the major radius of
the magnetic axis, B�;axis is the the magnitude of toroidal magnetic field at
the magnetic axis, and Bp is the average poloidal magnetic field on the surface,
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Bp� �0Ip/(2�a). Using Eq. (14.18), Eq. (14.19) is written as

q95�
4.224� 10¡4Is

�0Ip

2�a2

Raxis
2 ; (14.20)

For EAST, tipically Raxis= 1.85m and a= 0.45m. Using this, we obtain

q95� 125
Is
Ip
: (14.21)

14.4.3 RMP coils of EAST
The so-called resonant magnetic perturbation (RMP) coils are 3D coils that

are used to suppress or mitigate edge localized modes. The shape and location
of RMP coils of EAST tokamak are plotted in Fig. 14.2.
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Figure 14.2. Location of the RMP coils on EAST tokamak in 3D view (left) and poloidal
view (right).

14.5 Comparison of major tokamaks in the world

The size of EAST is similar to that of DIII-D tokamak. The main parameters are
summarized in Table. 14.1. A significant difference between EAST and DIII-D is
that DIII-D has a larger minor radius, which makes DIII-D able to operate with
a larger toroidal current than that EAST can do for the same current density.
Another significant difference between EAST and DIII-D is that the coils of
EAST are supper-conducting while the coils of DIII-D are not. The supper-
conducting coils enable EAST to operate at longer pulse.

Misc contents 109



EAST DIII-D[19] KSTAR[17] SPARC WEST JET
Major radius R0 1.85m 1.67m 1.8m 1.85m 2.5m 2.96m
minor radius a 0.45m 0.67m 0.5m 0.57m 0.5m 0.9m

elongation
Plasma volume 20m3

No. of TF coils, turns, current 16, 130, 14.5kA 24, 6, 126kA 16, 56, 35.2kA
Bt at R0 3.26T 2.17T 3.5T 12.2T 3.7T 3.45T

CS coil module�turn�current 6�120�14.5kA
No. of independent PF coils 6+6 ?+18

Available solenoid magnetic flux 12Vs 10.5Vs 17Vs
Maximum plasma current 1.0MA 3.0MA 2MA 8.7MA 1MA 5MA

Pulse length 400s 10s 300s
superconducting? Yes No Yes Yes No

Table 14.1. Comparison of main parameters of EAST, DIII-D, JET, and ITER tokamaks. The Bt of
EAST is calculated atR=1.85m by using Eq. (14.18) with Is=14.5kA (the maximal current allowed).
The currents listed in the table are maximum plasma current whereas typical plasma currents for
EAST are 0.5MA and for DIII-D are 2MA or less.

ITER[1] CFETR(old version) CFETR (new) BEST
Major radius R0 6.2m 5.7m 7.2m 3.6m
minor radius a 2.0m 1.6m 2.2m
elongation

No. of TF coils, turns, current 18, 134, 68kA 16, 132, 67.5kA 16, ?, ? 16, 152, 45.6kA
Bt at R0 5.29T 5.00T 6.5T

CS coil module�turn�current
No. of independent PF coils

Available solenoid magnetic flux
Maximum plasma current 15MA 10MA 14MA

Pulse length 400s
superconducting? Yes Yes Yes Yes

Table 14.2. Continued from Table 14.1.

ASDEX-U HL-2M NSTX MAST
Major radius R0 1.65m 1.78m 0.85m 0.9m
minor radius a 0.7m 0.65m 0.68m 0.6m
elongation

No. of TF coils, turns, current 16,?,? 20,7,190kA
Bt at R0 2.99T 0.3T 0.55T

CS coil module�turn�current 1,?,?
No. of independent PF coils 1+16

Available solenoid magnetic flux 14Vs
typical plasma current 1.6MA 2.5MA

Pulse length 5s
superconducting? No No No

Table 14.3. Continued from Table 14.2.
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DIII-D has 24 groups of TF coils with 6turns/coil, i.e., total turns are 24�6=
144, with a maximum current of Is= 126kA in a single turn[19]. Using formula
(14.17), the toroidal filed at R= 1.67m can be calculated, giving 2.17T .

DIII-D is special in that its poloidal field (PF) coils are located inside of
the TF-coils, which makes the PF-coils more close to the plasma and thus more
efficient in shaping the plasma. However, this nested structure is difficult to
assemble. In superconducting tokamaks (e.g., EAST, KSTAR, ITER), PF coils
are all placed outside of the TF-coils.

I noticed that HL-2M also has the PF coils located within the TF-coils, similar
to DIII-D. This remind me that this layout may apply to all non-supercon-
ducting tokamaks (to be confirmed, No, non-superconducting tokamak ASDEX-
U has PF coils outside of TF coils).

KSTAR has 16 TF coils and 14 PF coils. Both of the TF and PF coil
system use internally cooled superconductors. The nominal current in TF coils
is 35.2kA / turn with 56turns / coil and all coils connected in series[23]. Using
these information and formula (14.17), the toroidal filed at R = 1.8m can be
calculated, giving 3.5T . The PF coil system consists of 8 Central Solenoide
(CS) coils and 6 outer PF coils and can provide 17 V-sec.

ITER has 18 TF coils with number of turns in one coil being 134 and current
per turn 68kA[5]. Using these information and formula (14.17), the toroidal filed
at R= 6.2m can be calculated, giving 5.29T

14.6 Miller's formula for shaped flux surfaces

According to Refs. [8, 20], Miller's formula for a series of shaped flux surfaces is
given by

R=R0(r)+ r cosf�+ arcsin[�(r)sin�]g; (14.22)

Z =�(r)r sin�; (14.23)

where �(r) and �(r) are elongation and triangularity profile, R0(r) is the
Shafranov shift profile, which is given by

R0(r)=R0(a)¡
aR0

0

2

h
1¡
�
r
a

�
2
i
; (14.24)

where R00 is a constant, R0(a) is the major radius of the center of the boundary
flux surface. The triangularity profile is

�(r)= �0
�
r
a

�
2
; (14.25)
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and the elongation profile is

�(r)=�0¡ 0.3+ 0.3
�
r

a

�
4
: (14.26)

The nominal ITER parameters are �0= 1.8, �0= 0.5 and R00 =¡0.16. I wrote a
code to plot the shapes of the flux surface (/home/yj/project/miller_flux_sur-
face). An example of the results is given in Fig. 14.3.

himagej/home/yj/project/miller_flux_surface/plt.epsjjjji
Figure 14.3. Flux-surfaces given by Eqs. (14.22) and (14.23) with r/a varying from
0.1 to 1.0 (corresponding boundary surface). Other parameters are R0(a) / a = 3,
�0= 1.8, �0= 0.5,R00 =¡0.16.

14.7 Double transport barriers pressure profile

An analytic expression for the pressure profile of double (inner and external)
transport barriers is given by

P ( )= ai

�
1+ tanh

�
¡( ¡  i)

wi

��
+ ae

�
1+ tanh

�
¡( ¡  e)

we

��
¡ c (14.27)

where  is the normalized poloidal flux, wi and we are the width of the inner
and external barriers,  i and  e are the locations of the barriers, ai and ae is
the height of the barriers, c is a constant to ensure P ( )= 0 at  =1.
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Figure 14.4. Pressure profile of double (inner and external) transport barriers given
by Eq. (14.27) with ai=1, bi= 0.2,  i= 0.36,  e= 0.96, wi= 0.2, we= 0.04, c=0.
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Figure 14.5. Equilibrium pressure profile for EAST discharge #38300 at 3.9s (recon-
structed by EFIT code, gfile name: g038300.03900), which shows a boundary transport
barrier.

14.8 Ballooning transformation

To construct a periodic function about �, we introduces a function z(�) which
is defined over ¡1<�<1 and vanishes sufficiently fast as j�j!1 so that the
following infinite summation converge:

X
l=¡1

1

z(�+2�l) : (14.28)

If we use the above sum to define a function

z(�)=
X
l=¡1

1

z(�+2�l); (14.29)

then it is obvious that

z(�+2�)= z(�); (14.30)

i.e., z(�) is a periodic function about � with period of 2�.
If we use the right-hand-side of Eq. (14.29) to represent z(�), then we do

not need to worry about the periodic property of z(�) (the periodic property is
guaranteed by the representation)

A

[In passing, we note that 	�A�R is the covariant toroidal component of A in
cylindrical coordinates (R;�;Z). The proof is as follows. Note that the covariant
form of A should be expressed in terms of the contravariant basis vector (rR,
r�, and rZ), i.e.,

A=A1rR+A2r�+A3rZ: (A.1)
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where A2 is the covariant toroidal component of A. To obtain A2, we take scalar
product of Eq. (A.1) with @r/@� and use the orthogonality relation (4.7), which
gives

A � @r
@�

=A2: (A.2)

In cylindrical coordinates (R; �; Z), the location vector is written as

r(R;Z; �)=RR̂(�)+ZẐ+0�̂ (A.3)

where R̂, Ẑ, and �̂ are unit vectors along @r/@R, @r/@Z, and @r/@�, respec-
tively, i.e.

R̂= @r
@R

�������� @r@R
��������¡1; Ẑ= @r

@Z

�������� @r@Z
��������¡1; �̂= @r

@�

��������@r@�
��������¡1 (A.4)

Using this, we obtain

@r
@�

=R�̂; (A.5)

Use Eq. (A.5) in Eq. (A.2) giving

A2=A�R; (A.6)

with A� defined by A�=A � �̂. Equation (A.6) indicates that 	= A�R is the
covariant toroidal component of the vector potential.]

A.1 Solovév equilibrium

For most choices of P (	) and g(	), the GS equation (3.12) has to be solved
numerically. For the particular choice of P and g profiles given by

dP
d	

=¡ c1
�0
; (A.7)

g
dg
d	

=¡c2R02; (A.8)

analytical solution to the GS equation can be found, which is given by[16]

	= 1
2
(c2R02+ c0R2)Z2+

1
8
(c1¡ c0)(R2¡R02)2; (A.9)
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where c0, c1, c2, and R0 are arbitrary constants. [Proof: By direct substitution,
we can verify 	 of this form is indeed a solution to the GS equation (3.12).] A
useful choice for tokamak application is to set c0 = B0/(R02�0q0), c1= B0(�02 +
1)/(R02�0q0), and c2=0. Then Eq. (A.9) is written

	= B0
2R02�0q0

�
R2Z2+ �0

2

4
(R2¡R02)2

�
; (A.10)

which can be solved analytically to give the explicit form of the contour of 	 on
(R;Z) plane:

Z=� 1
R

2R02�0q0
B0

	¡ �0
2

4
(R2¡R02)2

r
; (A.11)

which indicates the magnetic surfaces are up-down symmetrical. Using Eq. (A.7),
i.e.,

dP
d	

=¡ c1
�0

=¡B0(�0
2+1)

�0R0
2�0q0

; (A.12)

the pressure is written

P =P0¡
B0(�02+1)
�0R0

2�0q0
	; (A.13)

where P0 is a constant of integration. Note Eq. (A.10) indicates that that 	=0
at the magnetic axis (R = R0; Z = 0). Therefore, Eq. (A.13) indicates that P0
is the pressure at the magnetic axis. The toroidal field function g is a constant
in this case, which implies there is no poloidal current in this equilibrium. (For
the Solovev equilibrium (A.10), I found numerically that the value of the safety
factor at the magnetic axis (R=R0; Z=0) is equal to q0g/(R0B0). This result
should be able to be proved analytically. I will do this later. In calculating the
safety factor, we also need the expression of jr	j, which is given analytically by

jr	j =
�
@	
@R

�
2

+
�
@	
@Z

�
2

s

= B0
2R02�0q0

[2RZ2+�02(R2¡R02)R]2+(2R2Z)2
q

: (A.14)

)

Define 	0=B0R02, and 	=	/	0, then Eq. (A.10) is written as

	 = 1
2�0q0

�
R2Z2+ �0

2

4
(R2¡ 1)2

�
; (A.15)
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where R=R/R0, Z =Z /R0. From Eq. (A.15), we obtain

Z =� 1
R

2�0q0	¡
�0
2

4
(R2¡ 1)2

r
: (A.16)

Given the value of �0, q0, for each value of 	, we can plot a magnetic surface
on (R;Z) plane. An example of the nested magnetic surfaces is shown in Fig. A.1.
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Figure A.1. Flux surfaces of Solovév equilibrium for �0= 1.5 and q0= 1.5, with 	

varying from zero (center) to 0.123 (edge). The value of	 on the edge is determined by
the requirement that the minimum of R is equal to zero. (To prevent �divided by zero�
that appears in Eq. (A.16) whenR=0, the value of	 on the edge is shifted to 0.123¡"
when plotting the above figure, where " is a small number, "= 10¡3 in this case.)

The minor radius of a magnetic surface of the Solovev equilibrium can be
calculated by using Eq. (A.11), which gives

Rin= R0
2¡ A	
pq

; (A.17)

Rout= R0
2+ A	
pq

; (A.18)

and thus

a= Rout¡Rin

2
=

R0
2+ A	
pq

¡ R0
2¡ A	
pq

2
: (A.19)

where A=8R02q0/(B0�0). In my code of constructing Solovev magnetic surface,
the value of a is specified by users, and then Eq. (A.19) is solved numerically to
obtain the value of 	 of the flux surface. Note that the case 	=0 corresponds
to Rin = Rout = R0, i.e., the magnetic axis, while the case 	 = R0

2B0�0/ (8q0)
corresponds to Rin=0. Therefore, the reasonable value of 	 of a magnetic surface
should be in the range 06	<R02B0�0/(8q0). This range is used as the interval
bracketing a root in the bisection root finder.
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Using Eq. (A.19), the inverse aspect ratio of a magnetic surface labeled by
	 can be approximated as[16]

"� 2q0	
�0R0

2B0

r
: (A.20)

Therefore, the value of 	 of a magnetic surface with the inverse aspect ratio "
is approximately given by

	= "2�0R0
2B0

2q0
: (A.21)

A.2 Plasma rotation

In deriving the Grad-Shafranov equation, we have assumed that there is no
plasma flow. Next, let us examine whether this assumption is justified for plasmas
in EAST tokamak.

The complete momentum equation is given by

�m

�
@U
@t

+U �rU
�
= �qE+J�B¡r �P; (A.22)

where �qE term can be usually neglected due to either �q� 0 or E� 0, P is a
pressure tensor, which is different from the scalar pressure considered in this
note. The equilibrium with pressure tensor can be important for neutral beam
heating plasma, where pressure contributed by NBI fast ions can be a tensor.
With plasma flow and scalar pressure and neglecting electric force term, the
steady state momentum equation is written

�mU �rU=J�B¡rP ; (A.23)

where the term on the left-hand side is the contribution of plasma flow to the
force balance. Let us estimate the magnitude of this term. Macroscopic flows
in tokamak are usually along the toroidal direction (the poloidal flow is usually
heavily damped). The toroidal flow usually has the same toroidal angular fre-
quency on a magnetic surface, i.e., the flow can be written as

U=R!T( )e�; (A.24)

where !T =!T( ) is the toroidal angular frequency of the flow, which can have
radial variation. Using this expression, the left-hand side of Eq. (A.23) is written
as

�mU �rU = �mR!Te� �r(R!Te�)

= �mR!T
1
R
@
@�
(R!Te�)

= ¡�mR!T2eR; (A.25)
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which is just the centripetal force. For typical EAST plasma, the rotation fre-
quency fT = !T / 2� is less than 10kHz. For fT = 10kHz, R = 1.8m and
�m = 1.3 � 10¡7kg /m3 [Mass density of EAST#38300@3.9s, �m = nDmD =
4�1019m¡3� 2� 1.6726�10¡27kg= 1.3�10¡7kg/m3], the above fore is about
9.23�102 newton. On the other hand, the pressure gradient force in Eq. (A.23)
is about 4�104 newton, which is one order larger than the force contributed by
the rotation. [Pressure gradient force is estimated by usingrP �P0/a, where P0
is the thermal pressure at the magnetic axis and a is the minor radius of plasma.
For typical EAST plasmas (EAST#38300@3.9s), P0 � 2 � 104Pa, a = 0.45m.
ThenrP �P0/a=4�104N /m3.] This indicates the rotation has little influence
on the force balance. In other words, the EAST tokamak equilibrium can be well
described by the static equilibrium without rotation.

A.3 Poloidal plasma current

As is discussed in Sec. 3.2, to satisfy the force balance, g � RB� must be a
magnetic surface function, i.e., g= g(	). Using this, expression (2.2) and (2.3)
are written

�0JR=¡
1
R
dg
d	

@	
@Z

= dg
d	

BR; (A.26)

and

�0JZ=
1
R
dg
d	

@	
@R

= dg
d	

Bz ; (A.27)

respectively. The above two equations imply that

JR
JZ

= BR
BZ

; (A.28)

which implies that the projections of B lines and J lines in the poloidal plane
are identical to each other. This indicates that the J surfaces coincide with the
magnetic surfaces.

The poloidal plasma current density is usually small (compared with the
toroidal plasma current density) but is important for some cases of interest
and thus could not be safely neglected. Many model equilibria (e.g., Solovev
equilibria, DIII-D cyclone base cases) frequently used in simulations assume
that g is a spatial constant, i.e., neglecting the poloidal plasmas current. The
conclusions drawn from these simulations could be misleading.

Using this and r�J=0, and following the same steps in Sec. 1.7, we obtain

Ipol=
1
�0
2�[g(	2)¡ g(	1)]; (A.29)
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where Ipol is the poloidal current enclosed by the two magnetic surfaces, the
positive direction of Ipol is chosen to be in the clockwise direction when observers
look along �̂. Equation (A.29) indicates that the difference of g between two
magnetic surface is proportional to the poloidal current. For this reason, g is
usually call the �poloidal current function�.

In the above, we see that the relation of g with the poloidal electric current
is similar to that of 	 with the poloidal magnetic flux. This similarity is due to
the following differential relations:�

B=r�A
	=RA��
�0J=r�B
g=RB�

The poloidal plasma current density Jp can be further written as

Jp � JRR̂+ JZẐ

= 1
�0

�
¡ 1
R
@g
@Z
R̂+ 1

R
@g
@R

Ẑ
�
:

= 1
�0
rg�r� (A.30)

Using g= g(	), Eq. (A.30) can also be written as

Jp = 1
�0

dg
d	
r	�r�

= 1
�0

dg
d	

Bp: (A.31)

A.4 Efficiency of tokamak magnetic field in confining plasma: Plasma
beta

To characterize the efficiency of the magnetic field of tokamaks in confining
plasmas, define the plasma �, which is the ratio of the thermal pressure to the
magnetic pressure, i.e.,

�= p
B2/2�0

: (A.32)

Since the pressure in tokamak plasmas is not uniform, the volume averaged
pressure is usually used to define the beta. In tokamak plasmas, the toroidal
beta �t and the poloidal beta �p are defined, respectively, by

�t=
hpi

Bt0
2 /2�0

; (A.33)

�p=
hpi

hB�2is/2�0
; (A.34)
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where h:::i is the volume averaging, h:::is is the surface averaging over the plasma
boundary, Bt0 is the vacuum toroidal magnetic field at the magnetic axis (or
geometrical center of the plasma). In tokamaks, the toroidal magnetic field is
dominant and thus the the toroidal beta �t (not �p) is the usual way to charac-
terize the the efficiency of the magnetic field in confining plasmas. Why do we
need �p? The short answer is that �p is proportional to an important current,
the so-called bootstrap current, which is important for tokamak steady state
operation. Alternatively, �p can be understood as characterizing the efficiency of
the plasma current in confining the plasma. This can be seen by using Ampere's
law to approximately write the average poloidal magnetic field Bpa � �0Ip /
(2�a). Then �p is written

�p�
hpi

�0Ip
2/(8�2a2)

; (A.35)

which is the ratio of the pressure to the plasma current, and thus characterizes
the efficiency of the plasma current in confining the plasma.

Tokamak experiments have found that it is easier to achieve higher �t in low
Bt plasmas than in higher Bt plasmas, which indicates that the efficiency of the
magnetic field in confining plasma is a decreasing function of the magnitude of
the magnetic field.

A.5 Beta limit

Beta limit means there is a limit for the value of beta beyond which the plasma
will encounter a serious disruption. Early calculation of the beta limit on JET
shows that the maximal �t obtained is proportional to Ip/(106aBt0), where all
quantities are in SI units. This scaling relation �tmax=CTIp/(106aBt0) is often
called Troyon scaling, where the coefficient CT was determined numerically by
Troyon to 0.028. Often CT is expressed in percent, in which case CT =2.8. This
motivates us to define

�N = 108
aBt0
Ip

�t: (A.36)

which is called �normalized beta�. The normalized beta �N is an operational
parameter indicating how close the plasma is to reach destabilizing major MHD
activities. Its typical value is of order unit.

As mentioned above, �N calculated by Troyon is 2.8. Empirical evaluation
from the data of different tokamaks raises this value slightly to 3.5, although
significantly higher values, e.g., �N = 7.2, have been achieved in the low aspect
ratio tokamak NSTX[22].

The value of �N indicates how close one is to the onset of deleterious insta-
bility . The ability to increase the value of �N can be considered to be the ability
of controlling the major MHD instabilities, and thus can be used to characterize
how well a tokamak device is operated. One goal of EAST tokamak during 2015-
2016 is to sustain a plasma with �N > 2 for at least 10 seconds.
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(check** The tearing mode, specifically the neoclassical tearing mode (NTM)
is expected to set the beta limit in a reactor.)

(**check: Tokamak experiments have found that it is easier to achieve high
�N in large Ip plasmas than in small Ip plasmas. However, experiments found it is
easier to achieve high �p in small Ip plasmas than in large Ip plasmas. Examining
the expression of �N and �p given by Eqs. (A.35) and Eq. (?), respectively, we
recognize that pressure limit should have a scaling of hpi/ Ip� with 1<�< 2. )

A.6 Why bigger tokamaks with larger plasma current are better at
fusion?

As is mentioned in Sec. A.4, the beta limit study on JET tokamak shows that
the maximal �t obtained is proportional to Ip/aBt0. This means the maximal
plasmas pressure obtained is proportional to Ip/a, i.e.,

hpi/ Ip
a

(A.37)

The total plasma energy is given by E�hpi2�R�a2, where R is the major radius
of the device. Using Eq. (A.37), we obtain

E/ IpaR: (A.38)

Since fusion power is proportional to the plasma energy, the above relation
indicates, to obtain larger fusion power, we need bigger tokamaks with larger
plasma current.

The reason why larger plasma current is desired can also be appreciated by
examining an empirical scaling of the the energy confinement time �E given by

�E/
I2

T
; (A.39)

which is proportional to I2.
Another fundamental reason for building larger tokamaks is that the energy

confinement time �E � a2 / � increases with the machine size, where � is the
heat diffusitivity. In addition, the heat diffusitivity � decreases with increasing
machine size if the diffusitivity satisfies the gyro-Bohm scaling, which is given by

�GB=
mi

p
Ti
3/2

aB2qi
2 ; (A.40)

which is inverse proportional to the machine size a. However, if the diffusitivity
satisfies the Bohm scaling, which is given by

�B=
T
jq jB; (A.41)

then, the diffusitivity is independent of the machine size. The Bohm diffusitivity
�B is a/ �s times larger than the gyro-Bohm diffusitivity �GB, where �s is the
gyro-radius. Heat diffusitivity scaling in the low confinement operation (Lmode)
in present-day tokamaks is observed to be Bohm or worse than Bohm.
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A.7 Density limit

The maximum density that can be obtained in stable plasma operations (without
disruption) is empirically given by

ne� 1.5nG; (A.42)

where nG is the Greenwalt density, which is given by

nG= 1014
Ip
�a2

(A.43)

where Ip is the plasma current, a is the minor radius, all physical quantities
are in SI units. The 1.5nG gives the density limit that can be achieved for a
tokamak operation scenario with plasma current Ip and plasma minor radius
a. The Greenwalt density limit is an empirical one, which, like other empirical
limits, can be exceeded in practice. Equation (A.43) indicates that the Greenwalt
density is proportional to the current density. Therefore the ability to operate
in large plasma current density means the ability to operate with high plasma
density.

Note that neither the pressure limit nor the density limit is determined by
the force-balance constraints. They are determined by the stability of the equi-
librium. On the other hand, since the stability of the equilibrium is determined
by the equilibrium itself, the pressure and density limit is determined by the
equilibrium.

A.8 Relation of plasma current density to pressure gradient

Due to the force balance condition, the plasma current is related to the plasma
pressure. Using the equilibrium constraint in the R direction, the toroidal cur-
rent density J� given by Eq. (2.6) can be written as

J� = R
dP

d	
+ 1
�0R

dg

d	
g: (A.44)

The parallel (to the magnetic field) current density is written as

Jk �
J �B
B

=
J�B�+Jp �Bp

B

=

�
R
dP

d	
+ 1

�0R

dg

d	
g
�
g

R
+ 1

�0

dg

d	

�
r	
R

�
2

B

=
g
dP

d	
+ 1

�0

dg

d	

h ¡ g
R

�
2+
�
r	
R

�
2
i

B

=
g
dP

d	
+ 1

�0

dg

d	
B2

B
:

= g
dP
d	

1
B
+ 1
�0

dg
d	

B: (A.45)
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For later use, define

� �
Jk
B

= g
dP
d	

1
B2

+ 1
�0

dg
d	

: (A.46)

Equation (A.46) is used in GTAW code to calculate Jk/B (actually calculated is
�0Jk/B)[15]. Note that the expression for Jk/B in Eq. (A.46) is not a magnetic
surface function. Define �ps as

�ps � �¡h�i

= g
dP
d	

�
1
B2
¡
�
1
B2

��
(A.47)

�
Jk
ps

B
; (A.48)

where Jk
ps is called Pfirsch-Schluter (PS) current. In cylindrical geometry, due to

the poloidal symmetry, the Pfiersch-Schluter current is zero. In toroidal geom-
etry, due to the poloidal asymmetry, the PS current is generally nonzero. Thus,
this quantity characterizes a toroidal effect.

Another useful quantity is �0hJ �Bi, which is written as

�0hJ �Bi = �0g
dP
d	

+ dg
d	
hB2i; (A.49)

where h:::i is flux surface averaging operator.

A.9 Discussion about the poloidal current function, check!

Note that, on both an irrational surface and a rational surface, there are infinite
number of magnetic field lines that are not connected with each other (it is wrong
to say there is only one magnetic field line on a irrational surface). Consider a
field f that satisfies B � rf = 0, the value f is a constant along any one of the
magnetic field lines. Now comes the question: whether the values of f on different
field lines are equal to each other? To answer this question, we can choose a
direction different from B on the magnetic surface and examine whether 	 is
constant or not along this direction, i.e, whether k �rf equals zero or not, where
k is the chosen direction. For axsiymmetric magnetic surfaces, it is ready to see
that k= �̂ is a direction in the magnetic surface and it is usually not identical
with B/B. Then we obtain

k �rf = �̂ �rf = 1
R
@f
@�
: (A.50)

If f is independent of �, then k �r	=0. Combining with the fact thatB �rf=0
and the fact that B and k are two different directions on the magnetic surfaces,
we know that f is constant on the surface, i.e., the values of f on different field
lines are equal to each other. If f is non-axisymmetric, then we know the values
of f on different magnetic field lines on the same magnetic surface are not equal
to each other.

123



This reasoning is for the case of axsiymmetric magnetic surfaces. It is ready
to do the same reasoning for non-axisymmetrica magnetic surface after we find
a convenient direction k on the magnetic surface.

[check***As discussed in Sec. 3.2, the force balance equation of axisymmetric
plasma requires that B �rg=0. From this and the fact B �r	=0, we conclude
that g is a function of 	, i.e., g= g(	). However, this reasoning is not rigorous.
Note the concept of a function requires that a function can not be a one-to-more
map. This means that g= g(	) indicates that the values of g must be equal on
two different magnetic field lines that have the same value of	. However, the two
equations B �rg=0 and B �r	=0 do not require this constraint. To examine
whether this constraint removes some equilibria from all the possible ones, we
consider a system with an X point. Inside one of the magnetic islands, we use

g=	2/(B0R03); (A.51)

and inside the another, we use

g=	3/(B02R05); (A.52)

Then solve the two GS equations respectively within the boundary of the two
islands. It is easy to obtain two magnetic surfaces that have the same value
of 	 respectively inside the two islands. Equations (A.51) and (A.52) indicate
that the values of g on the two magnetic surfaces are different from each other.
It is obvious the resulting equilibrium that contain the two islands can not
be recovered by directly solving a single GS equation with a given function
g(	).**check]

A.10 tmp check!

(In practice, I choose the positive direction of � and � along the direction of
toroidal and poloidal magnetic field (i.e., B �r� and B �r� are always positive
in ( ; �; �) coordinates system). Then, the qlocal defined by Eq. (6.3) is always
positive. It follows that qglobal should be also positive. Next, let us examine
whether this property is correctly preserved by Eq. (6.9). Case 1: The radial
coordinate  is chosen as 	0�d	/d >0. Then the factor before the integration
in Eq. (6.9) is negative. We can further verify that J is always negative for
either the case that r	 is pointing inward or outward. Therefore the .r.h.s. of
Eq. (6.9) is always positive for this case. Case 2: The radial coordinate  is
chosen as 	0�d	/d <0. Then the factor before the integration in Eq. (6.9) is
positive. We can further verify that J is always positive for either the case that
r	 is pointing inward or outward. The above two cases include all possibilities.
Therefore, the positivity of qglobal is always guaranteed)
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a magnetic surface forms a central hole around Z axis. Using Gauss's theorem
in the volume within the central hole, and noting that no magnetic field line
point-intersects a magnetic surface, we know that the magnetic flux through any
cross section of the hole is equal to each other. Next we calculate this magnetic
flux. To make the calculation easy, we select a plane cross section perpendicular
to the Z axis, as is shown by the dash line in Fig. 1.1. In this case, only BZ
contribute to the magnetic flux, which is written (the positive direction of the
cross section is chosen in the direction of êZ)

	p1 =
Z
0

Rc

Bz(R;Zc)2�RdR

=
Z
0

Rc 1
R
@	
@R

2�RdR

= 2�
Z
0

Rc@	
@R

dR

= 2�[	(Rc; Zc)¡	(0; Zc)]:

Note that the axisymmetry requires that the axis of symmetry, Z axis, must be
a magnetic field line. Since B � r	= 0, it follows that the value of 	 on the Z
axis is a constant (denoted by 	a below). Further note that the value of 	 is
constant on a magnetic surface. Thus, 	p1 in Eq. (1.20) is written

	p1=2�(	¡	a): (A.53)

be generalized to any revolution surface that is generated by rotating a curve
segment on the poloidal plane around Z axis. For instance, a curve on the
poloidal plane that connects the magnetic axis and a point on a flux surface can
form a toroidal surface (e.g., surface S2 in Fig. 3.12). The magnetic flux through
the toroidal surface S2 is given by

i.e.

	¡	a=
	p1
2�

; (A.54)

which indicates that the difference of 	 between the Z axis and a magnetic
surface is the poloidal magnetic flux per radian through the central hole,	p1/2�.

The magnetic surface forms a central hole around Z axis. The magnetic flux
through any cross section of the central hole is equal to each other and is given
by 	p=2�(	b¡	a), where 	a and 	b are the value of 	 at the Z axis and the
magnetic surface, respectively.
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The conclusion in Eq. (A.53) can be generalized to any revolution surface
that is generated by rotating a curve on the poloidal plane about Z axis. For
instance, a curve on the poloidal plane that connects the magnetic axis and a
point on a flux surface can form a toroidal surface (e.g., surface S2 in Fig. 3.12).

Also note the difference between 	p and 	p1 defined in Sec. 1.7: 	p1 is the
magnetic flux through the central hole of a torus and thus includes the flux in
the center transformer, and 	p is the magnetic flux through the ribbon between
the magnetic axis and the magnetic surface.

A.11 Radial coordinate to be deleted

We know that the toroidal flux  t, safety factor q, and the 	 in the GS equation
are related by the following equations:

d t=2�qd	 (A.55)

=) t=2�
Z
0

	

qd	 (A.56)

Define:

��  t
�

r
(A.57)

(In the Toray_ga code, the radial coordinate � is defined as

��  t
�Bt0

r
; (A.58)

where Bt0 is a constant factor.� defined this way is of length dimension, which
is an effective geometry radius obtained by approximating the flux surface as
circular.)

I use Eq. (A.57) to define �. Then we have

 t=��2 (A.59)

=)d t
d�

=2�� (A.60)

=)d t
d 

d 
d�

=2�� (A.61)

=)2�q d 
d�

=2�� (A.62)

=) d 

d�
= �

q
(A.63)
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Eq. (A.63) is used to transform between  and �.

d�= 1
�/�R02B0

p 1
2

1
�B0R0

2d�=
1
�
1
2

1
�B0R0

22�qd =
1
�

1
B0R0

2 qd 

)d = �B0R0
2

q
d�(�a2)

−1
0

1
2 −2

−1

0

1

2−0.4
−0.3
−0.2
−0.1

0
0.1
0.2
0.3

X(m)

Y (m)

Z(m)

Figure A.2. to be delted, Isosurface of �=2�/8. The surface is made of a family of
contours of �= 2�/8, which are all magnetic field lines. These field lines are traced
by starting from a series of points on the low-field-side midplane (� = 0) at different
radial locations and the field lines are followed by a complete poloidal loop. Magnetic
field from EAST discharge #59954@3.03s.

A.12 Toroidal elliptic operator in magnetic surface coordinate
system

If ( ; �; �) are magnetic surface coordinates, i.e., @	/@�=0, then the toroidal
elliptic operator in Eq. (13.2) is reduced to

4?	= R2

J

��
	 

J
R2
jr j2

�
 

+
�
	 

J
R2
r �r�

�
�

�
; (A.64)

and the GS equation, Eq. (13.5), is reduced to

R2

J

��
	 

J
R2
jr j2

�
 

+
�
	 

J
R2
r �r�

�
�

�
=¡�0R2

dP

d	
¡ dg

d	
g(	): (A.65)
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A.13 Grad-Shafranov equation in (r; �; �) coordinates

A.13.1 Definition of (r; �; �) coordinates
Define (r; �; �) coordinates by

R=R0+ r cos�; (A.66)

Z= r sin�; (A.67)

where (R; �;Z) are the cylindrical coordinates and R0 is a constant. The above
transformation is shown graphically in Fig. A.3.

Z

R

r

θR0

R=R0+ r cosθ

Z = r sinθ

Figure A.3. The relation between coordinates (r; �) and (R;Z).

The Jacobian of (r; �; �) coordinates can be calculated using the definition.
Using x = R cos�, y = R sin�, and z = Z, the Jacobian (with respect to the
Cartesian coordinates (x; y; z)) is written as

J =

��������������������

@x

@r

@x

@�

@x

@�

@y

@r

@y

@�

@y

@�

@z

@r

@z

@�

@z

@�

��������������������
=

��������������������

@R cos�
@r

@R cos�
@�

@R cos�
@�

@R sin�
@r

@R sin�
@�

@R sin�
@�

@Z

@r

@Z

@�

@Z

@�

��������������������
=

������������
cos�cos� ¡r sin�cos� ¡R sin�
cos�sin� ¡r sin�sin� R cos�

sin� r cos� 0

������������
= sin�(¡Rr sin�cos2�¡Rr sin�sin2�)
+ r cos�(¡R sin2�cos�¡R cos2� cos�)
= ¡Rr sin2�¡Rr cos2�
= ¡Rr: (A.68)
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A.13.2 Toroidal elliptic operator �?	 in (r; �; �) coordinate system

Next, we transform the GS equation from (R;Z) coordinates to (r; �) coor-
dinates. Using the relations R=R0+ r cos� and Z= r sin�, we have

r= (R¡R0)2+Z2
p

) @r
@Z

= Z
r
= sin� (A.69)

sin�= Z

(R¡R0)2+Z2
p ) cos�

@�
@Z

=
r¡Z Z

r

r2
: (A.70)

) @�
@Z

=
r¡Z Z

r

r(R¡R0)
= 1¡ sin2�

R¡R0
= cos2�
R¡R0

(A.71)

@ sin�
@Z

=
r¡Z Z

r

r2
= 1¡ sin2�

r
= cos2�

r
(A.72)

The GS equation in (R;Z) coordinates is given by

@2	
@Z2

+R @
@R

�
1
R
@	
@R

�
=¡�0R2

dP
d	

¡ dg
d	

g(	): (A.73)

The term @	/@Z is written as

@	
@Z

= @	
@r

@r
@Z

+ @	
@�

@�
@Z

= @	
@r

sin�+ @	
@�

cos2�
R¡R0

: (A.74)

Using Eq. (A.74), @2	/@Z2 is written as

@2	
@Z2

= @
@Z

�
@	
@r

sin�
�
+ @
@Z

�
@	
@�

cos2�
R¡R0

�
= sin�
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�
@	
@r

�
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@r

@

@Z
(sin�)+ cos2�

R¡R0
@

@Z

�
@	
@�

�
+ @	
@�

@

@Z

�
cos2�
R¡R0

�
= sin�

�
@2	
@r2

sin� + @2	
@r@�

cos2�
R¡R0

�
+ @	

@r
cos2�
r

+ cos2�
R¡R0

�
@2	
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sin� +

@2	
@�2

cos2�
R¡R0

�
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@�
1
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2cos� sin� cos2�

R¡R0
(A.75)
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@r
@R

= @
@R

(R¡R0)2+Z2
p

= R¡R0
r

= cos� (A.76)

sin�= Z

(R¡R0)2+Z2
p :

cos�
@�
@R

=¡Z R¡R0
r3

@�
@R

=¡ Z
r2
: (A.77)

cos�= R¡R0
(R¡R0)2+Z2

p
@
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r¡ R¡R0

r
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r
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r
(A.78)
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¡ 1
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@�

1
r
sin�

�
(A.80)

Summing the the right-hand-side of Eq. (A.75) and the expression on line (A.79)
yields

@2	
@r2

+ @	
@r

1
r
+ 1
r2
@2	
@�2

: (A.81)
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Using these, the GS equation is written as

@2	
@r2
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1
r
+ 1
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¡ 1
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�
@	
@r

cos� ¡ @	
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g(	);

which can be arranged in the form�
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+ 1
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�
	 ¡ 1
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1
r
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�
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r cos�)2dP
d	

¡ dg
d	

g(	); (A.82)

which agrees with Eq. (3.6.2) in Wessson's book[27], where f is defined by
f =RB�/�0, which is different from g�RB� by a 1/�0 factor.

A.14 Large aspect ratio expansion

Consider the case that the boundary flux surface is circular with radius r = a
and the center of the cirle at (R=R0; Z =0). Consider the case "= r/R0! 0.
Expanding 	 in the small parameter ",

	=	0+	1 (A.83)

where	0�O("0), 	1�O("1). Substituting Eq. (A.83) into Eq. (A.82), we obtain
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Multiplying the above equation by R02, we obtain
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Further assume the following orderings (why?)

R0
@	
@r
�O("¡1)	; (A.85)

and
@	
@�
�O("0)	: (A.86)
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Using these orderings, the order of the terms in Eq. (A.84) can be estimated as
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The leading order ("¡2 order) balance is given by the following equation:

R0
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r
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@r
r
@	0
@r

+R02
1
r2
@2	0
@�2

=¡�0R04P 0(	0)¡R02g 0(	0)g(	0); (A.96)

It is reasonable to assume that 	0 is independent of � since 	0 corresponds to
the limit a/R!0. (The limit a/R!0 can have two cases, one is r!0, another
is R!1. In the former case, 	 must be independent of � since 	 should be
single-valued. The latter case corresponds to a cylinder, for which it is reasonable
(really?) to assume that 	0 is independent of �.) Then Eq. (A.96) is written

1
r
@
@r
r
@	0
@r

=¡�0R02P 0(	0)¡ g 0(	0)g(	0): (A.97)

(My remarks: The leading order equation (A.97) does not corresponds strictly to
a cylinder equilibrium because the magnetic field B=r	0�r�+ gr� depends
on �.) The next order ("¡1 order) equation is
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It is obvious that the simple poloidal dependence of cos� will satisfy the above
equation. Therefore, we consider 	1 of the form

	1=�(r)d	0(r)
dr

cos�; (A.100)

where �(r) is a new function to be determined. Substitute this into the Eq. (),
we obtain an equation for �(r),
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(A.101)
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Using the identity
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equation () is written as
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(A.105)
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Using the leading order equation (), we know that the second and fourth term
on the l.h.s of the above equation cancel each other, giving
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Using the identity
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equation (A.107) is written
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equation (A.110) is written

1
r
d
dr

�
rB�0

2 d�
dr

�
=¡�02

1
R0
r
dP
dr

+ B�0
2

R0
: (A.112)
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which agrees with equation (3.6.7) in Wessson's book[27].

A.15 (s; �) parameters

The normalized pressure gradient, �, which appears frequently in tokamak lit-
erature, is defined by[3]

�=¡R0q2
1

B0
2/2�0

dp
dr
; (A.114)

which can be further written

�=¡R0q2
d p
dr
; (A.115)

where p= p/(B02/2�0). Equation (A.115) can be further written as

�=¡ 1
"a
q2
d p
d r
; (A.116)

where "a=a/R0, r=r/a, and a is the minor radius of the boundary flux surface.
(Why is there a q2 factor in the definition of �?)
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The global magnetic shear s is defined by

s= r
q
dq
dr
; (A.117)

which can be written

s= r
q
dq
d r
: (A.118)

In the case of large aspect ratio and circular flux surface, the leading order
equation of the Grad-Shafranov equation in (r; �) coordinates is written

1
r
d
dr
r
d	
dr

=¡�0R0J�(r); (A.119)

which gives concentric circular flux surfaces centered at (R=R0;Z=0). Assume
that J� is uniform distributed, i.e., jJ�j= I /(�a2), where I is the total current
within the flux surface r = a. Further assume the current is in the opposite
direction of r�, then J�=¡I /(�a2). Using this, Eq. (A.119) can be solved to
give

	= �0I
4�a2

R0r
2: (A.120)

Then it follows that the normalized radial coordinate �� (	¡ 	0)/(	b ¡ 	0)
relates to r by r= �

p
(I check this numerically for the case of EAST discharge

#38300). Sine in my code, the radial coordinate is 	, I need to transform the
derivative with respect to r to one with respect to 	, which gives

�=¡1
"
q2
d p
d r

=¡1
"
q2

d p

d �
p =¡1

"
q2
d p
d�

1
2 �
p =¡1

"
q2
d p
d	

1
2 �
p (	b¡	0): (A.121)

s= r
q
dq
d r

=
�

p

q
dq
d	

1
2 �
p (	b¡	0)=

1
2q

dq
d	

(	b¡	0): (A.122)

The necessary condition for the existence of TAEs with frequency near the upper
tip of the gap is given by[3]

�<¡s2+ "; (A.123)

which is used in my paper on Alfvén eigenmodes on EAST tokamak[15]. Equa-
tions (A.121) and (A.122) are used in the GTAW code to calculate s and �.

B Computing magnetic field generated by coils

The vacuum RMP field and ripple field generated by coils can be calculated in
the following way.

B.1 Magnetic field

The Biot-Savart law for a zero-thinkness wire is given by

B(r) = �0
4�

Z
I(r0)dl(r

0)� (r¡ r0)
jr¡ r0j3 ; (B.1)
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where dl(r0) is a line element along the wire (the freedom of choosing which one
of the two possible directions along the wire is up to users), I(r0) is the current
in the wire (I is positive if the current in the same direction of dl, otherwise,
negative).

In Cartesian coordinates, the vector r¡ r0 is written as

r¡ r0=(x¡x0)êx+(y¡ y 0)êy+(z¡ z 0)êz: (B.2)

B.2 Magnetic vector potential

The definition of the canonical toroidal angular momentum P� involves the
magnetic vector potential. Hence we need to calculate the vecotor potential.
Given a current source J(r; t), the vector potential can be calculated using

A(r; t)= �0
4�

Z



J(r0; t 0)
jr¡ r0j d

3r0; (B.3)
where

t 0= t¡ jr¡ r
0j

c
; (B.4)

is called the retarded time. For a steady-state source, J(r0; t 0)=J(r). Then Eq.
(B.3) is simplified as

A(r)= �0
4�

Z



J(r0)
jr¡ r0jd

3r0; (B.5)

For a current flowing in a zero-thinkness wire, the above equation is written as

A(r)= �0
4�

Z
J(r0)
jr¡ r0jdS(r

0)dl(r0); (B.6)

where dS is a surface element perpendicular to the wire and dl is a line element
along the wire. Using J(r0)dS(r0)= I(r0), the above eqaution is written as

A(r) = �0
4�

Z
I(r0)
jr¡ r0j dl(r

0)

= �0
4�

Z
I(r0)
jr¡ r0j dl(r

0): (B.7)

B.3 For wires in poloial plane

For a curve in the poloidal plane, the line element dl in terms of the cylindrical
basis is written as dl = dRêR(�) + dZêz. Using Cartesian coordinate basis
vectors, dl is written as

dl= dR cos�êx+ dR sin�êy+ dZêz: (B.8)

Using Eq. (B.8) and (B.2), we obtain

dl� (r¡ r0)=

��������������
êx êy êz

dR cos� dR sin� dZ
(x¡x0) (y¡ y 0) (z¡ z 0)

��������������: (B.9)
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B.4 For wires along toroidal direction

For a curve along the toroidal direction, the line element dl in terms of the
cylindrical basis is written as dl = Rd�ê�. Using Cartesian coordinate basis
vectors, dl is written as

dl=Rd�(¡sin�êx+ cos�êy): (B.10)

Using Eq. (B.10) and (B.2), we obtain

dl� (r¡ r0)=

��������������
êx êy êz

¡Rd�sin� Rd� cos� 0
(x¡x0) (y¡ y 0) (z¡ z 0)

�������������� (B.11)

15 About this document

This document was written by using TeXmacs[25], a structured wysiwyw (what
you see is what you want) editor for scientists. The HTML version of this docu-
ment is generated by first converting the TeXmacs file to TeX format and then
using htlatex to convert the TeX file to HTML format.
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