Toroidal current density

Ampere's law (36) indicates the toroidal current density $ J_{\phi}$ is given by

$\displaystyle \mu_0 J_{\phi}$ $\displaystyle =$ $\displaystyle \frac{\partial B_R}{\partial Z} - \frac{\partial
B_Z}{\partial R}$  
  $\displaystyle =$ $\displaystyle - \frac{1}{R} \frac{\partial^2 \Psi}{\partial Z^2} -
\frac{\partial}{\partial R} \left( \frac{1}{R} \frac{\partial \Psi}{\partial
R} \right)$ (39)

Define a differential operator

$\displaystyle \triangle^{\ast} \Psi \equiv \frac{\partial^2}{\partial Z^2} + R ...
...rtial}{\partial R} \left( \frac{1}{R} \frac{\partial \Psi}{\partial R} \right),$ (40)

then Eq. (39) is written

$\displaystyle \mu_0 J_{\phi} = - \frac{1}{R} \triangle^{\ast} \Psi .$ (41)



yj 2018-03-09