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ABSTRACT
A deep neural network is developed and trained on magnetic measurements (input) and EFIT poloidal magnetic flux (output) on the EAST
tokamak. In optimizing the network architecture, we use automatic optimization to search for the best hyperparameters, which helps in better
model generalization. We compare the inner magnetic surfaces and last-closed-flux surfaces with those from EFIT. We also calculated the
normalized internal inductance, which is completely determined by the poloidal magnetic flux and can further reflect the accuracy of the
prediction. The time evolution of the internal inductance in full discharge is compared with that provided by EFIT. All of the comparisons
show good agreement, demonstrating the accuracy of the machine learning model, which has high spatial resolution compared with the
off-line EFIT while still meeting the time constraint of real-time control.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0152318

I. INTRODUCTION

Reconstructing the magnetic configuration using magnetic
measurements is a routine task of tokamak operation. There are
many equilibrium solvers, e.g., EFIT,1–6 that can perform this kind
of reconstruction by solving the Grad–Shafranov equation under the
constraint of magnetic measurements. In recent years, accumulation
of data resulting from these reconstruction practices, along with the
development of machine learning algorithms, software frameworks,
and computing power, has made it possible to train deep neural net-
works to provide reconstruction as accurate as that by EFIT. This
has been demonstrated on KSTAR7 and DIII-D.8

On the EAST tokamak,9 EFIT has been routinely used in toka-
mak operations for more than ten years, and substantial equilibrium
data have been accumulated.10–13 In this paper, we report the results
of magnetic reconstruction by a deep neural network trained on
the magnetic measurements and EFIT reconstructed 2D magnetic
poloidal flux.

There are two versions of EFIT used on EAST: one for real-time
control and one for off-line analysis. The former is often restricted to
lower accuracy due to the time constraint of real time control, while
the latter is of higher accuracy. In this work, we use the off-line EFIT

data in training the neural network. The model trained this way has
higher accuracy than the off-line EFIT while still meeting the time
constraint of real-time control.

There are many hyperparameters in a neural network that usu-
ally need to be set manually, such as the number of hidden layers,
units per layer, mini-batch size, learning rate, and number of epochs
of training. In recent years, there appeared optimization libraries
that can automatically set the values of these hyperparameters. In
this work, we use the Optuna optimization framework14 in setting
the hyperparameters. The hyperparameters found this way turn out
to be much better than our previously manually set ones in terms
of model accuracy. The size of the network architecture found by
automatic hyperparameter tuning turns out to be relatively small
(with less than 2 × 106 parameters). This small size allows for very
fast equilibrium construction that can be easily deployed.

The input to the network is limited to only magnetic measure-
ments. The output of the network is the 2D poloidal magnetic flux
function, Ψ(R, Z) ≡ AϕR, which is related to the poloidal magnetic
field, BR and BZ , by

BR = −
1
R
∂Ψ
∂Z

, (1)
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BZ =
1
R
∂Ψ
∂R

, (2)

where (R, ϕ, Z) are the cylindrical coordinates. The 2D contours
of Ψ in the (R, Z) plane correspond to the magnetic surfaces. We
compare the inner magnetic surfaces and the last-closed-flux sur-
faces (LCFSs) with those given by EFIT in order to evaluate the
accuracy of Ψ predicted by the network. We also calculate the nor-
malized internal inductance, li, which is a quantity that is solely
determined by Ψ and thus can reflect how accurate the predicted Ψ
is. The time evolution of the internal inductance in full discharge
is compared with that provided by EFIT. All of the comparisons
show good agreement, demonstrating the accuracy of the machine
learning model, which has high spatial resolution compared with

TABLE I. The inputs and outputs of the model.

Signal
Measure
method

Signal
meaning

Num.
Of values

Input 84

ΨFL Flux loop Poloidal magnetic flux 35
MF Magnetic probe Poloidal magnetic field 34
PF Rogowski loop Poloidal field coil current 14
Ip Rogowski loop Plasma current 1

Output 16 641

Ψ(R, Z) EFIT Poloidal magnetic flux 16 641

FIG. 1. (a) Locations of the magnetic probes, flux loops, and poloidal coils on EAST. A typical time evolution of some of the magnetic measurements from EAST discharge
113 019 are plotted in (b)–(f). There are a total of 38 magnetic probes measuring the equilibrium poloidal magnetic field, and only 34 of them are working and are used in this
work.
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FIG. 2. Distribution of the EFIT equilibrium data (training set + validation set
+ testing set) in the (li , βN) plane.

the off-line EFIT while still meeting the time constraint of real-time
control.

The rest of this paper is organized as follows: Sec. II presents
how the data are collected and normalized. Section III explains
the structure of our neural network and how the hyperparame-
ters are chosen by automatic optimization. In Sec. IV, we test the
predicting capability of the trained network. Section V discusses
a small network used to predict some volume-averaged quanti-
ties, namely, the plasma stored energy Wmhd, normalized toroidal
beta βN , and edge safety factor q95. A brief summary is given in
Sec. VI.

II. DATA COLLECTION AND NORMALIZATION
Figure 1(a) illustrates the poloidal locations of the magnetic

measurements used as inputs in our model. A typical time evolu-
tion of some of the magnetic measurements from EAST discharge
113 019 is plotted in Figs. 1(b)–1(f).

The inputs (features) to the neutral network (NN) are 84
magnetic measurements: 35 poloidal magnetic flux (ΨFL) values
measured by flux loops, 34 equilibrium poloidal magnetic field (MF)
values measured by magnetic probes, 14 poloidal field (PF) coil
currents, and 1 plasma current (Ip) measured by a Rogowski loop.

The outputs (targets) of the neutral network are the values
of the poloidal magnetic flux Ψ at R × Z = 129 × 129 = 16 641 spa-
tial locations. The Ψ used in the training process is computed by
off-line EFIT and is downloaded from the EAST MDSplus server
(mds.ipp.ac.cn). The input and the output signals are interpolated to
the same time slices before they are fed to the NN.

The inputs and outputs are summarized in Table I.
The data used in training, validation, and testing processes

were downloaded from the EAST MDSplus server by using Python,
which scans a series of discharges and automatically skips discharges
where necessary signals are missing. Specifically, we scan every
five discharges among all the discharges spanning from #114 000
to #117 000, resulting in a total of 45 544 equilibria (time slices).
These discharges are from experiments performed in one EAST
campaign from June to July in 2022. This range is casually chosen
with no particular criterion, except that we prefer recent discharges
and avoid old discharges because locations of some magnetic probes
were changed in previous campaigns. The auxiliary heating meth-
ods on EAST used in this campaign include neutral beam injection

FIG. 3. Normalized signals corresponding to those in Figs. 1(b)–1(f). The sudden change in the poloidal magnetic flux (Fl Loop 3) after 10 s is brought about by the PF1 coil
current, which is actively adjusted by the plasma control system to provide the Ohm field to maintain a constant plasma current.
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FIG. 4. Fully connected feed-forward neural network used in this work.

(50–70 keV deuterium beam), lower-hybrid waves (2.45 and
4.6 GHz), electron cyclotron waves (140 GHz), and ion cyclotron
waves (25–70 MHz). The typical values of the total heating source
power are between 4 and 10 MW.

TABLE II. Final values of hyperparameters of the model. The hyperparametersa are
fixed during the fine tuning. The above-mentioned activation function refers to that
used in the hidden layers. For the output layer, the linear activation function is used.

Hyperparameter Meaning Final values

n_layersa Number of hidden layers 4
n_units Number of nodes per hidden layer 86
Activationa Activation function tanh
Optimizera Optimizer type Adam
η Learning rate 2.26 × 10−5

Lossa Loss function MSE
batch_size Number of samples used in a step 16
Epochs Number of epochs 97
aFixed hyperparameters during fine tuning.

Figure 2 shows the distribution of the EFIT equilibrium data in
the (li, βN) plane, where li is the normalized internal induction and
βN is the normalized plasma beta.

The collected data are split into three sets—training set (81%),
validation set (9%), and testing set (10%)—where the training set

FIG. 5. Hyperparameter importance distribution. Model accuracy is not sensitive to the activation functions for this case.

FIG. 6. Relative importance of the hyperparameters in determining the model accuracy in the fine tuning.
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FIG. 7. Training history showing the training and validation loss function values vs
the training epochs. One epoch corresponds to go through all the samples in the
training set. In the mini-batch stochastic gradient descent method used here, each
gradient descent step uses randomly selected 16 samples (a mini batch), and the
loss function values shown here are obtained by summation over a mini-batch of
samples in the training set or validation set.

is used in training the NN, the validation set is used in monitor-
ing the potential overfitting and tuning hyperparameters, and the
testing set is used in testing the predicting capability of the trained
model.

Figures 1(b)–1(f) show that there is a difference of up to six
orders of magnitude in the values of the input signals. In order
to eliminate scale differences among features, we use the min-
max normalization method to normalize the input data. The general
formula is given by

x′ = x − xmin

xmax − xmin
, (3)

where x is the original value of the feature, x′ is the normalized value,
and xmin and xmax are, respectively, the minimal and maximal value
of a feature in the datasets excluding the testing set. xmin and xmax
obtained here are then used to normalize the input data in the testing
set when performing prediction using the trained NN.

Figure 3 plots the time evolution of the normalized input
signals corresponding to those in Figs. 1(b)–1(f).

The magnitude of the output (Ψ in SI units) is near 1, so no
normalization is applied to it.

III. MODEL ARCHITECTURE AND AUTOMATIC
HYPERPARAMETER TUNING

An artificial neural network is a kind of computational network,
which usually consists of multiple layers: input layer, one or more
inner layers (known as hidden layers), and an output layer. Each
layer is made of units. Each unit in the computing layers (hidden
and output layers) receives information and processes the informa-
tion using some linear transform (matrix multiplication) and some
nonlinear transform (activation function).

A fully connected feed-forward network shown in Fig. 4 is used
here to predict the poloidal magnetic flux Ψ based on the mag-
netic measurements. Here, “fully connected” means that each unit
of a computing layer receives information from all the units of the
previous layer. “Feed-forward” means that information moves in
only one direction (from the input layer to the hidden layers and
to the output layers), with no cycles or loops and no intra-layer
connections.

Each unit (neuron or node) in the computing layers has train-
able parameters, often called weights and biases. The output of the

FIG. 8. (a) Neural network prediction of the poloidal flux ΨNN vs EFIT results ΨEFIT for the testing set (total 4555 equilibria). The red dashed line is the y = x line. The total
number of points shown here is 4555 × 129 × 129. Color represents the density of data points. (b) The distribution of the correlation coefficient for each equilibrium of the
4555 equilibria in the testing set.
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FIG. 9. Panels (a), (c), (e), and (g) compare the magnetic surfaces from EFIT (solid black lines) with those from the NN (dashed red lines) for four randomly selected time
slices from the 4555 testing samples. Panels (b), (d), (f), and (h) show the corresponding normalized residua [Ψ (R, Z)ΨNN (R, Z)]/max(∣Ψ (R, Z)∣).

jth neuron in the lth layer is denoted by al
j ; then a neural network

model assumes that al
j is related to al−1 (output of the previous

layer) via

al
j = σ (∑

k
wl

jkal−1
k + bl

j), (4)

where wl
jk and bl

j are the weight and bias, respectively, the sum-
mation is over all neurons in the (l − 1)th layer, and σ is a func-
tion called the activation function. The weights and biases will be
adjusted in the training process by gradient descent methods to
reduce the loss (cost or error) function, which is defined in this
work as

FIG. 10. Comparison of LCFSs between the NN prediction and EFIT result. The four panels (a)–(d) correspond to the four equilibria shown in Fig. 9. In locating the LCFSs
from the NN prediction, we analyze a series of Ψ contours and determine the outermost contour that is near the magnetic separatrix.
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FIG. 11. (a) Comparison of time evolution of plasma current given by the NN and EFIT. (b) Comparison of time evolution of li given by the NN and EFIT. Four time slices are
indicated on the graph, which are time slices selected for the magnetic configuration comparison shown in Figs. 12 and 13.

FIG. 12. Panels (a), (c), (e), and (g) compare the magnetic surfaces from EFIT (solid black lines) with those from the NN (dashed red lines) for discharge #113 388. Ψ at
four different time slices during the discharge—0.580 s (early ramp-up), 2.680 s, 5.130 s (flat top), and 7.370 s (ramp-down)—is shown. Panels (b), (d), (f), and (h) show the
corresponding relative error (ΨEFIT −ΨNN)/max(∣ΨEFIT∣).
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FIG. 13. NN reconstruction of the LCFS (dotted-dashed red) for EAST shot #113 388 overlaid against the EFIT LCFS (solid black). LCFSs from four different times in discharge
#113 388 are shown.

L(w, b) ≡ 1
2n

n

∑
i=1
∥yi − ŷi∥2, (5)

where yi is the EFIT poloidal magnetic flux, ŷi is the NN output,
and the summation is over all the samples in the training set. The
loss function in Eq. (5) is the mean squared error (MSE). The loss
function measures the derivation of the approximate solution away

from the desired exact solution. Hence, the goal of the learning algo-
rithm is to find weights and biases that minimize the loss function.
To minimize the loss function over (w, b) using the gradient descent
method, we need to compute the partial derivatives ∂L/∂wl

jk and
∂L/∂bl

j , which can be efficiently computed by the well-known back-
propagating method.15,16 The back-propagating algorithm and the

FIG. 14. Same as Fig. 11, except that the discharge is #117 016.
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FIG. 15. Same as Fig. 12, except that the discharge is #117 016.

corresponding gradient descent method are the core algorithms in
all deep learning software frameworks.

Besides the trainable parameters, there are various hyperpa-
rameters in an NN that usually need to be set manually, such as
the number of hidden layers, units per layer, activation function,

NN optimizers, learning rate, batch size, and number of epochs
of training. In recent years, there appeared automatic optimization
libraries that can search for the best combination of hyperparame-
ters. In this work, we use the Optuna optimization framework14 in
setting the hyperparameters. Optuna automates the hyperparameter

FIG. 16. Same as Fig. 13, except that the discharge is #117 016.
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FIG. 17. Same as Fig. 11, except that the discharge is #113 019.

FIG. 18. Same as Fig. 12, except that the discharge is #113 019.
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optimization process by defining a search space of hyperparame-
ters and exploring the space using efficient searching algorithms.
The tree-structured Parzen estimator (TPE) algorithm is used in
this work. This algorithm models the relationship between hyperpa-
rameters and their corresponding performance metrics and makes
efficient decisions on which hyperparameters to try next.

Optuna automates the selection of the best hyperparameter
combination. After multiple experiments, we have found that the
model accuracy is not sensitive to the number of hidden layers, acti-
vation functions, and optimizers (an example showing the relative
importance of these hyperparameters is given in Fig. 5). Therefore,
these hyperparameters are fixed in the fine-tuning step in order
to improve the speed of the model selection process and explore
more hyperparameter regimes to which the model may be sen-
sitive. For other hyperparameters, we use the Optuna framework
to find the optimal combination of hyperparameters. The relative
importance of these hyperparameters is shown in Fig. 6. The above-
mentioned results indicate that learning rate is the dominant factor
that determines the model performance.

The final values of the hyperparameters used in the model are
shown in Table II.

The network is constructed and trained using Keras and
TensorFlow2,17,18 which are broadly adopted open source deep
learning frameworks in the industry and research community.
Figure 7 plots the loss function values as a function of the train-
ing epochs. The loss function is also evaluated on the validation set,
which serves as a monitor for possible overfitting. The validation loss
follows the same trend as the training loss, indicating no overfitting.

IV. PERFORMANCE OF THE NEURAL NETWORK
A. Performance of the model on the testing set

After the model is trained on the training set, we assess its
prediction capability on the data that are not seen by the train-
ing process. To evaluate the reconstruction quality, we employ
three widely adopted metrics: the Pearson correlation coefficient r

(definition is given in Appendix A), the coefficient of determination
R2 (definition is given in Appendix B), and the peak signal-to-noise
ratio (PSNR) (definition is given in Appendix C).

Figure 8(a) plots the NN prediction of the poloidal flux ΨNN vs
EFIT results ΨEFIT for the testing set (total 4555 equilibria, each with
16 641 values). The Pearson correlation coefficient r and the coeffi-
cient of determination R2 are also shown in the figure, which are very
close to 1, indicating strong predictive capability. Figure 8(b) plots
the distribution of the correlation coefficient r between NN predic-
tions and EFIT results for each equilibrium of the 4555 equilibria in
the testing set. The results indicate that the majority of the values
are greater than 0.998, indicating good correlation between the NN
prediction and EFIT result for each equilibrium.

To test the accuracy of the model in predicting the plasma mag-
netic surface, we compare the 2D contours of the poloidal magnetic
flux predicted by the NN with those given by EFIT. The results are
shown in Figs. 9(a), 9(c), 9(e), and 9(g), where the NN predictions of
Ψ contours are overlaid on the Ψ contours of EFIT. It displays four
randomly selected samples from the 4555 equilibria in the testing set
(the four displayed samples may not necessarily come from the same
discharge). Since our reconstruction results take the form of images
with the resolution determined by the spatial grid points, it is also
useful to use the PSNR in evaluating the reconstruction quality of the
magnetic surface. The values of the PSNR for the four equilibrium
are shown in the figure.

To further assess the accuracy of the mode, we locate the LCFSs
predicted by the NN model and compare them with those given
by EFIT. The LCFSs corresponding to the four equilibria shown in
Fig. 9 are shown in Fig. 10, which indicates that the NN and EFIT
results are in good agreement. Minor discrepancies appear near the
X points.

B. Performance of the model on four
complete discharges

In this section, we arbitrarily select three full discharges that are
not in the dataset used above to examine the time evolution of the

FIG. 19. Same as Fig. 13, except that the discharge is #113 019.
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magnetic configuration during an entire discharge (from ramp-up
to flat-top and then to ramp-down).

Besides the plasma currents Ip, we also calculate the normal-
ized internal inductance li (definition is given in Appendix D), which
is a quantity that is solely determined by Ψ and thus can further
reflect how accurate the predicted Ψ is. We plot the time evolu-
tion of li and compare it with the EFIT results. By doing this, we
can assess the accuracy of the NN in predicting the time evolution
of some key volume-integrated quantities characterizing magnetic
configuration.

Figure 11 compares the time evolution of Ip and li predicted by
the NN and that by EFIT for discharge #113 388.

Figure 12 compares the contours of Ψ given by the NN model
and that given by EFIT at 4 time slices (indicated in Fig. 11) in dis-
charge #113 388. The results indicate that the relative error between
the NN and EFIT results is less than 2%.

Figure 13 compares the LCFSs given by the NN model and that
given by EFIT at four time slices in discharge #113 388. The results
show good agreement between the two models. Minor differences
usually appear in the ramp up/down phase and near the X-points.

Similar results for discharge #117 016 are shown in Figs. 14–16.
Similar results for discharge #113 019 are shown in Figs. 17–19.

V. NEURAL NETWORK PREDICTION
OF Wmhd, βN , AND q 95

Besides the li discussed above, there are some other global para-
meters that can be constructed from the magnetic measurements,
namely, the plasma stored energy Wmhd, normalized plasma beta βN ,
and edge safety factor q95. These parameters depend on information
beyond the poloidal magnetic flux, namely, the toroidal magnetic
field and plasma pressure. Therefore, they cannot be fully deter-
mined by using only the poloidal magnetic flux predicted from the
above-mentioned network. Following Ref. 8, we construct a new
NN for predicting these parameters (called NN2 in the following;
the previous one will be called NN1), where the network has only
three output values, namely, Wmhd, βN , and q95. The input to NN2
includes a new signal, the current in the toroidal field (TF) coils,
which determines the toroidal field (In the NN1, this signal is not
included because it has negligible effect on the prediction of the
poloidal magnetic flux.). NN2 has only one hidden layer consisting
of 16 units, and uses the sigmoid as the activation function for both
the hidden and output layers. The input and output signals of NN2
are normalized by using the same min-max scalar used for NN1.

The training data consist of about 1/4 randomly selected part
of the data used for NN1. We found that using larger dataset makes
this small network prone to overfitting. The testing set consists of
1000 time slices. Figure 20 plots the NN2 predictions against the
EFIT values for the testing set. The results indicate that the NN2
predictions are in reasonable agreement with the EFIT values for all
the three parameters. The NN2 predictions of q95 are a little worse
than those of the other two parameters, judging from the values of
r and R2.

To evaluate the accuracy of NN2 prediction for a full discharge,
we arbitrarily chose a discharge and compare the time evolution
of Wmhd, βN , and q95 between the NN2 predictions and EFIT val-
ues. The results are shown in Fig. 21, which shows good agreement
between the network predictions and EFIT values.

FIG. 20. NN2 predictions of Wmhd(J) (a), βN (b), and q95 (c) against the EFIT
values for the testing set.

AIP Advances 13, 075007 (2023); doi: 10.1063/5.0152318 13, 075007-12

© Author(s) 2023

 01 April 2024 07:15:23

https://pubs.aip.org/aip/adv


AIP Advances ARTICLE pubs.aip.org/aip/adv

FIG. 21. Time evolution of plasma stored energy Wmhd(J) (a), normalized beta βN (b), and edge safety factor q95 (c) in EAST discharge #100 000. Solid lines are EFIT
values, and dashed-dotted lines are network predictions.

VI. SUMMARY AND DISCUSSION
In this work, we train a multiple-layer neural network on the

magnetic measurements (input) and EFIT poloidal magnetic flux
(output) on the EAST tokamak. The prediction capability of the
network is examined by comparing the reconstructed magnetic
surfaces, last closed flux surfaces, plasma current, and normalized
internal inductance with those of EFIT. The neural network shows
good agreement with EFIT for the data unseen in the training
process.

In constructing the neural network, we use automatic opti-
mization in searching for the best hyperparameters of the model.
The hyperparameters found this way turn out to be better than
our previously manually set hyperparameters in terms of the model
accuracy.

Based on the model’s good prediction capability and efficiency
in terms of computational time [about 0.5 ms per equilibrium on a
desktop computer using an 11th Gen Intel(R) Core(TM) i5-11500
@ 2.70 GHz central processing unit (CPU) with a single thread],
it looks promising to apply the neural network to real-time mag-
netic configuration control. The above-mentioned computational
time does not include the time used for tracing boundary/internal
magnetic surfaces and other related calculations to obtain li. These
computations (not optimized in this work) seem too inefficient to be
used in real-time control. The purpose of computing li for the NN1
model is to evaluate the accuracy of the predicted Ψ. To predict these
volume-integrated parameters, one usually uses an additional small
network, as we did in Sec. V, which is efficient enough for real-time
control because the network size is usually very small.

This work is limited to magnetic measurements. We plan to
add more diagnostics related to the inner safety factor profiles and
pressure profiles into the model in order to construct more real-
istic equilibria. This will rely on the kinetic EFIT output. We are
accumulating these kind of training data.
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APPENDIX A: PEARSON CORRELATION
COEFFICIENT r

The Pearson correlation coefficient r is a statistical measure
used to assess the strength and direction of a linear relationship
between the predicted and true values of the data. It ranges from
−1 to 1, where 1 indicates a perfect positive correlation, 0 indicates
no correlation, and −1 indicates a perfect negative correlation. The
formula for r is

r = ∑n
i=1 (yi − ȳ)(ŷi − ŷ)√

∑n
i=1 (yi − ȳ)2

√
∑n

i=1 (ŷ i − ŷ )2
, (A1)

where n is the number of data in the testing set, yi is the value given
by EFIT, ŷi is the prediction by the NN, ȳ = 1

n∑
n
i=1 yi is the mean

value of the values given by EFIT, and ŷ = 1
n∑

n
i=1 ŷi is the mean value

predicted by the NN.

APPENDIX B: COEFFICIENT OF DETERMINATION R 2

Another relevant metric used to assess how well a model fits the
data is the coefficient of determination R2, which is defined by

R2 = 1 − ∑
n
i=1 (yi − ŷ i)2

∑n
i=1 (yi − ȳ)2 , (B1)

where n, yi, ŷi, and ȳ mean the same as those in Sec. A1. The value of
R2 ranges from arbitrary negative values to 1, where 1 represents a
perfect fit between the model predictions and the actual data points.
A higher value of R2 suggests that the model is a better fit for the
data. The coefficient of determination R2 is usually not equal to
the squared Pearson correlation coefficient except in some specific
cases.

APPENDIX C: PEAK SIGNAL-TO-NOISE RATIO (PSNR)

The PSNR is a metric that measures the quality of an image
by comparing the original image to a reconstructed version. A
higher PSNR value indicates a higher quality reconstruction. It is
defined by

PSNR = 10 × log10 (
max (yi)2

MSE
)

= 10 × log10 (
max (yi)2

1
M∑

M
i=1 (yi − ŷ i)2 ), (C1)

where max(yi) is the maximum value of Ψ given by EFIT in the
(R, Z) plane and MSE is the mean squared error between the EFIT
and NN.

APPENDIX D: NORMALIZED INTERNAL INDUCTANCE

The normalized internal inductance li is defined by

li =
⟨B2

θ⟩P
⟨B2

θ⟩S
, (D1)

where P is the integration over the plasma volume, ⟨B2
θ⟩S is the

surface average of poloidal field over the plasma boundary, and
li reflects the peakness of the plasma current density profile; a small
value of li corresponds to a broad current profile.

For circular cross section with minor radius a and assuming
Bθ is independent of the poloidal angle, then Ampere’s law gives
Bθ(a) = μ0I/(2πa). Then ⟨B2

θ⟩S is approximated as

⟨B2
θ⟩S ≈ B2

0(a) =
μ2

0I2

4π2a2 . (D2)

Using this and noting V ≈ πa22πR0, where R0 is the major radius of
the device, Eq. (D1) is written as

li =
4π2a2

μ2
0I2 ⟨B

2
θ⟩P =

4π2a2R0

μ2
0I2R0

⟨B2
θ⟩P =

2V
μ2

0I2R0
⟨B2

θ⟩P. (D3)

Equation (D3) is used in this work to calculate li.
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