
plasma

Article

Fully Kinetic Simulation of
Ion-Temperature-Gradient Instabilities in Tokamaks

Youjun Hu 1,2 ID , Matthew T. Miecnikowski 1, Yang Chen 1 and Scott E. Parker 1,*
1 Department of Physics, University of Colorado, Boulder, CO 80309, USA; youjun.hu@colorado.edu (Y.H.);

mtmiec@gmail.com (M.T.M.); yang.chen@colorado.edu (Y.C.)
2 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
* Correspondence: sparker@colorado.edu

Received: 26 March 2018; Accepted: 29 May 2018; Published: 31 May 2018
����������
�������

Abstract: The feasibility of using full ion kinetics, instead of gyrokinetics, in simulating low-frequency
Ion-Temperature-Gradient (ITG) instabilities in tokamaks has recently been demonstrated.
The present work extends the full ion kinetics to the nonlinear regime and investigates the nonlinear
saturation of a single-n ITG instability due to the E× B trapping mechanism (n is the toroidal mode
number). The saturation amplitude predicted by the E× B trapping theory is found to agree with the
saturation level observed in the simulation. In extending to the nonlinear regime, we developed a
toroidal Boris full orbit integrator, which proved to be accurate in capturing both the short-time scale
cyclotron motion and long time scale drift motion, with good kinetic energy conservation and toroidal
angular momentum conservation in tokamak equilibrium magnetic fields. This work also extends
the previous work from analytic circular magnetic equilibria to general numerical magnetic equilibria,
enabling simulation of realistic equilibria reconstructed from tokamak experiments.

Keywords: fully kinetic ions; ion temperature gradient instabilities; tokamak; gyrokinetics;
particle-in-cell; nonlinear

1. Introduction

Ion temperature gradients in tokamaks provide free energy to micro-instabilities called
Ion-Temperature-Gradient (ITG) instabilities [1]. The nonlinear development of these instabilities,
i.e., ITG turbulence, is believed to play an important role in regulating particle and heat transport in
tokamaks [2–4]. There are numerous papers devoted to the gyrokinetic simulation of ITG turbulence,
which employ gyrokinetic theory to decouple the high-frequency gyro-motion of ions from the
low-frequency ITG modes [5–10]. However, gyrokinetics rely on ordering assumptions in deriving
the gyrokinetic equation. One of these ordering assumptions, ρi/Ln � 1, becomes questionable in
tokamak edge with steep density profile, where ρi is the gyro-radius of ions and Ln is the scale length
of density profile. For this reason, tokamak edge gyrokinetic codes, e.g., XGC [11,12], are usually
limited in the regime where the pedestal width is much greater than the ion gyro-radius. Fully kinetic
ion models [13–18], which retain the ion gyro-motion, avoid these problematic ordering assumptions
(although involving more computations in simulations). Low-frequency full kinetics have already
been demonstrated in slab geometry [19], successfully benchmarked against gyrokinetics for the slab
ITG [20], and extended to toroidal ITG instabilities by Sturdevant et al. [21].

The present work extend that of Ref. [21] to the nonlinear regime and investigates the nonlinear
saturation of a single-n ITG instability due to the E× B trapping mechanism (n is the toroidal mode
number). The saturation amplitude predicted by the E× B trapping theory is found to agree with
the saturation level observed in the simulation. In extending to the nonlinear regime, we developed
a toroidal Boris full orbit integrator, which proved to be accurate in capturing both the short-time scale
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cyclotron motion and long time scale drift motion, with good kinetic energy conservation and toroidal
angular momentum conservation in tokamak equilibrium magnetic fields. This work also extends the
previous work from analytic circular magnetic equilibria to general numerical magnetic equilibria,
enabling simulation of realistic equilibria reconstructed from tokamak experiments.

To verify the new numerical implementation of the orbit integrator and magnetic configuration,
the linear electrostatic ITG frequency and growth rate are compared with the fully kinetic results of
Ref. [21] and gyrokinetic results of Ref. [22]. Good agreement is found for both cases. Our simulation
adopts the δ f particle-in-cell (PIC) method.

The remainder of the paper is organized as follows. Section 2 discusses the fully kinetic ion model
for simulating ITG instabilities. The implicit δ f PIC method and the full orbit integrator are briefly
discussed in Section 3. Section 4 discusses how magnetic configuration and magnetic coordinates are
handled in our numerical model. Section 5 gives the linear and nonlinear results of ITG instabilities,
along with a benchmark against the fully kinetic results of Ref. [21] and gyrokinetic results of Ref. [22]
in the linear regime. A brief summary is given in Section 6.

2. Fully Kinetic Ion Model of ITG Instabilities

The fully kinetic ion model for ITG instabilities is described in Ref. [21]. The following is a summary
of the model. The ion Vlasov equation is written

d fi
dt
≡ ∂ fi

∂t
+ v · ∂ fi

∂x
+

qi
mi

(E + v× B) · ∂ fi
∂v

= 0, (1)

where fi(x, v) is the ion distribution function, x and v are ion position and velocity respectively,
E and B are the electric field and magnetic field respectively, qi and mi are the charge and mass of ions
respectively. We write fi as an equilibrium part plus a perturbation, i.e., fi = fi0 + δ fi, then Equation (1)
is written as

dδ fi
dt

= − qi
mi

(δE + v× δB) · ∂ fi0
∂v

, (2)

where δE and δB are the perturbed part of the electric field and magnetic field, respectively.
To model ITG instabilities, the equilibrium part of ion distribution function fi0 is chosen as [21]

fi0(Rr, v) = ni0(Rr)

(
mi

2πTi0(Rr)

)3/2
exp

[
− miv2

2Ti0(Rr)

]
, (3)

where ni0 and Ti0 are ion number density and temperature, which depend on a radial variable Rr

given by

Rr = r +
mi
qi

v× b
B0
· ∇r, (4)

where r is the minor radius of magnetic surfaces and b = B0/B0 is the unit vector along the
equilibrium magnetic field B0. The variable Rr is a radial coordinate of the ion guiding-center and
thus an approximate constant of motion in the weakly inhomogeneous tokamak magnetic field with
ρi/LB � 1, where LB is the scale length of B0. Since arbitrary functions of the constants of motion
are solutions to the kinetic equation, the distribution function given by Equation (3) is approximately
an equilibrium solution to the kinetic Equation (1). Using this form of equilibrium distribution,
the kinetic Equation (2) for the perturbed part of the distribution is written as

dδ fi
dt = qi

Ti
fi0δE · v +

[
κni +

(
mv2

2Ti
− 3

2

)
κTi

]
fi0

(δE×b)·∇r
B0

−
[
κni +

(
mv2

2Ti
− 3

2

)
κTi

]
fi0(v× δB) · ∇r×b

B0
,

(5)

where κni = −n−1
i0 ∂ni0/∂Rr and κTi = −T−1

i0 ∂Ti0/∂Rr are the radial gradients of ion density and
temperature, respectively.
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The equilibrium distribution function (3) does not include neoclassical effects and imposes
a constraint similar to that of gyrokinetic models. The purpose of adopting this distribution function is
to reproduce the gyrokinetic ITG instabilities using the fully kinetic model.

Electrostatic Limit with Adiabatic Electrons

In this work, we focus on the electrostatic limit, in which δB is zero and δE = −∇δΦ, where δΦ
is the perturbed electric potential. Furthermore, we adopt the simple adiabatic electron model for
describing the electron response, in which the perturbed electron density is related to δΦ by

δne = ne0
e(δΦ− 〈δΦ〉)

Te0
, (6)

where ne0 and Te0 are the equilibrium electron number density and temperature, respectively; e is the
elementary charge, 〈. . .〉 is the magnetic surface averaging operator defined by

〈. . .〉 =
∫ 2π

0

∫ +π
−π (. . .)J dφdθ

∫ 2π
0

∫ +π
−π J dφdθ

, (7)

where J is the Jacobian of magnetic coordinates (ψ, θ, φ), ψ is a radial coordinate, θ and φ are poloidal
and toroidal angles, respectively.

In the electrostatic limit, Maxwell’s equations reduce to Poisson’s equation, which further reduces
to the quasi-neutrality condition if the space-charge term is neglected. The quasi-neutrality condition
is written as

δne = δni (8)

where δni is the perturbed part of the ion number density. Using δne given by Equation (6) in the
above equation, we obtain

ne0
e(δΦ− 〈δΦ〉)

Te
= δni, (9)

which serves as our field equation, from which the electric potential δΦ can be solved. We consider
modes with n 6= 0, where n is the toroidal mode number. Then the flux average 〈δΦ〉 is always zero
and the field Equation (9) reduces to an algebraic equation, which can be analytically solved to give

δΦ =
Te

e
δni
ne0

. (10)

3. Implicit δ f Particle-in-Cell Method and Full Orbit Integrator

The ion Vlasov Equation (5) is solved by using the δ f PIC method [23,24], in which an assembly
of markers are loaded in the phase-space according to a distribution function g(x, v). Then the phase
space volume occupied by a marker located at (xj, vj) is given by Vps j = 1/g(xj, vj). We define the
weight of the j th marker by

wij = δ fi(xj, vj)Vps j =
δ fi(xj, vj)

g(xj, vj)
, (11)

which is the physical particle number carried by δ fi in the phase space volume Vps j. The weight
evolution equation is obtained by multiplying both sides of Equation (5) by Vps j and noting that
d(Vps j)/dt = 0, yielding

dwij
dt = fi0

g
qi
Ti

δE · v
+ fi0

g

[
κni +

(
mv2

2Ti
− 3

2

)
κTi

]
(δE×b)·∇r

B0
,

(12)
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where the magnetic perturbation terms have been dropped due to the electrostatic approximation.
An implicit scheme is used to integrate the weight evolution equation. Denoting the right-hand side of
the weight evolution Equation (12) by h(δE, x, v), the implicit scheme we use takes the following form:

w(n+1)
ij − w(n)

ij

∆t
= h(δE(n+1/2), x(n+1/2)

j , v(n+1/2)
j ), (13)

with

δE(n+1/2) =
δE(n+1) + δE(n)

2
, (14)

We choose the initial guess of δE(n+1) to be equal to δE(n) and then iterate until convergence is
achieved. If the iteration is terminated after only two iterations, then this scheme corresponds to the
predictor-corrector scheme called Heun’s method [25]. The field Equation (9) needs to be solved once
in each iteration.

The ion trajectory (xj, vj) is advanced by a time-centered difference scheme given by

v(n+1/2) − v(n−1/2)

∆t
=

qi
mi

[
E(n)(x(n)) +

v(n+1/2) + v(n−1/2)

2
× B(n)(x(n))

]
. (15)

for velocity and
x(n+1) − x(n)

∆t
= v(n+1/2), (16)

for position. Here “staggered” time grids are used for v and x: time grids of v are at half-steps
while time grids of x are at integer steps. The position at half-steps, x(n+1/2), which is needed in
Equation (13), is approximated by x(n+1/2) = (x(n) + x(n+1))/2. Further note that the scheme given in
Equation (15) is in an implicit form since the unknown v(n+1/2) appears on both sides of the equation.
Fortunately, Equation (15) can be analytically solved in Cartesian basis and its explicit solution is
expressed by the Boris algorithm [26]. As is discussed in Ref. [27], the above scheme conserves the
phase-space volume, which makes it suitable for particle-based methods where phase-space volume
conservation is usually implicitly assumed. In this work, cylindrical coordinates are used in integrating
the ion orbits. When implementing the Boris scheme in cylindrical coordinates, a local Cartesian
coordinate system with basis vectors (ex, ey, ez) along the local cylindrical basis vectors (eR, eφ, eZ) at
particle location x(n) is set up to perform the velocity integration to obtain v(n+1/2). Then the particle
location is updated in the local Cartesian coordinates by using Equation (16) and then is transformed to
the cylindrical coordinates by using the analytic coordinate transformation. After this, the new velocity
v(n+1/2) is projected onto the new basis vectors (eR, eφ, eZ) at particle location x(n+1). Typical full ion
orbits computed by this scheme are compared with the guiding center orbit in Figure 1. This scheme
can reproduce correct drift motion even when a large time-step comparable to the gyro-period is
used [28]. Figure 1 shows examples of orbits computed with large time steps.
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Figure 1. Comparison between the full orbits calculated by the Boris scheme with different time
step sizes: ∆t = T/16, ∆t = T/8, ∆t = T/4, ∆t = T/2, ∆t = T, and ∆t = 2T, where T is
the ion (Deuteron) gyro-period at its initial location (R = 2.1 m, Z = 0 m, φ = 0). The results
show that the full orbits agrees with the guiding-center orbit for the cases with time-step ∆t < T/4.
When ∆t is further increased, the computed full orbits deviate from the guiding-center orbit.
Further note that the gyro-radius obtained remains nearly the same when the time-step ∆t < T/4.
When ∆t is further increased, the gyro-radius becomes larger than the correct value. The magnetic
configuration is from EAST tokamak discharge#59954@3.03s. The initial velocity is given by
vR = vZ = 1.0× 106 m/s, and vφ = 5× 105 m/s, where (vR, vφ, vZ) are the velocity components in
the cylindrical coordinate system. This corresponds to a kinetic energy of 23 keV. For ∆t = T/16,
the orbit is advanced by 23,250 time-steps, in which the particle finishes one banana period.

Figure 2 plots the relative variation of the kinetic energy Ek and toroidal angular momentum Pφ

computed by the Boris full orbit integrator over a time period of tΩi = 2.5× 104 for different time step
sizes in a tokamak equilibrium magnetic field, where Ωi is the ion cyclotron angular frequency at the
magnetic axis. The results indicate that the kinetic energy conservation is accurate to the machine error
and the relative error in the toroidal angular momentum conservation is within 0.04%. The kinetic
energy conservation of the Boris integrator is much better than the variational integrator of Ref. [21].
This is because the Boris integrator directly rotates the velocity, which does not change the amplitude
of the velocity when no electric field is present.
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Figure 2. The relative variation of the kinetic energy (a) and toroidal angular momentum (b) given
by the Boris full orbit integrator over a time period of tΩi = 2.5 × 104 for different time step
sizes in a tokamak equilibrium magnetic field. The initial conditions of the orbit are R = 1.176R0,
Z = 3.912× 10−3R0, vR = 3.371× 10−3R0Ωi, vZ = 3.371× 10−3R0Ωi, and vφ = −1.798× 10−3R0Ωi,
where R0 = 1.32 m and the magnetic configuration is the DIII-D cyclone base case, which is specified
in Table 1. The toroidal angular momentum is defined by Pφ = miRvφ + qiΨ, where Ψ is the poloidal
magnetic flux function.

In the linear limit, the fields E and B on the right-hand side of Equation (15) are replaced by
the equilibrium fields E0 and B0. In the present work, E0 = 0 and B0 is a general toroidal magnetic
configuration specified numerically.

Table 1. DIII-D cyclone base case parameters [29]. The safety factor profile is given by q(r) =

q0 + (r− r0)q′(r0) with q′(r0) = ŝq0/r0, where ŝ is the magnetic shear at r = r0 (the radial center of the
simulation box). In this case, R0/ρi = 450.5, where ρi = vti/Ωi is the thermal ion gyro-radius at the
magnetic axis, vti =

√
Ti0/mi, Ωi = Baxisqi/mi is the ion cyclotron angular frequency at the magnetic

axis. Deuterium plasma is assumed in our simulation.

R0 a Baxis q0 ŝ r0 κTi R0 κni R0 Ti0 qiTi0/(eTe0)

1.32 m 0.48 m 1.91T 1.40 0.78 0.24 m 6.9 2.2 1.5 keV 1
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4. Magnetic Field Specification and Field-Line-Following Coordinates

The equilibrium magnetic field is specified numerically by reading and interpolating the output
of the equilibrium reconstruction code EFIT [30]. This enables us to handle magnetic configurations
with arbitrary flux surface shape.

A field-line-following coordinate system [31,32] (ψ, θ, α) is constructed from the numerical
magnetic configuration, with the radial coordinate ψ being the normalized poloidal magnetic flux,
θ being an equal-volume poloidal angle and α being a generalized toroidal angle defined by
α = φ−

∫ θ
0 q̂dθ, where φ is the cylindrical toroidal angle, and q̂ = B ·∇φ/B ·∇θ is the local safety factor.

In (ψ, θ, α) coordinate system, both ∇ψ and ∇α are perpendicular the field lines, i.e., B0 · ∇ψ = 0,
and B0 · ∇α = 0. Furthermore, the gradient along the field line is written as

B0 · ∇ = −Ψ′J −1 ∂

∂θ
, (17)

where Ψ′ = dΨ/dψ with Ψ = AφR the poloidal magnetic flux function, and J = (∇ψ×∇θ · ∇α)−1

is the Jacobian of the (ψ, θ, α) coordinates.
Ion markers are loaded in the field-line-following coordinates (ψ, θ, α). Ion trajectories are

integrated in cylindrical coordinates (R, φ, Z) and then linearly interpolated to (ψ, θ, α) coordinates to
do the deposition in order to obtain the perturbed ion density at the spatial grids of (ψ, θ, α) coordinates.
At a grid point xk, the perturbed ion density is approximated by

δni(xk) =
1

∆Vs

Np

∑
j=1

wijS(xk − xj), (18)

where Np is the total number of markers loaded, ∆Vs = J (xk)∆ψ∆θ∆α is the volume of the spatial cell,
∆ψ, ∆θ, and ∆α are the grid point spacings in the ψ, θ and α direction respectively, S is the interpolating
function defined as

S(x) = S1D

(
ψ

∆ψ

)
S1D

(
θ

∆θ

)
S1D

( α

∆α

)
, (19)

with S1D being the first-order b-spline function given by

S1D(x) =

{
1− |x| : |x| ≤ 1

0 : |x| > 1
, (20)

(then the deposition corresponds to a linear interpolation). In this work, the marker distribution
function g is chosen as g = fi0Np/(Vsni0), where Vs the spatial volume of the computational box.

After solving the field equation for δΦ, the spatial differential of δΦ is performed in the
field-line-following coordinates to determine the perturbed electric field. The deposition and field
solving are done in field-line-following coordinates because this coordinate system is efficient for
resolving ITG modes, which have k‖ � k⊥, where k‖ and k⊥ are the parallel and perpendicular
wave-number, respectively.

5. Simulation Results of ITG Instabilities

To benchmark the results against those of Ref. [21], we adopt the DIII-D cyclone base case [29],
which is a concentric-circular magnetic configuration. The main parameters used in the benchmarking
are summarized in Table 1.

Although the DIII-D cyclone equilibrium is analytic and circular, the equilibrium is read in as
a general equilibrium specified numerically in the G-EQDSK format of EFIT code. No analytic relations
particular to this specific configuration is relied on.

The radial center of the simulation box is at r = r0 = 0.24 m and the radial width ∆r = 0.11 m,
which is about 37.5ρi. The perturbed potential δΦ is set to zero at the radial boundaries. When a marker
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moves out of the radial boundary, its vertical location is changed from Z to −Z (this is to follow the
drift orbit) and its weight is set to zero, where Z is the vertical coordinate of cylindrical coordinates.

5.1. Linear Results of ITG Instabilities and Benchmarking with Other Codes

Figure 3 shows the time evolution of an n = 29 linear ITG instability for DIII-D cyclone base case
parameters. Clear exponential growth of the instability is observed. The frequency and growth rate
in this case are ωr/Ωi = 2.388× 10−3 and γ/Ωi = 5.8× 10−4 while the corresponding results from
Ref. [21] are ωr/Ωi = 2.423× 10−3 and γ/Ωi = 6.0× 10−4.

This is a multi-scale simulation, which includes both the slow-scale ITG instability and the
fast-scale wave associated with the ion gyro-motion. In the simulation, we can identify the existence of
the ion Bernstein wave (IBW) associated with the ion gyro-motion. The IBW is hidden in the simulation
in Figure 3, the details of which are plotted in Figure 4a for tΩi = [0 : 200]. The corresponding
frequency spectrum is plotted in Figure 4b, which shows a clear peak near the ion gyro-frequency.

Numerical parameters used in obtaining the above and the following results are as follows:
the time step ∆tΩi = 0.2, the spatial resolution in (ψ, θ, α) is (162, 64, 32), where the toroidal range is
a wedge with ∆α = 2π/n, the number of total markers Np = 6.4× 106 (the number of markers per cell
is about 19). Increasing the number of markers to Np = 9.6× 106 produced no significant difference in
the growth rate, as is shown in Figure 5.

The code uses one dimensional domain decomposition along θ and 4 MPI processes are used for
particle parallelization for each θ cell and thus total 64× 4 = 256 MPI processes are used. The code
run on NERSC Cori system and typical runs use eight Intel Xeon “Haswell” nodes, each of which
is equipped with 32 physical cores supporting 2 hyper-threads and thus 2× 32 = 64 logical cores.
The code uses OpenMP to make use of this hyper-threading capability. For the above run with 6× 104

time-steps, the wall-time is 2.3 h. (Each Cori node has two sockets and each socket is populated with
a 16-core Intel R© XeonTM Processor E5-2698 v3 at 2.3 GHz.)

Figure 6 presents the dependence of the linear ITG mode frequency and growth rate on the
ion temperature gradient κTi , which shows that both the frequency and growth rate increase with
the temperature gradient drive. Also plotted in Figure 6 are the fully kinetic results from Ref. [21],
which are in good agreement with our new results.
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Figure 3. Time evolution of an n = 29 linear ITG instability for DIII-D cyclone base case parameters.
In the simulation, the perturbed electric potential δΦ is Fourier filtered along the toroidal direction to
retain only the n = 29 harmonic, which is further sine transformed along the radial direction and only
low radial harmonics are retained. Shown here is the fundamental radial sine harmonic of δΦ near the
low-field-side midplane, which corresponds to krρi = 0.095. δΦ is normalized by Te/e. The frequency
and growth rate in this case are ωr/Ωi = 2.388× 10−3 and γ/Ωi = 5.8× 10−4, which correspond to the
fifth data point in Figure 6, where the corresponding results from Ref. [21] are ωr/Ωi = 2.423× 10−3

and γ/Ωi = 6.0× 10−4.
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the DIII-D cyclone base case. The upper horizontal axis shows the ion temperature gradient normalized
by the thermal ion gyro-radius. Also plotted are the results from Ref. [21], which are in good agreement
with our new results.
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Gyrokinetic simulations found that ITG instabilities usually reach a peak growth rate near
a particular toroidal mode number n in the scanning over n, which is often represented in terms of the
bi-normal wave-number kθ defined by kθ ≈ nq0/r0. This trend can also be captured by the fully kinetic
ion model. Figure 7 shows the dependence of ITG growth rate and frequency on kθρi given by the fully
kinetic model, which shows that the growth rate reaches a peak near kθρi ≈ 0.4. Also plotted in Figure 7
are the gyrokinetic results from Ref. [22,29], which roughly agree with our results. The difference
between our results and those from GENE 2010 (Ref. [22]) is mainly due to the difference in the
value of the thermal ion gyro-radius at the magnetic axis ρi. In our simulation, ρi = R0/450.5,
while ρi = R0/500.0 in Ref. [22]. Without redoing the simulation, we re-plot the results by using kθρi
consistent with that of GENE 2010, yielding the results in Figure 8, which shows better agreement
between our results and GENE 2010. Several other factors may also contribute to the difference
between the three results. Safety factor profiles are slightly different: q(r) = q0 + (r− r0)q′(r0) in this
work, while q(r) = 0.86− 0.16r/a + 2.52(r/a)2 in Ref. [22] and q profile variation is neglected in the
flux-tube model of Ref. [29]. The radial variation of the density and temperature is neglected in the
present work and Ref. [29] while Ref. [22] includes the density and temperature profile. Deuterium
plasma is used in our simulation.
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Figure 7. Dependence of ITG mode growth rate and frequency on kθρi for DIII-D cyclone base case.
The upper horizontal axis shows the corresponding toroidal mode number n. Also plotted are the
gyrokinetic results reported in Ref. [22,29].
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Figure 8. A re-plot of the results in Figure 7. The only modification is that the value of kθρi used in
plotting the fully kinetic results is scaled by a factor of 450.5/500.0 to take into account the different
values of ρi used in the simulation. In this case, the only significant discrepancy between the fully
kinetic results and GENE 2010 is at the last data point, which has a small growth rate and may be
subject to a larger numerical error.
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Figure 9 plots the two-dimensional mode structure of the n = 29 ITG instability in the
poloidal plane, which shows a clear ballooning structure (i.e., the amplitude on the low-field-side is
larger than that on the high-field-side). This is consistent with the physical picture that ITG instabilities
are driven by the E× B drift on the tokamak low-field-side while the E× B drift on the high-field side
(the “good-curvature” side ) suppresses the instabilities.
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Figure 9. Mode structure of the n = 29 ITG instability in the poloidal plane. Plotted here is the
perturbed electric potential δΦ at tΩi = 12,000.

5.2. Nonlinear Results of ITG Instabilities and Analysis of Saturation due to E× B Trapping

With the Boris integrator, it is straightforward to extend the adiabatic electron model to the
nonlinear regime, by including the electric field terms in the integration of particle trajectories.
In a single-n simulation, the ITG instability saturates due to the E × B trapping, as discussed in
Ref. [20] for slab geometry. Figure 10 plots the nonlinear evolution of the n = 29 ITG instability,
along with the E× B trapping prediction for the saturation amplitude.
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Figure 10. Nonlinear saturation of the n = 29 ITG instability in the DIII-D cyclone base case.
The perturbed potential δΦ (normalized by Te/e) is measured on the low-field-side midplane and
averaged over the radial domain. The blue line shows the saturation predicted by the E× B trapping
formula (26), which gives eδΦs/Te = 6.16× 10−3 for this case.
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The instability is expected to saturate when the E× B trapping angular frequency ωE×B becomes
as large as the instability growth rate, i.e.,

ωE×B ≈ γ, (21)

where ωE×B is proportional to the amplitude of δΦ. The trapping frequency ωE×B can be estimated
by calculating the time for a particle with the E × B drift velocity to go around the eddies of the
potential δΦ. The circumference l of the δΦ eddies in the poloidal plane can be estimated as the
fundamental radial wave-length in the sine expansion, i.e., l ≈ π/kr. The δE× B0 drift is given by

VE×B =
δE× b

B0
= −∇δΦ× b

B0
, (22)

which is along the contours of δΦ. Using the bi-normal wavenumber kθ = nq0/r0 to estimate the
gradient of δΦ, then the magnitude of the δE× B0 drift can be estimated as

VE×B ≈
δΦ
B0

nq0

r0
. (23)

Then the δE× B0 trapping angular frequency can be written as

ωE×B =
2π

TE×B
=

2πVE×B
l

≈ 2
δΦ
B0

nq0

r0
kr. (24)

Using this expression, the saturation amplitude δΦs predicted by the critical condition (21) is
written as

δΦs ≈ γB0
1

2kr

r0

nq0
. (25)

Then the normalized potential eδΦs/Te is written as

e
Te

δΦs ≈
γ

Ωi

1
2krρi

r0/ρi
nq0

. (26)

Using γ/Ωi = 5.8× 10−4, krρi = 0.095, r0/ρi = 81.9, n = 29, and q0 = 1.4, the above formula
gives eδΦs/Te = 6.16 × 10−3. As is shown in Figure 10, this estimation roughly agrees with the
saturation amplitude observed in the simulation.

Physically, the dominant saturation mechanism of ITG instability is the nonlinear generation of
an n = 0 zonal flow, which suppresses the ITG instability through radial shear. With fully kinetic ions,
the adiabatic electron model gives no explicit equation for the δΦ with n = 0, making it difficult to
solve the field equation, so we do not demonstrate that mechanism here. Extended models to capture
this effect are the subject of ongoing investigation. Ref. [20] included the electron polarization response
to model the n = 0 response. Another option is to use the ion momentum equation to indirectly
enforce quasi-neutrality. These models are outside the scope of this work.

6. Summary

The viability of the fully kinetic ion model in simulating the low-frequency ITG instability in
tokamaks is demonstrated in this work by using the toroidal Boris full orbit integrator. The equilibrium
full orbits computed by this integrator conserve the kinetic energy accurate to the round-off error
and the relative error in the toroidal angular momentum conservation is within 0.04% over a time
period of tΩi = 2.5 × 104. This work extends the previous work to the nonlinear regime and
investigates the nonlinear saturation of a single-n ITG instability due to the E× B trapping mechanism.
The saturation amplitude predicted by the E× B trapping is found to agree with the saturation level
observed in the simulation. This work also extends the previous work from analytic circular magnetic
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equilibria to general magnetic equilibria, enabling simulation of realistic equilibria reconstructed from
tokamak experiments.

This work is limited to the electrostatic case with the simple adiabatic electron model. The nonlinear
case reported in this paper is limited to the saturation of a single-n mode. Future work will consider
electromagnetic effects using more accurate drift-kinetic model for electrons. The nonlinear case will
be extended to include interactions between ITG modes of multiple toroidal mode numbers and their
coupling to the zonal flow.

The Fortran code used in obtaining the results presented in this work is released as an open-source
software under the GNU General Public License v3.0. The source code can be downloaded from:
https://github.com/Youjunhu/Fully_kinetics_tokamak_ITG.
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