
Phys. Plasmas 28, 122502 (2021); https://doi.org/10.1063/5.0069792 28, 122502

© 2021 Author(s).

Effects of resonant magnetic perturbations
on neutral beam heating in a tokamak
Cite as: Phys. Plasmas 28, 122502 (2021); https://doi.org/10.1063/5.0069792
Submitted: 02 September 2021 • Accepted: 25 November 2021 • Published Online: 16 December 2021

 Youjun Hu, Yingfeng Xu, Baolong Hao, et al.

ARTICLES YOU MAY BE INTERESTED IN

Evidence of wave–wave coupling between frequency harmonic bands of magnetosonic waves
Physics of Plasmas 28, 122903 (2021); https://doi.org/10.1063/5.0065582

The role of toroidal rotation in the very high energy confinement quality observed in super H-
mode experiments on DIII-D
Physics of Plasmas 28, 112504 (2021); https://doi.org/10.1063/5.0061786

Normal forms and near-axis expansions for Beltrami magnetic fields
Physics of Plasmas 28, 122501 (2021); https://doi.org/10.1063/5.0066000

https://images.scitation.org/redirect.spark?MID=176720&plid=1650557&setID=377252&channelID=0&CID=601062&banID=520541066&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=dbfa8be07b118451e51be8792a6c6154e48e7ddf&location=
https://doi.org/10.1063/5.0069792
https://doi.org/10.1063/5.0069792
https://orcid.org/0000-0002-6764-5538
https://aip.scitation.org/author/Hu%2C+Youjun
https://aip.scitation.org/author/Xu%2C+Yingfeng
https://aip.scitation.org/author/Hao%2C+Baolong
https://doi.org/10.1063/5.0069792
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0069792
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0069792&domain=aip.scitation.org&date_stamp=2021-12-16
https://aip.scitation.org/doi/10.1063/5.0065582
https://doi.org/10.1063/5.0065582
https://aip.scitation.org/doi/10.1063/5.0061786
https://aip.scitation.org/doi/10.1063/5.0061786
https://doi.org/10.1063/5.0061786
https://aip.scitation.org/doi/10.1063/5.0066000
https://doi.org/10.1063/5.0066000


Effects of resonant magnetic perturbations
on neutral beam heating in a tokamak

Cite as: Phys. Plasmas 28, 122502 (2021); doi: 10.1063/5.0069792
Submitted: 2 September 2021 . Accepted: 25 November 2021 .
Published Online: 16 December 2021

Youjun Hu,1 Yingfeng Xu,2,a) Baolong Hao,3 Guoqiang Li,1 Kaiyang He,1 Youwen Sun,1 Li Li,2

Jinfang Wang,1 Juan Huang,1 Lei Ye,1 Xiaotao Xiao,1 Feng Wang,4 Chengkang Pan,1 and Yongjian Xu1

AFFILIATIONS
1Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
2College of Science, Donghua University, Shanghai 201620, China
3Advanced Energy Research Center, Shenzhen University, Shenzhen 518060, China
4School of Physics, Dalian University of Technology, Dalian 116024, China

a)Author to whom correspondence should be addressed: xuyingfeng@dhu.edu.cn

ABSTRACT

The effects of resonant magnetic perturbations (RMPs) on tangential neutral beam heating in the EAST tokamak are studied numerically.
RMPs with linear resistive magnetohydrodynamics response are used in the modeling. A variety of representing configurations of RMP coil
currents are examined, and their effects on the neutral beam injection (NBI) heating efficiency are compared, in order to find a parameter
window where deleterious effects of RMPs on NBI heating efficiency are minimized. It is found that the internal redistribution of fast ions by
RMPs induces local accumulation of fast ions, resulting in higher local fast ion pressure than the case without RMPs. It is also found that the
toroidal phasing of the RMP with respect to the fast ion source has slight effects on the steady-state radial profile of fast ions. The dependence
of fast ion loss fraction on the RMP up-down phase difference shows a similar behavior as the dependence of the radial width of chaotic mag-
netic field on the phase difference. A statistical method of identifying resonances between RMPs and lost fast ions is proposed, and the results
indicate that some resonances between RMPs and lost passing particles may be of non-integer fractional order, rather than the usual integer
order.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0069792

I. INTRODUCTION

Neutral beam injection (NBI) is widely adopted in tokamaks for
heating plasma and driving flow.1–5 Modeling the neutral beam heat-
ing, which involves neutral particle ionization and fast ion collisional
transport, is a mature field where simulation results usually agree rea-
sonably with experiments.6 One of the uncertainties in the modeling is
how electromagnetic perturbations, if present, affect the heating and
fast ion transport process. These electromagnetic perturbations can be
various intrinsic modes, such as Alfv�en eigenmodes, and can also be
externally imposed perturbations, such as resonant magnetic perturba-
tions (RMPs).

This work numerically studies the influence of RMPs on the deu-
terium neutral beam heating in the EAST tokamak.7,8 EAST is
equipped with RMP coils, which are designed for the control of edge
localized modes (ELMs).9,10 This coils turn out to also have effects on
the transport of neutral beam fast ions.11–15 The effects of RMPs on
fast ion transport and loss have been extensively investigated on
AUG,16–18 KSTAR,19 DIII-D,20,21 andMAST22 tokamaks.

In this work, we consider RMPs of n¼ 1 with linear resistive
magnetohydrodynamics (MHD) plasma response, where n is the
toroidal mode number of the RMP coil current. The configurations
with n ¼ 0; 2; 3; 4 were also examined (not shown in this paper). The
results indicate that n¼ 0 RMP has negligible effects on the confine-
ment of fast ions, as is expected, and the deleterious effects of configu-
rations with n¼ 2, 3, 4 on the confinement of fast ions are generally
smaller than that of the n¼ 1 RMP. Therefore, we will focus on the
n¼ 1 configuration in this paper.

We consider one of the four neutral beams on EAST that is injected
in the co-current direction, with the tangent radius being 1.26 m and the
full (kinetic) energy being 51 keV. The number ratio between neutrals of
the full energy, half energy, and 1/3 energy is chosen to be 80 : 14 : 6. NBI
power after neutralizing is assumed to be 1MW. Further details on the
neutral beammodeling are provided in Appendixes A and B. In this paper,
fast ions are defined as those ions that are born from the neutral beam ion-
ization and have not yet been slowed down to the energy 2Ti0, where Ti0

is the temperature of background thermal ions at the magnetic axis.
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We found that the internal redistribution of fast ions by RMPs
can induce local accumulation of fast ions, resulting in larger local fast
ion pressure than the case without RMPs. It is also found that the
toroidal phasing of the RMP with respect to the fast ion source has
slight effects on the steady-state radial profile of fast ions. The depen-
dence of fast ion loss fraction on the RMP up-down phase difference
DU is found to show a similar behavior as the dependence of the radial
width of chaotic magnetic field on DU.

A simple statistical method for identifying resonances between
RMPs and lost fast ions is proposed, in which resonances are identified
by examining peaks in the graph of p vs Df , where p ¼ nx/=xh is
called the resonance order with x/ and xh being the toroidal angular
frequency and poloidal angular frequency of lost fast ions, respectively,
and Df is the difference of the lost fast ion distribution function
between the case with RMP and that without RMP. By taking the dif-
ference, we exclude all the fast ions that are lost due to the first-orbit
prompt loss and pure collision loss. The results indicate that some res-
onances may be of non-integer fractional order, rather than the usual
integer order.

In the process of studying the effects of RMP on NBI heating, we
developed a new Monte Carlo code, which models continuous neutral
beam injection, ionization, and the resulting fast ions transport under
the influence of RMPs. This code (referred to as TGCO) is similar to
the established NBI modeling code NUBEAM6 andmany other test par-
ticle orbit-following codes, such as OFMC,23 ASCOT,24 ORBIT,25

SPIRAL,26 VENUS-LEVIS,27 GYCAVA,12 and SOFT.15 TGCO has
been used as a NBI module in Refs. 11, 14, and 28. The guiding-center
drift model, edge loss model, and fast ion collision model adopted in
this work are well known, and the details of these models are provided
in the Appendix. The finite Larmor radius (FLR) effect is taken into
account when pushing particle guiding center drift, depositing markers
to compute density and pressure, and checking whether particles are
lost to the boundary. The simulation includes the X-points of equilib-
rium magnetic field and uses the first wall as the particle loss bound-
ary. For simplicity, we assume a pure deuterium plasma with no
impurities.

The remainder of this paper is organized as follows. Section II
describes the equilibrium configuration, bulk plasma profiles, and neu-
tral beam ionization profiles. Section III introduces the RMP coils on
EAST and the resulting 3D magnetic perturbations with/without
plasma response. Section IV discusses the effects of RMPs on the
steady state radial profiles of neutral beam heating and fast ion pres-
sure. Section V examines the dependence of volume integrated heating
power, fast ion stored energy, and fast ion loss fraction on the up-
down phase difference of RMP coil currents, where radial width of
chaotic magnetic region is computed and is found to be closely related
to the fast ion loss fraction. Section VI use a statistical method to iden-
tify the resonance between RMPs and fast ions. A brief summary and
some discussions are given in Sec. VII.

II. EQUILIBRIUM AND FAST ION SOURCE

EAST is a superconducting tokamak with a major radius
R0 ¼ 1:85m, minor radius a � 0:45m, typical on-axis magnetic field
strength Baxis � 2:2T , and plasma current Ip � 0:5MA.7,8 The mag-
netic configuration and plasma profiles used in this work (Fig. 1) were
reconstructed by EFIT code from EAST tokamak discharge
#52340@3.4s with constrains from experiment diagnostics.

The neutral beam ionization is modeled by the Monte Carlo
method, and the details are provided in Appendix B. Figure 2 plots the
two-dimensional distribution of ionized particles in the poloidal plane
(averaged over the toroidal direction) and in the toroidal plane (aver-
aged over the vertical direction). The results indicate most of the fast
ions are born on the low-field-side.

Figure 3 plots the distribution of ionized particles in ðK;P/Þ
plane and ðk;RÞ plane, where K ¼ lBaxis=e; k ¼ vk=v, e is ion kinetic
energy, and P/ is the canonical toroidal angular momentum. The
trapped/passing boundary in ðK;P/Þ plane is plotted, which indicates
that most ions born in this case are in the passing region, with a small
number of ions being near the trapped/passing boundary.

III. THREE-DIMENSIONAL MAGNETIC PERTURBATIONS

EAST has 16 RMP coils consisting of two arrays of eight coils
with up-down symmetry located on the low field side and uniformly
distributed along the toroidal direction. Figure 4 shows the setup of
the RMP coils on EAST tokamak.9

The vacuum magnetic perturbations produced by the RMP coils
are numerically calculated by using the Biot–Savart law. The magnetic

FIG. 1. Left panel: profiles of electron number density ne, electron temperature Te,
ion temperature Ti, and safety factor q of EAST discharge #52340@3.4s. The radial

coordinate q ¼
ffiffiffiffiffiffiffi
�Wp

q
is the square root of the normalized poloidal magnetic flux,

with �Wp ¼ ðW�W0Þ=ðWb �W0Þ, where W � A/R is the poloidal flux function,
W0 and Wb are the values of W at the magnetic axis and last closed-flux surface,
respectively. Right panel: magnetic configuration. This is a low single null configura-
tion with Baxis ¼ 2:2T ; Ip ¼ 404kA; qaxis ¼ 0:95, and q95 ¼ 5:05.

FIG. 2. Neutral beam ionization profiles in the poloidal plane (left) and toroidal
plane (right) computed by TGCO. This is for the neutral beam injection with
R tan ¼ 1:26m in EAST discharge #52340@3.4s. The loss fraction of neutral par-
ticles to the inner first wall (shine-through loss) is 14% in this case.
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perturbations including the effect of plasma response are computed,
using the linear resistive MHD model, by MARS-F code29,30 as a
boundary value problem, taking into account of a given toroidal flow.
The RMP coil current, located in the vacuum region outside the
plasma, is directly modeled in the code as a source term.30

In this work, we use the n¼ 1 RMP with a current amplitude of
10 kAt unless otherwise specified. To perceive the magnitude of the
resulting magnetic perturbation (without plasma response) relative to
the equilibrium field, Figs. 5(a) and 5(d) show the two-dimensional
distribution of dB=B0 on the q ¼ 0:96 magnetic surface. Figures 5(b)
and 5(e) show the poloidal dependence of dB=B0 at a series of toroidal
locations at q ¼ 0:96 and Figs. 5(c) and 5(f) show the toroidal depen-
dence of dB=B0 at a series of poloidal locations at q ¼ 0:96. The
results indicate that the maximal value of dB at q ¼ 0:96 is about

0.3% of the equilibrium field B0. The corresponding minimal value of
dB is small (0.03% of B0), but is not exactly zero.

The magnetic perturbation component that is perpendicular to
the 2D equilibrium magnetic surface (i.e., the radial component) is of
most interest to magnetic confinement since it creates magnetic
islands at resonant surfaces and thus changes the topology of magnetic
field. Define the normalized radial component of the magnetic pertur-
bation by

dBN ¼
dB � rq
B0 � r/

: (1)

Fourier expansion of dBN is written as

dBNðq; h;/Þ ¼
X1

n¼�1
dBðnÞN ðq; hÞ exp �in/½ �; (2)

¼
X1

n¼�1

X1
m¼�1

dBðmnÞ
N ðqÞ exp iðmh� n/Þ½ �; (3)

where m and n are the poloidal and toroidal mode numbers, respec-
tively, and dBðnÞN and dBðmnÞ

N are the Fourier expansion coefficients.
Figure 6 compares the amplitude of n¼ 1 harmonic of dBN in

the poloidal plane between the vacuum RMP and the response RMP.
The results indicates that the amplitude of perturbation is enhanced
by the plasma response at some poloidal locations, which might be
related to the kink response.32 The results also show that there is also
some minor perturbation appearing near the top region in the case of
response RMP, and there is a twist effect on the distribution of jdBð1ÞN j
by the plasma response.

Figure 7 shows the distribution of magnetic perturbation dBN

over ð/; hÞ on the q ¼ 0:96 magnetic surface. Three kinds of pertur-
bations are shown: the full vacuum RMP, the filtered vacuum RMP
(keeping only the n ¼ 61 Fourier components), and the filtered
response RMP. One-dimensional distributions along / at fixed values
of poloidal angle h are also show in Fig. 7 to compare the amplitude

FIG. 3. Distribution of ionized particles in ðK; P/Þ plane (left) and ðk;RÞ plane (right), where K ¼ lBaxis=e; k ¼ vk=v; P/ ¼ mf gvk=B0 þ Zf eW is the canonical toroidal
angular momentum, l is the magnetic moment, vk is the parallel (to the magnetic field) velocity, B0 is the equilibrium magnetic field, mf and Zf e are the mass and charge of
fast ions, respectively, g ¼ B/R; Bn ¼ 1T ; Ln ¼ 1m. The trapped/passing boundary in ðK;P/Þ plane is indicated (the region to the left side of the curve is the trapped
region).

FIG. 4. RMP coils on EAST tokamak in 3D view (left) and poloidal view (right).
Each coil has 4 turns with maximum current 2:5 kA per turn. The maximum fre-
quency of alternating current (AC) operation is 1 kHz (usually operating at less than
10 Hz). This paper considers only direct current (DC) operation, i.e., static RMP. In
the left panel, red color denotes current circulating in the clockwise direction and
blue denotes current circulating in the anti-clockwise direction, viewed from the out-
side of the torus. The magnitudes of currents are set to be the same. The setup
shown here is called n¼ 1 and DU ¼ 0 configuration, where DU is the up-down
phase difference.
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and phase along the toroidal direction between the three kinds of mag-
netic perturbations. The results indicate that the amplitude of pertur-
bation are enhanced by the plasma response at some poloidal
locations [Fig. 7(d) and 7(f)] but are slightly reduced at others [Fig.
7(e)]. The results also indicate that the response RMP has a toroidal
phase shift relative to the vacuum one, which ranges from minor dif-
ference [in Fig. 7(d)] to major difference [anti-phasing in Fig. 7(g)].

To clearly distinguish the resonant components from the non-
resonant ones, Fig. 8 gives the heatmap of Fourier components of dBN

in the ðm;qÞ plane. Figure 8 compares the poloidal Fourier spectrum
of the n¼ 1 harmonic of dBN between the vacuum RMP and response
RMP. The main difference between vacuum and response RMPs is

that plasma response reduces the perturbation amplitude at resonant
locations (shielding effects) and enhances the amplitude of non-
resonant components, as is shown in Fig. 8, where the resonant loca-
tionsm ¼ nq are indicated.

To more clearly show the effects of plasma response, Fig. 9 com-
pares the radial profiles of amplitude of poloidal harmonics between vac-
uum RMP and response RMP. The results indicate that the peaks of the
harmonics are shifted inward to the core by the plasma response and the
peak values near the edge are enhanced. The results also show that
plasma response reduces the magnitude of harmonics near their respec-
tive resonant locations (e.g.,m¼ 2 at q ¼ 0:76 andm¼ 3 at q ¼ 0:89).

Using dBðmnÞ
N defined above, the width of magnetic island gener-

ated by a magnetic perturbation at a rational surface q ¼ m=n � qs is
given by33

wmn ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����qdBðmnÞ
N

nS

����
q¼qs

vuut ; (4)

where S � qq0=q with q0 ¼ dq=dq being the magnetic shear. Formula
(4) will be used later in this paper to calculate the Chirikov parameter
to determine whether adjacent islands overlap. The Chirikov parame-
ter is defined by

r ¼ wm1n þ wm2n

2jq2 � q1j
; (5)

where q1 and q2 are the radial coordinates of two adjacent rational
surfaces, and wm1n and wm2n are the width of magnetic islands at the

FIG. 5. (a) and (d): Two-dimensional distribution of dB=B0 on the q ¼ 0:96 magnetic surface. (b) and (e) Poloidal dependence of dB=B0 at a series of toroidal locations at
q ¼ 0:96. (c) and (f) Toroidal dependence of dB=B0 at a series of poloidal locations at q ¼ 0:96. The upper panels are for the full vacuum field and the lower panels are for
filtered vacuum field (keeping only n ¼ 61 Fourier harmonics). dB ¼ jdBj is the magnetic perturbation magnitude and B0 is the local value of the equilibrium magnetic field.
/ is the toroidal angle in the ðR;/; ZÞ cylindrical coordinates. The poloidal angle h is chosen to be of the PEST type,31 i.e., magnetic field lines are straight in ðh;/Þ plane
(the positive direction of h is chosen to be counterclockwise when viewed alongr/ direction; h 2 ½�p; p� with h ¼ �p being in the high field side midplane.) The two peaks
of dB=B0 in the poloidal direction appears near the poloidal locations of the RMP coils. The RMP up-down phasing DU ¼ 0 in this case.

FIG. 6. Amplitude of n¼ 1 harmonic of dBN , i.e., jdBð1ÞN j, in the poloidal plane. The
left panel is for the vacuum RMP and the right panel is for the response RMP.
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two radial locations. Then, the two islands overlap if r > 1, which fur-
ther indicates that magnetic stochasticity appears.

In the remainder of this paper, RMPs refer to the RMPs with
plasma response unless otherwise specified.

IV. MODIFICATION OF RADIAL PROFILE OF ION
HEATING POWER DENSITY BY RMPS

With continuous beam injection into a time-independent back-
ground plasma, a steady state of fast ions can be reached on the

FIG. 7. Distribution of magnetic perturbation dBN over ð/; hÞ on the q ¼ 0:96 magnetic surface. (a)–(c) are for the two-dimensional distributions. (d)–(g) are for the one-
dimensional distributions along / at fixed values of poloidal angle h. Specifically, (d) is for h¼ 0, (e) is for h ¼ 0:09p, (f) is for h ¼ 0:18p, and (g) is for h ¼ 0:29p. Three
kinds of perturbations are shown: magnetic perturbation produced by the coils (full vacuum), the filtered vacuum field, and the filtered perturbation when the plasma response
is considered (filtered response). (a) is for the full vacuum field, (b) is for the filtered vacuum field, and (c) is for the filtered field with plasma response.

FIG. 8. Amplitude of the poloidal Fourier spectrum of the n¼ 1 harmonic of dBN for different radial locations, i.e., jdBðmnÞN ðqÞj with n¼ 1. The left panel is for the vacuum field
and the right panel is for the field with plasma response. RMP coil configuration of DU ¼ 0 is used. The black curves are m ¼ nq, which indicates the resonant locations.
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timescale of slowing-down time (�100ms for typical parameters of
EAST tokamaks). A steady state is reached when there is a balance
between the source (beam injection and ionization) and sink (thermal-
ization and edge loss). In this section, we examine the steady state of
the radial profiles of NBI heating power density and fast ion pressure.

Figure 10(a) compares the radial profiles of the NBI heating
power density delivered to bulk ions between the case without RMP
and those with RMPs of DU ¼ 0;p. To clearly show the difference,

Fig. 10(b) plots the power density difference DHi, where DHi

� HðrmpÞ
i � HðnormpÞ

i is the power density difference between the case
with RMP and that without RMP. The results indicate that the ion
heating power density is significantly reduced near the edge (around
the radial location q¼ 3) by the RMPs of DU ¼ 0 while very marginal
reduction is induced by the RMP of DU ¼ p. The results also show
that the heating power density is slightly increased around q¼ 2 by
the RMPs.

The radial profile of NBI heating power density is determined by
the radial profile of fast ion pressure (see Appendix D for the formula
of computing the power density). Figure 11(a) plots the radial profile
of fast ion pressure for the three cases: without RMP, with RMP of
DU ¼ 0, and with RMP of DU ¼ p. To clearly show the difference,
Fig. 11(b) plots the pressure difference DPf , where DPf � PðrmpÞ

f
�PðnormpÞ

f is the power density difference between the case with RMP
and that without RMP. The results indicate that the influence of RMPs
on fast ion pressure is similar to that of RMPs on the ion heating
power, i.e., the pressure is significantly reduced near the edge (around
the radial location q¼ 3) by the RMPs of DU ¼ 0 while very marginal
reduction is induced by the RMP of DU ¼ p and the pressure is
slightly increased around q¼ 2 by the RMPs.

As is shown in Fig. 11, the pressure increasing around q¼ 2 sur-
face induced by RMPs is quite small. It is reasonable to doubt whether
the increasing is physical or due to numerical errors. As a partial verifi-
cation of this issue, we perform convergence studies over some numer-
ical parameters used in the simulations such as the maker numbers
and time step sizes. Figure 12 shows that the radial profiles of DPf
agree with each other for two different values of the time step size and
marker number. Also shown in Fig. 12 is the dependence of values of
DPf at a specified radial location (q ¼ 0:755) over the time step size
and marker number, which shows reasonable convergence.

It is not surprising to observe the local increasing of fast ion pres-
sure when a RMP is imposed. RMPs generally have pump-out effects
on fast ions. However, the pump-out effects can be non-uniform along
the radial direction, which implies that some radial locations may
accumulate fast ions, resulting higher fast ion pressure than the no
RMP case.

The results in Fig. 11(b) indicate that the radial fluctuation of fast
ion pressure relative to the no RMP case depends on the RMP up-
down phase difference DU: radial fluctuation for DU ¼ 0 is larger
than the case of DU ¼ p. To understand this, we compare the reso-
nant and non-resonant components for the two phasings. The ampli-
tude of resonant components is related to the width of magnetic

FIG. 9. Radial profile of amplitude of various poloidal Fourier harmonics of n¼ 1
RMPs of phasing DU ¼ 0 for the vacuum case (a) and plasma response case (b).
Only m> 0 harmonics are shown here. The differences of the m � 0 harmonics
between the vacuum RMP and response RMP are minor (which can be roughly
recognized from Fig. 8) and are thus not shown here.

FIG. 10. (a) Radial profiles of NBI heating power density delivered to bulk ions. (b)
Difference of ion heating power density between the case with RMP and that with-
out RMP. The locations of q¼ 2 and q¼ 3 rational surfaces are indicated. The
FLR effect is included in the simulations.

FIG. 11. (a) Radial profiles of fast ion pressure. (b) Difference of fast ion pressure
between the case with RMP and that without RMP.
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islands [Eq. (4)], which can be inferred from Poincare sections of mag-
netic field lines. Figure 13 shows the Poincare plots of magnetic field
line for RMPs of DU ¼ 0 and DU ¼ p. The results indicate that mag-
netic islands for RMP of DU ¼ 0 are wider than those of DU ¼ p.
The magnetic island width can also be directly calculated by using Eq.
(4). The results are plotted in Fig. 14(a), which confirm the conclusion
draw from the Poincare plots.

The values of Chirikov parameter r at the rational surfaces
q ¼ 2; 3; 4; 5 are plotted in Fig. 14(b), which indicates r > 1 at q¼ 5
for DU ¼ 0 RMP while r is still less than one at q ¼ 5 for DU ¼ p
RMP. This implies that the radial width of stochastic magnetic field is
larger for DU ¼ 0 RMP than that of DU ¼ p RMP.

The width of magnetic islands characterizes the amplitude of res-
onant components. To characterize the non-resonant components,
Fig. 15 plots the radial profiles of amplitude of various poloidal
Fourier harmonics. The radial peaks of the harmonics can be used as a
measure of magnitude of non-resonant harmonics. The results clearly
show that amplitude of the non-resonant components (except for
m¼ 1) for DU ¼ 0 are larger than those of DU ¼ p.

The above results indicate that both resonant components and
non-resonant components of RMP of DU ¼ 0 are larger than those of
DU ¼ p. Both the resonant components and non-resonant compo-
nents can contribute to the redistribution of fast ions. Therefore, the

FIG. 12. Comparison of radial profiles of fast ion pressure perturbation for different
values of time step sizes (a) and marker number (b). Panel (c) plots the DPf atffiffiffiffiffiffiffi

�Wp

q
¼ 0:755 as a function of number of markers used in the simulation. Panel

(c) plots the DPf as a function of the inverse of the time step size 1=ðDt=TnÞ,
where Tn ¼ 2p=ðBnZf e=mf Þ with Bn ¼ 1T . RMP of DU ¼ 0 is used in the simu-
lations. In (a) and (d), marker number N ¼ 2	 105. In (b) and (c), time step size
Dt=Tn ¼ 1:0.

FIG. 13. Comparison of magnetic field line Poincare plots between RMP of
DU ¼ 0 and that of DU ¼ p.

FIG. 14. Magnetic island width (upper panel) and Chirikov parameter values (low
panel) for RMPs of DU ¼ 0 and DU ¼ p. The safety factor profile is also shown
to indicate the radial locations of rational surfaces. The island width is calculated by
using formula (4).

FIG. 15. Radial profiles of poloidal Fourier harmonics of n¼ 1 RMPs of DU ¼ 0
(a) and DU ¼ p (b).
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larger fluctuation of fast ion pressure for the case of DU ¼ 0 is proba-
bly due to the larger resonant and non-resonant components for this
coil current configuration.

Plasma response usually helps heal magnetic islands, i.e., reduces
the resonant components, as is shown in Figs. 8 and 9, and thus is
believed to be beneficial to fast ion confinement.15 Figure 16 compares
the steady-state fast ion profiles (subtracted by the profile when no
RMP is imposed) between the vacuum RMP and response RMP. The
results shows that the fast ion pressure around q¼ 2 for the response
RMP is higher than that for the vacuum RMP, which suggests that
plasma response is beneficial to fast ion confinement around the q¼ 2
surface. However, the results also show that the fast ion pressure
within

ffiffiffiffiffiffiffi
�Wp

q
� 0:65 for the response RMP case is lower than the vac-

uum RMP case. This may be due to the enhancement of m¼ 1 and
m¼ 2 harmonics at their non-resonant locations by the plasma
response, as is shown by Fig. 9.

Since fast ion source from NBI is localized in a narrow toroidal
span, it is natural to ask whether the toroidal phasing of RMPs relative
to the fast ion source can have effects on the steady-state radial profile
of fast ions. To answer this question, we compute the steady-state
radial profile of fast ion pressure under various toroidal phasings while
fixing the up-down phase difference DU. The results are plotted in Fig.
17 for DU ¼ p=2, which indicate that the toroidal phasing has slight
effects on the steady-state radial profile. One interesting observation is
that the profiles around q¼ 2 are almost identical among the cases of
different toroidal phasings.

The effect of toroidal phasing on radial profile being slight may
be valid only for passing fast ions resulted from the tangential injection
considered in this paper. In Ref. 34, the toroidal phasing is found to
have significant effects on the fast ion confinement, where both pass-
ing and trapped particles are significant in the fast ion source.

V. UP-DOWN PHASE DEPENDENCE OF VOLUME
INTEGRATED QUANTITIES

This section investigates the dependence of spatially integrated
heating power, fast ion stored energy, and loss fraction on the RMP
up-down phase difference DU. The results are shown in Fig. 18.

The first observation from Fig. 18 is that the heating power and fast
ion stored energy are reduced relative to the no RMP case and the loss
fraction is increased relative to the no RMP case. Figure 18 shows that the
results for full vacuum RMP and the filtered vacuum RMP (keeping only
the n ¼ 61 Fourier harmonic) agree with each other well, indicating har-
monics other than n ¼ 61 have negligible effects. The results also indicate
that the heating powers and fast ion stored energy are roughly decreasing
functions of the loss fraction in all the three cases, as is expected.

As is mentioned above, plasma response usually helps heal mag-
netic islands and thus is believed to be beneficial to fast ion confinement.
Comparing between the response RMP case and the vacuum RMPs,
however, we found the loss fraction in the response RMP case is not
always smaller the corresponding vacuum case. This may indicate that
non-resonant components, which can be enhanced when plasma
response is included, have significant effects on fast ion confinement.

To more accurately describe the magnetic stochasticity, we use a
purely numerical method to determine the radial width of stochasticity
(rather than using the approximate analytical formula of magnetic island
width and the Chirkikov magnetic island overlap criteria discussed
above). Figure 19 plots the radial width of stochastic magnetic field as a
function of the RMP coil up-down phase difference DU. The radial
width is determined numerically by tracing a series of field lines starting
from the low field side midplane (i.e., h¼ 0, / ¼ ½0 : 2p�, and
qp ¼ ½0 : 1�). If a field line touches the wall during its first 3000 toroidal
transits, then the magnetic field is considered as stochastic at the initial
radial location. At each toroidal location, scanning the initial points from
the core to the edge, the radial innermost location where magnetic field
becomes stochastic determines the width of the stochastic region. This
will give different value of radial width at different toroidal locations. The
reasonable radial width of stochasticity should be the toroidal maximal
values. This width is denoted by ws1 in Fig. 19. As a comparison, the
toroidal minimal values and toroidal average values of the width of sto-
chasticity, denoted by ws2 and ws3, respectively are also shown in Fig. 19.
The results show that the dependence of fast ion loss fraction on DU
roughly agrees with those of the radial width of stochasticity onDU.

VI. RESONANCE BETWEEN RMPS AND LOST FAST
IONS

Fast ion loss induced by RMP is often related to the resonance
between fast ions and RMPs. Generally, the resonance condition in
tokamaks between a wave and a particle drift is given by

FIG. 16. Difference of steady-state fast ion pressure between the case with RMP
and that without RMP. The blue curve is for the RMP with plasma response while
the red curve is for the vacuum RMP. Both the RMPs are of up-down phasing
DU ¼ 0.

FIG. 17. (a) Radial profiles of fast ion pressure under RMPs of various toroidal
phasings relative to the fast ion source, Us. Also shown in (a) is the radial profile
when RMPs are absent. (b) The difference between the case with RMP and that
without RMP for various values of Us. The up-down phase difference DU is fixed
at p=2. The results indicate that the toroidal phasing has slight effect on the
steady-state radial profile of fast ions.
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nx/ � x ¼ pxh; (6)

where n and x are the toroidal mode number and angular frequency
of the wave, respectively,x/ and xh are the toroidal angular frequency
and poloidal angular frequency of the particle drift, respectively, and p
can be called resonance order, which is an arbitrary rational number.
When p is an integer, it is the usual resonance condition. When
p ¼ j=k is a non-integer fraction (j and k are integers), the resonance
is called fractional resonance,35–38 where the (unperturbed) drift
motion reach the same phase of the wave when it finish k times of

poloidal periods. The fractional resonance is often considered to be
important when the wave amplitude is large and thus might be related
to the nonlinear effects. However, the definition of resonance given
above is essentially linear because we are using the unperturbed
motion in definingx/ andxh.

For RMPs with x¼ 0 and n¼ 1 considered in this work, the res-
onance condition in Eq. (6) is simplified as

p ¼ x/

xh
: (7)

To show how important the resonant effects are in generating
fast ion loss, we propose to use the graph of x/=xh vs Df , where
Df ¼ frmp � fnormp is the difference of the lost fast ion distribution
function between the case with RMP and that without RMP. By taking
the difference, we exclude all the fast ions that are lost due to the first-
orbit prompt loss and pure collision loss.

For the tangential NBI considered in this work, the results indi-
cate that lost particles are dominated by passing particles and we will
consider only passing particles here. The graph of x/=xh vs Df for
lost passing ions is plotted in Fig. 20 for RMPs of
DU ¼ 0; p=2;p; 3p=2. The values of x/=xh at peaks of Df are indi-
cated in Fig. 20, which shows that some of them cannot be well
approximated by integers.

As is indicated in Fig. 20, some peaks of Df seem to appear at
non-integer fractions. It is usually believed that fractional resonances
are associated with the nonlinear effects and thus amplitude of the per-
turbation matter. In the work of Kramer et al.,37 the fractional reso-
nance appears when the amplitude of the wave exceeds a threshold
and thus it is natural to connect the fraction resonance with nonlinear
effects. Here, we examine how peaks of Df change with the changing

FIG. 19. Radial width of stochastic magnetic field as a function of the RMP coil up-
down phase difference DU. The width is defined in terms of the square root of the

normalized poloidal magnetic flux, q ¼
ffiffiffiffiffiffiffi
�Wp

q
and is defined as the difference of q

between the stochastic radial location and the unperturbed last closed-flux surface.
Three possible radial width, namely, ws1, ws2; ws3, are plotted. Also plotted is the
dependence of the loss fraction on the phase difference DU.

FIG. 18. The up-down phasing dependence of (a) ion heating power, (b) electron heating power, (c) fast ion stored energy, and (d) fast ion loss fraction. The corresponding val-
ues in the no RMP case are shown for comparison. The results for three kinds of magnetic perturbations are shown, namely, full vacuum magnetic perturbation generated by
the coils (without filtering), filtered vacuum field (keeping only the n ¼ 61 Fourier harmonic), and the filter response RMP.
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of amplitude of coil currents. The results are plotted in Fig. 21, where
the peaks remain at the same non-integer values when the current
amplitude is changed from 10 kA (the designed maximal total current
in RMP coils on EAST) to 2 kA. The fact that these peaks persist even
when the RMP amplitude is very small (2 kA) may imply that the
peaks at these non-integer values of x/=xh are not related to nonlin-
ear effects.

We note that linear resonances can be of non-integer fractional
orders (it is easy to demonstrate this by deriving the resonance condi-
tion from scratch38) Since, as mentioned above, it is hard to relate the
peaks at non-integer fraction with nonlinear effects, a plausible inter-
pretation for these peaks is that they are due to linear resonances of
non-integer fractional orders.

We note that resonance is not a necessary condition for RMP to
induce fast ion loss (resonance is only a beneficial case for perturbation
to have large impact). Any perturbation that breaks the axisymmetry
can potentially generate radial particle transport and hence loss.

Therefore, we cannot exclude the possibility that the peaks at non-
integer values are caused by non-resonant effects of RMPs on fast
ions. This is one of the limitations of this crude statistical method in
identifying resonance.

Another observation from Fig. 21 is that the peaks are of nonzero
expansion width, so that the consecutive peaks are not well separated,
which makes it difficult to identify all peaks in some cases (e.g., for the
case of 10 kA RMP, only the peaks near p¼ 2, 3 show up and all the
other peaks merge and are blurred).

Since there are obvious statistic noises in the results of Figs. 20
and 21, we need to make sure that the dominant peaks identified
above are not sensitive to the noise. We perform a numerical conver-
gence study over the number of markers N used in the simulation
(which is the most important numerical parameter in reducing noise).
The results are plotted in Fig. 22, which shows that the statistic noise
does no significantly change the peaks in Df , i.e., the results are well
converged, in terms of the dominant resonant peaks.

In the above, Df is the difference of the lost fast ion distribution
function between the case with RMP and that without RMP.
Collisions are included in both the cases. By taking the difference, we
expect to cancel the collision effect and obtain the pure RMP effect.
However, collision may blur the resonance between RMPs and fast
ions if the collision effects are not exactly canceled out in the simple
subtraction. Thus, it is desirable to do a simulation with collisions
turned off. The results are plotted in Fig. 23 for RMPs of
DU ¼ 0; p=2;p; 3p=2, which show a similar behavior as that in Fig.
20. Specifically, there are peaks at non-integer values of p (e.g., peaks
between p¼ 3 and p ¼ 4 for the DU ¼ p and DU ¼ 3p=2 RMPs).
There are also some peaks which are very near to integer values of p
(e.g., the peak near p¼ 3 for the DU ¼ p=2 RMP).

VII. SUMMARY AND DISCUSSION

The effects of resonant magnetic perturbation on the steady-state
radial profile of neutral beam heating and fast ion pressure are studied
computationally in a realistic tokamak configuration. It is observed in
the simulations that RMPs can accumulate fast ions at some radial
locations, giving a higher fast ion pressure than the case without RMP.
RMPs generally have pump-out effects on fast ions. The pump-out
effects are non-uniform along the radial direction, which implies that
some radial locations may accumulate fast ions. Therefore, it is not
surprising to observe the local increasing of fast ion pressure when a
RMP is imposed.

It is also found that the toroidal phasing of the RMP with respect
to the fast ion source has slight effects on the steady-state radial profile

FIG. 20. The difference of distribution of lost passing particles relative to the no
RMP case for various RMP up-down phasings DU. The results show that some
peaks of Df appear at non-integer values of p. The small peak at p¼ 2 is probably
due to resonance of integer order. The peaks at p ¼ 2þ 3=4 can be roughly
regarded to be due to resonance of integer order, considering that the peaks are of
finite width and are close to p¼ 3. The peaks at p ¼ 3þ 2=5, p ¼ 2þ 2=3 and
p ¼ 4þ 1=2 cannot be well approximated as near integer values of p.

FIG. 21. The same as Fig. 20 except that the RMP up-down phasing is fixed at
DU ¼ 0, and the amplitude of the coil current is scanned.

FIG. 22. Convergence of Df over number of markers N for RMPs of currents
10 kAt (left) and 6 kAt (right). RMPs of DU ¼ 0 are used in the simulation.
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of fast ions. The effect being slight is expected, considering that
most particles resulted from the tangential injection are passing
particles which quickly traverse a full toroidal loop, making the rel-
ative location between neutral beam source and RMP coils almost
irrelevant. For trapped particles resulted from perpendicular NBI
whose toroidal procession frequencies are low, the toroidal phase of
RMP coils relative to the source can be important since the trapped
particles can remain in a limited toroidal range for a sufficient time.
The toroidal phasing can be a useful free parameter for fast ion con-
trol using RMPs, considering that ELMs control is not sensitive to
the toroidal phasing.

The dependence of fast ion loss fraction on the RMP up-down
phase difference is found to show a similar behavior as the dependence
of the radial width of chaotic edge magnetic field on the up-down
phase difference.

A simple numerical statistical method, which uses the lost fast
ion distribution over x/=xh, is proposed to identify the resonance
between lost fast ions and RMPs. Using this method, we found that
the RMP-induced loss of passing particles may be partially due to reso-
nance of fractional orders. However, the reliability and usefulness of
this statistic method in identifying resonance between lost fast ions
and RMPs need to be further explored. Most authors analyze the fast
ion transport in terms of the variation of the toroidal canonical
momentum, dP/, which is a more informative figure of merit than the
simple condition of loss or not (used in this work), in revealing the res-
onance between fast ions and magnetic perturbations.18

ACKNOWLEDGMENTS

One of the authors (Y.H.) acknowledges useful discussions
with Dr. Nong Xiang and Dr. Wei Chen. Numerical computations
were performed on Tianhe at National Super-Computer Center in
Tianjin and the ShenMa computing cluster in Institute of Plasma
Physics, Chinese Academy of Sciences. This work was supported by
National Key R&D Program of China under Grant No.
2017YFE0300400, by Comprehensive Research Facility for Fusion
Technology Program of China under Contract No. 2018-000052-
73-01-001228, by users with Excellence Program of Hefei Science

Center CAS under Grant No. 2021HSC-UE017, and by the
National Natural Science Foundation of China under Grant No.
11575251.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

APPENDIX A: NEUTRAL PARTICLE SOURCE

Neutral particle source is implemented by using the Monte
Carlo method and taking into account the beam focus and diver-
gence, the shape of the accelerating grids, and the spatial distribu-
tion of particles on the exit grid. Figure 24 shows a sketch map of
the accelerating grids of EAST neutral beam system.

The neutralizing process is not directly modeled in the simula-
tion, and its effect is included only through the input number ratio
between particles of the full (kinetic) energy, half energy, and 1/3
energy (the number ratio between them is assumed to be 80 : 14 : 6
in this paper, with the full energy being 51 keV). We assume that
other beam properties (e.g., focus and divergence) are not changed
by the neutralizing process, except that only part of the ions succeed
in becoming neutrals. The NBI power after neutralizing is assumed
to be 1MW. In this paper, we consider one of the four beams on
EAST, which is injected in the co-current direction, with the tan-
gent radius of the central beam being 1.26 m.

FIG. 23. The same as Fig. 20 except that collisions are turned off in this case. The
peaks of Df roughly agree with those in Fig. 20. The results also show that the
amplitude of Df in the collisionless case is much smaller than that in the collisional
case (Fig. 20). The unit of Df is the same as that of Fig. 20.

FIG. 24. Left: Three-dimensional sketch map of one of the accelerating grids.
Right: Side view of the four groups of accelerating grids of EAST neutral beam
injector, which are, respectively, called plasma grid, gradient grid, suppression grid,
and exit grid. A typical setting of voltage on the grids is indicated on the graph.
Each accelerating grid has four sub-grids, indicated by A, B, C, and D on the figure.
Each sub-grid is a 12 cm	 12 cm square. Sub-grids A and D are rotated with
respect to the central sub-grids B and C by a small angle h ¼ ð1 1

12Þ

. This angle

is exaggerated on the figure. The central axis of the two beams from grids A and D
intersect at F. The vertical focal length fb is defined as the distance from point F to
the plane of BC grids (fb � 9:5m). The horizontal focal length is infinite. The y¼ 0
plane corresponds to the tokamak midplane. The beam horizontal and vertical
divergence angles are set to be 0:6
 and 1:2
, respectively.
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APPENDIX B: IONIZATION IN TOKAMAK PLASMA

The neutral particle trajectories are assumed to be along
straight lines until they arrive at the ionization locations in the
plasma. The Monte Carlo method of implementing the ionization
process is as follows.6 First define � by

� ¼ nirch þ niri þ ne
hrevei

vb
; (B1)

where ni and ne are the number density of background plasma ions
and electrons, respectively, rch is the cross section for charge
exchange with plasma ions, ri is the cross section for ionization by
plasma ions, hrevei is the electron impact ionization rate coefficient
averaged over the Maxwellian distribution, hrevei=vb is the effective
cross section of the electron impact ionization, where vb is the neu-
tral particle velocity. Then, associate each marker loaded with a ran-
dom number g that is uniformly distributed in ½0; 1�. Then, along
the trajectory of each neutral particle (straight line), the integration
s ¼

Ð l
0 �ðl0Þdl0 is calculated to examine whether s � ln ð1=gÞ or not.

If s � ln ð1=gÞ, the neutral particle is considered to be ionized. The
value of � outside the last closed flux surface (LCFS) is set to be
zero, i.e., the ionization outside LCFS is not considered. The ioniza-
tion cross-section data used in this work are from the ADAS data-
base (https://open.adas.ac.uk/) and Janev’s paper.39

The Monte Carlo implementation gives the ionization loca-
tions of each marker loaded in the simulation. These locations are
used as initial conditions in the subsequent orbit following compu-
tations. Those neutral particles that are not yet ionized when they
reach the inner wall of the device are lost to the wall and this loss
are called shine-through loss.

APPENDIX C: GUIDING-CENTER MOTION AND
FINITE LARMOR RADIUS EFFECT

Knowing the birth location x of a fast ion (given by the module
calculating the neutral particle ionization), the corresponding
guiding-center location X is calculated via the following guiding-
center transform,

X ¼ x þ v 	 bðxÞ
XðxÞ ; (C1)

where v is the fast ion velocity, b ¼ B=B, X ¼ BZf e=mf is the cyclo-
tron angular frequency, mf and Zf e are the mass and charge of the
fast ion, respectively, and B is the magnetic field.

The guiding-center drift of each fast ion is then followed by
numerically integrating the following guiding center motion
equation,40

dX
dt
¼ B?

B?k
vk þ

l
mf XB?k

B	rB (C2)

dvk
dt
¼ � l

mf

B?

B?k
� rB; (C3)

where vk is the parallel (to the magnetic field) velocity and l is the
magnetic moment (a constant of motion) defined by l ¼ mf v2?=
ð2BÞ with v? being the perpendicular speed; B? and B?k are defined
by

B? ¼ Bþ B
vk
X
r	 b (C4)

B?k � b � B? ¼ B 1þ
vk
X
b � r 	 b

� �
; (C5)

respectively.
The cylindrical coordinates ðR;/; zÞ are adopted in writing the

component equations of guiding-center motion. Using the cylindri-
cal coordinates (rather than magnetic coordinates) has the advan-
tage that we can handle orbits on the magnetic axis and outside the
LCFS without difficulties. The fourth-order Runge–Kutta scheme is
used in integrating the equations. Orbits outside the LCFS are fol-
lowed until they touch the wall.

The FLR effect is taken into account by evaluating and averag-
ing the magnetic fields in Eqs. (C2) and (C3) on a gyro-ring (four
points average is used in the simulation). The gyro-ring is approxi-
mated by a circle in the poloidal plane with the Larmor radius cal-
culated by using the toroidal magnetic field at the guiding-center
location. When checking whether a fast ion touches the wall, four
points on the gyro-ring are also calculated. If any one of the four
points touches the wall, the fast ion is considered as lost.

The FLR effect is also taken into account when depositing
markers to compute fast ion pressure. Neglecting the FLR effect in
this case will give significantly different radial profile of fast ion
steady-state pressure, as is show in Fig. 25, which indicates that
there is a significant averaging effect from the large Larmor radius
of fast ions.

APPENDIX D: FAST ION COLLISIONS AND HEATING
POWER DENSITY

The collision model of fast ions with the background electrons
and ions adopted in TGCO includes the effects of the slowing-
down, energy diffusion, and pitch angle scattering.

The birth velocity of the fast ions from NBI is much larger
than the thermal velocity of background ions but still much smaller
than the electron thermal velocity, i.e.,

vti � vf � vte: (D1)

FIG. 25. Comparison of radial profiles of fast ion pressure between the case when
the FLR effect is taken into account and that when it is neglected. The FLR effect is
taken into account when checking whether particles touch the first wall in both the
cases. RMP of DU ¼ 0 is used.
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(This condition is still valid for the fast alpha particles in reactor
plasmas.) Using this condition, the collision term of fast ions with
the background Maxwellian electrons and ions can be simplified.
Specifically, the Monte Carlo implementation of the resulting colli-
sion operator takes the form given in Refs. 41 and 42. For reference
ease, we repeat it here. In the Monte Carlo implementation, the
pitch-angle variable k ¼ vk=v and velocity v are altered at the end
of each time step according to the following scheme:

knew ¼ koldð1� �dDtÞ6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� k2oldÞ�dDt

q
(D2)

and

vnew ¼ vold � vold�sDt 1þ vc
vold

� �3
" #

þ �sDt
mf vold

Te �
1
2
Ti

vc
vold

� �3
" #

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�sDt
mf

Te þ Ti
vc
vold

� �3
" #vuut ; (D3)

where 6 is randomly chosen with equal probability for plus and
minus, Dt is the time step, and �d is the velocity-dependent pitch-
angle scattering rate given by

�d ¼
Zeff

v3
Cf =e:; (D4)

with Cf =e defined by

Cf =e ¼
neZ2

f e
4

4p�20m
2
f

lnKf =e; (D5)

where Zeff is the effective charge number of background ions
(Zeff ¼ 1 in this work since we assume a pure Deuterium plasma
without impurities) and Zf is the fast ion charge number (Zf ¼ 1
in this work). �0 and lnKf =e are, respectively, vacuum dielectric
constant and the Coulomb logarithm. In Eq. (D3), �s is the fast
ion slowing down rate due to the background electrons and is
given by

�s ¼
4

3
ffiffiffi
p
p mf

me

Cf =effiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Te=me

p� �3 : (D6)

In Eq. (D3), vc is the critical velocity (at which the friction due to
background ions is equal to that due to background electrons) given
by

vc ¼
3
ffiffiffi
p
p

4
me

mi

� �1=3 ffiffiffiffiffiffiffi
2Te

me

r
: (D7)

The scheme in Eq. (D2) models the pitch-angle scattering (due to
background ions only). The first line of Eq. (D3) models the
slowing-down (due to both background electrons (the “1” term)
and ions [the ðvc=voldÞ3 term)] and the second line models the
energy diffusion (due to both background ions and electrons).
Collisions between fast ions themselves are ignored.

As a simple verification of the implementation of the numeri-
cal slowing-down model, Fig. 26 compares the numerical steady
state velocity distribution function and the analytic slowing-down
distribution function, which shows good agreement between them.
The analytic slowing-down distribution is given by

fv /
v2

ð1þ ðv=vcÞ3Þ
; (D8)

where vc is the critical velocity given by Eq. (D7). The numerical
result was obtained in a simplified setting by turning off orbiting
(hence no edge loss) and assuming uniform plasma profile, no
energy diffusion, and injection with single energy of 51 keV in
EAST discharge #52340@3.4s.

The heating power (due to fast ions) to bulk plasma within a
given spatial volume V is equal to the fast ion kinetic energy loss
rate within that volume, i.e.,

P ¼
XN
j¼1

wj
DEj
Dt

; (D9)

where N is the number of markers within the given spatial volume,
wj is the marker weight, DEj is the kinetic energy decrease in a
marker during the time interval Dt. Using DEj ¼ 1

2mf v2j;old
� 1

2mf v2j;new, and the slowing-down algorithm, expression (D9) is
written as

P ¼ 1
2
mf

XN
j¼1

wj 2v
2
j;old�sðCi þ CeÞ � v2j;old�sðCi þ CeÞ2�sDt

h i
;

where Ci ¼ ðvc=vj;oldÞ3;Ce ¼ 1. Neglecting the second term, which
is smaller than the first term by a factor of �sDt � 1, the above
expression is written as

FIG. 26. Comparison between the numerical steady state velocity distribution func-
tion and the analytic slowing-down distribution function. The distribution function is
defined by fvdv ¼ dN with dN being the number of particles with velocity in
½v; vþ dv�. There is a discrepancy in the small velocity region because we con-
sider particles of kinetic energy less than 2Ti0 as thermalized and do not include
their contribution to the fast ion distribution. There is a numerical jump at the injec-
tion energy since no particles are accelerated to higher energy (energy diffusion
could make this jump smoother if included).
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P � 1
2
mf

XN
j¼1

wj 2v
2
j;old�sðCi þ CeÞ

h i
;

¼ Pi þ Pe; (D10)

where

Pi ¼ mf

XN
j¼1

wjv
2
j;old�sCi (D11)

and

Pe ¼ mf

XN
j¼1

wjv
2
j;old�sCe; (D12)

which are the heating power delivered to the thermal ions and elec-
trons, respectively.

The heating power densities are then given by Hi ¼ Pi=V and
He ¼ Pe=V .
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