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Abstract
We carried out systematic study of neoclassical equilibrium distribution of α particles born from
deuterium–tritium nuclear fusion in a tokamak reactor. The distribution in the phase space is
visualized in various 2D planes. We studied a previously known but less investigated
phenomenon—the co-current flow of α particles. We gave detailed explanation for this flow by
examining the collisionless evolution of toroidal filament sources, using both the guiding-center
drift model and full orbit model. We found that the flow appears because of the co-count
asymmetry, which makes co-going α particles on average stay in weaker magnetic field region
than that of the counter-going ones.

Keywords: deuterium–tritium fusion, energetic alpha particles, neoclassical transport,
ripple field, Monte-Carlo simulation, anisotropic distribution

(Some figures may appear in colour only in the online journal)

1. Introduction

Alpha particles born from deuterium–tritium fusion in toka-
mak reactors are initially isotropic in the velocity space
(assuming that the reactants are isotropic, which is usually
a good approximation). Is the steady-state alpha particle dis-
tribution also isotropic? The answer is no, for several reas-
ons. Even in the collisionless limit, there are two mechanisms
that can generate anisotropy. The first one is the well known
difference between the parallel and perpendicular dynamics
(defined with respect to the equilibrium magnetic field). The
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second one is the less known asymmetry in the parallel dynam-
ics: the orbit difference between particles initially moving
along the plasma current (co-going) and those initially moving
opposite to the plasma current (counter-going). The co-going
particles on average reside in a weaker magnetic field region
than that of counter-going particles, resulting the asymmetry.
We refer to this as the co-counter asymmetry. As a result of
this asymmetry, a net co-current toroidal flow of α particles is
generated. (Details are discussed in section 4.)

Research on anomalous transport of energetic α particles
need an initial neoclassical equilibrium distribution of α
particles as input. This input can be obtained either by ana-
lytical theories or by numerical simulations. Analytical theor-
ies rely on simplification (e.g. zero drift-orbit width, no pitch
angle scattering, no energy diffusion, no edge loss, no ripple
field, etc). Simulations can drop these simplifications and give
more realistic particle distributions. In this paper, we present
steady-state α particle distribution obtained from neoclassical
simulations in a tokamak reactor, China Fusion Engineering
Testing Reactor (CFETR) [1]. The distribution in the phase
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space is visualized in various 2D planes. Simulations were
performed by using the TGCO [2], which is a Monte-Carlo
test particle code similar to NUBEAM [3], OFMC [4], ASCOT [5],
ORBIT [6], SPIRAL [7], and many others [8–11].

Some authors use artificially large collisional frictions in
simulations of α particles collisional process to accelerate the
slowing-down, in order to reduce computational cost [12].
Although, this trick may be safe for some situations in draw-
ing valid physical conclusions from the simulations, it is still
interesting to do simulations using the realistic slowing-down
rate and see what happens. This work adopts this brute-force
method.

This paper is organized as follows. Section 2 provides the
simulation setup (equilibriumfield andα particle source) and a
brief description of the physical model. Section 3 presents the
steady-state α particle distribution in the phase space, where
anisotropy was observed. Section 4. discuss the reason for the
anisotropy. Section 5 takes into account of the 3D ripple field
and examines its effect on theα particle distribution. Summary
and discussions are given in section 6.

2. Simulation setup

2.1. Equilibrium magnetic field

The 2D equilibrium magnetic field is given by

B=∇Ψ ×∇ϕ + g∇ϕ, (1)

i.e.
BR =− 1

R
∂Ψ

∂Z
, (2)

BZ =
1
R
∂Ψ

∂R
, (3)

Bϕ =
g
R
, (4)

where (R,ϕ,Z) are the right-handed cylindrical coordinates,
R is the distance from the machine symmetric axis, ϕ is the
toroidal angle, Z is the vertical height, BR, BZ, and Bϕ are the
components of B, Ψ(R,Z) is the poloidal flux function (pol-
oidal magnetic flux per radian), g= BϕR= g(ΨN) is the tor-
oidal field function, where ΨN = (Ψ −Ψ0)/(Ψb−Ψ0) is the
normalized poloidal flux,Ψ0 andΨb areΨ’s values at the mag-
netic axis and LCFS (last closed flux surface), respectively.
Both Ψ(R,Z) and g(ΨN) are given numerically by EFIT out-
put file (gfile) [13]. In terms of Ψ, the plasma toroidal current
density is given by

Jϕ =− 1
µ0R

∂2Ψ

∂Z2
− 1
µ0

∂

∂R

(
1
R
∂Ψ

∂R

)
, (5)

where µ0 is vacuum magnetic permeability. If one wants to
reverse the direction of Jϕ, then use the transformΨ → (−Ψ).
This also reverses the direction of the poloidal magnetic field.
We use this transform when verifying that α particle toroidal
flow is always along the plasma current direction.

Later in this paper, we take into account the ripple field,
which is considered as 3D perturbation superposed on the 2D
equilibrium field.

Figure 1. Comparison of LCFS between CFETR and ITER
tokamak.

We use CFETR [1] as an example to investigate properties
of the alpha particle distribution in a tokamak reactor. Figure 1
compares the size of CFETR with that of ITER.

CFETR has gone through several design iterations by integ-
rated modeling [1]. One of the envisioned operation scenario
is the so-called hybrid scenario, which has a flat safety factor
profile near the core with on-axis safety factor value about 1,
as is shown in figure 2(b). We did simulations in this scenario.

Figure 2(a) plots the first wall and some representative
magnetic surfaces. The directions of the toroidal plasma cur-
rent and magnetic field are opposite to each other, with the
Bϕ < 0 and Iϕ > 0, as is indicated on the figure. Figure 2(c)
plots the radial profiles of ion temperature, ion number dens-
ity, electron temperature, and electron number density. Main
ion species are deuterium and tritium, which are assumed to be
of equal number density and of equal temperature. Impurities
are Helium (energetic α particles + Helium ash) and Argon,
with concentration that makes the ion effective charge number
Zeff = 2.0. Figure 2(d) plots the radial profiles of the total pres-
sure Ptotal, bulk plasma pressure Pmain, and energetic α particle
pressure Pα. Here Pmain = neTe + 2nDTi, where nD = nT is the
deuterium/tritium number density. The total pressure Ptotal ≈
Pmain +Pα, which is the pressure used in the EFIT equilibrium
reconstruction. Helium ash andArgon impurities’ contribution
to the pressure is negligible. Theα particle pressurePα is com-
puted using approximate analytical theory (the formulas are
provided in appendix B). Later in the paper, we compare this
pressure with that obtained in simulations, which shows they
roughly agree with each other, indicating self-consistency of
the equilibrium reconstruction and our simulations.

Total fusion power is 0.97GW in this scenario, with
0.19GW carried by α particles and the remainder carried by
neutrons.

2.2. α particle source

We sample α particle birth positions in (R,ϕ,Z) coordin-
ates, using the Monte-Carlo rejection method. The sampling
probability function is proportional toRFrate(ΨN(R,Z)), where
Frate is the fusion rate (i.e. number of fusion reactions in unit
volume and unit time; the details are given in appendix A). The
resulting marker density is proportional to the fusion rate, and
only depends on ΨN in the magnetic coordinate system. The
marker weight is equal among all markers.
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Figure 2. (a) Magnetic surfaces and the first wall (bold black line). (b) Radial profile of safety factor. (c) Radial profiles of ion temperature,
ion number density, electron temperature, electron number density. (d) Radial profiles of total pressure Ptotal, bulk plasma pressure Pmain,
and energetic α particle pressure Pα. The radial coordinate ρp is defined by ρp =

√
ΨN. The directions of toroidal field and plasma current

are indicated in (a). The magnetic axis is at (R= 7.6m,Z= 0.93m), and Bϕ,axis =−6.11T. Total plasma current Jϕ = 13MA. The safety
factor value at ΨN = 0.95: q95= 5.75.

Figure 3. (a) Radial profile of fusion rate and α particle birth rate. Here α particle birth rate is obtained from Monte–Carlo samplings of the
fusion rate. (b) Distribution of α particle birth rate in the poloidal plane.

To verify the accuracy of the Monte–Carlo sampling,
figure 3(a) plots the numerical radial distribution of α particle
birth rate, which shows agreement with the fusion rate profile.
Figure 3(b) plots the two-dimensional (2D) distribution of α
particle birth rate in the poloidal plane.

Particle velocities are sampled according to the isotropic
distribution of single energy (E= 3.5MeV). Figure 4(a) plots
the numerical birth distribution over the pitch (p≡ v∥/v),
which shows nearly uniform distribution, consistent with the
isotropic marker loading. Figures 4(b) and (c) separate the
total particle distribution into trapped one and passing one.
Although they are no longer uniform, they are still symmet-
ric about p= 0, indicating they do not carry any net current.

One may emphasize the difference between the parallel
velocity v∥ and the toroidal velocity vϕ. To check whether

this difference is significant, figures 4(d)–(f ) plot the distribu-
tion over vϕ/v, which shows similar behavior as that of v∥/v,
indicating the difference is insignificant. Here vϕ is the gyro-
averaged toroidal velocity, vϕ = (v∥b+ vd) · ϕ̂, where vd is the
magnetic drift velocity (gradient + curvature drift).

Figure 5 plots the initial positions of α particle markers in
(Pϕ,Λ) plane, where Pϕ ≡ mαv∥g/B+ZαeΨ is the canonical
toroidal angular momentum, mα and Zαe are the mass and
charge of α particle, respectively, Λ = µBaxis/E is the nor-
malized magnetic moment, and µ is the magnetic moment
defined by µ= mv2⊥/(2B) with v⊥ being the perpendicular
speed. Both Pϕ and Λ are constants of motion in the equilib-
rium field. Using the passing-trapped boundary shown in the
figure, we found that 28% ofα particles are born in the trapped
region.
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Figure 4. Histogram of 5× 104 Monte–Carlo samplings of α particle birth distribution about v∥/v and vϕ/v. Left: all (trapped+passing),
Middle: only trapped, Right: only passing.

Figure 5. Initial positions of α particle markers (blue points) in the
(Pϕ,Λ) plane. 5× 104 markers are initially loaded in the
simulation. Also shown are the magnetic axis, high-field-side,
low-field side of LCFS for α particles of E= 3.5MeV, and the
passing trapped boundary (which is independent of the kinetic
energy). Bn = 1Tesla, Ln = 1m.

Figure 6 plots the radial profiles of the slowing-down time
and the critical energy. The slowing-down time is defined as
the time span for an α particle of kinetic energy 3.5MeV to
slow down to zero or the cutoff energy 2Ti (0). Averaging over
all the markers in the source gives an average slowing-down
time of 0.74 s. (The average slowing-down time observed in
the simulation is 0.75s.) Average value of the critical energy
over all the markers is Ecrit = 0.65MeV.

2.3. Physics model

After sampling the positions and velocity vectors of α
particles, the guiding-center positions are calculated. Then the
guiding-center drift model is used to follow the particle tra-
jectories in the phase space using the 4th order Runge–Kutta

Figure 6. Radial profiles of slowing-down time and critical energy
in CFETR hybrid scenario. The formulas calculating the
slowing-down time t(s) and critical energy Ecrit are given
equations (B1) and (B3) in the appendix.

time integration. The average Larmor radius of 3.5MeV alpha
particles initially sampled in the simulations is 1.5% of the
machine minor radius. The finite Larmor radius (FLR) effect
is taken into account when checking whether a marker touch
the first wall. The FLR effect is also included when deposit-
ing markers to spatial grids in calculating various moments of
the distribution function (e.g. density and pressure). The FLR
effect is usually neglected when pushing orbits, to reduce com-
putational cost, i.e. magnetic field values are evaluated at the
guiding-centers.

In discussing the α particle co-current flow in section 4,
we include the FLR effect when pushing particles. The res-
ults show no difference from that of the zero Larmor radius
case, indicating gyro-averaged field is not significantly differ-
ent from the field at the guiding-center.

The collision model for the energetic particles includes the
slowing-down, energy diffusion, and pitch angle scattering
[14]. The FLR effect is not included when modeling the col-
lisions. We assume a time-independent background plasma.
When simulating the continuous birth of α particles and the
steady-state (reached when the birth balances the sink (edge
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loss + slowing-down)), the results are obtained by doing a
single pulse source simulation and integrating in time (making
use of the time shift invariance of the problem) to take into
account the continuous source.

3. Simulation results

3.1. Time evolution of a pules source

Figure 7 plots the time evolution of particle/power loss frac-
tion and the slowed-down fraction of a pulse α source born
at t= 0. Both the particle and loss fractions are negligibly
small (less than 0.3%). The losses are due to first-orbit loss
(prompt loss) and collisional loss (neoclassical transport). The
results also show that the power loss fraction is lower than
the particle loss fraction, as is expected, since α particles are
slowed after they are born. Most α particles are slowed down
(to the cutoff energy 2Ti (0)) after 1s. The average slowing-
down time observed in the simulation is 0.75s, which agrees
with the analytical estimation given in figure 6.

3.2. Steady-state distribution for continuous source

Figure 8 plots the steady-state distribution in the velocity space
for the case of continuous α particle source. To verity that the
distribution has reached a steady state at the end of the sim-
ulation, figures 8(b)–(d) plots the distribution at various time
slices. The results show that the distribution converges to a
steady state.

Figure 8(d) shows that the distribution over vϕ is not sym-
metrical about vϕ = 0 (the peak slightly shifting to the vϕ > 0
region). This implies that the distribution is not isotropic in
velocity space. As a result, there is nonzero flow in the dir-
ection of ∇ϕ (which is co-current for our case). The distri-
bution over v∥/v also shows similar trend, i.e. there are more
co-current particles than counter-current particles. (Co-current
corresponds to v∥/v< 0 because v∥ is defined with respect to
the magnetic field, which is in the opposite direction of the
plasma current in our case.) The net α particle current in this
case is 0.3MA, which is only 2% of the total plasma current
(13MA).

Typical time step size used in the simulations is∆tΩα = 2,
whereΩα is the α particle gyrofrequency at the magnetic axis.
To verify the simulations are numerically converged in terms
of the time-step size ∆t, figure 9 compares fvϕ obtained from
two simulations using different values of ∆t, which shows
good agreement, indicating numerical errors are negligible.

If we reverse the poloidal magnetic field direction by the
transform Ψ→−Ψ, which will reverse the direction of the
plasma current, we found the direction of the residual flow
is also reversed, as is shown in figure 10. The flow is always
in the co-current direction for positive charged particles. (For
negative charged particle, the flow is in the counter-current
direction.)

Figure 7. Time evolution of loss fraction and slowed-down fraction
of a pulse α source born at t= 0. The first wall is used as the loss
boundary.

Figure 11 compares the steady-state energy distribution
obtained in the simulation with the analytical slowing-down
and Maxwellian distribution. The slowing-down distribution
and Maxwellian distribution are given, respectively, by

fE = CM
√
Eexp

(
−E
T

)
, (6)

and

fE = Csd

√
E

1+
(

E
Ecrit

)3/2
, (7)

where the normalizing constants, CM and Csd, are decided
by the constraint that the two distributions give the same
particle number as that in the simulation when integrating
over the energy ranges [0,3.5MeV]. The temperature T of
the Maxwellian distribution is set to T= 2E/3= 0.97MeV,
where E= 1.45MeV is the average kinetic energy of α
particles observed in the simulation. Ecrit in equation (7) is set
to 0.65MeV, which is the averaged value among all the mark-
ers over the radial profile shown in figure 6.

The results in figure 11 indicate that the simulation result
is almost identical to the analytical slowing-down distribution
while significantly deviates from the Maxwellian distribution.
The results show that Maxwellian distribution underestimates
the particle number in the high-energy region (E> 2MeV)
while overestimates the number in the low-energy region.

Figure 12 plots the steady-state distribution ofα particles in
(Pϕ,Λ), (Pϕ,E), and (E,Λ). One interesting structure is that
the peak values of the distribution in (Pϕ,Λ) plane trace out
the passing-trapped boundary. In (E,Λ) plane, we can see that
the distribution reach its maximum near Λ = 0.9.

Figure 13 plots theα particle number density in the poloidal
plane, where contributions of passing and trapped particles are
separated.We found that passing particles density contribution
is dominant. Furthermore the results indicate that trapped
particles density is not poloidal symmetric, as is expected.
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Figure 8. Steady-state distribution of alpha particles in (E,v∥/v) (panel (a)), in E (panel (b)), in v∥/v (panel (c)), and in vϕ (panel (d)). Here
fE is defined by fEdE= dN, where dN is particle number in energy range [E,E+ dE]. And fv∥/v and fvϕ are defined in a similar way. Here
Ecrit = 0.65MeV is the average critical energy.

Figure 9. Comparison of fvϕ between two simulations using different time step sizes. The black solid line is from figure 8(d). The two lines
agree with each other very well.

Figure 10. Comparison of fvϕ between two cases of opposite plasma currents. The α particle distribution biases to the co-current direction
for both the cases, resulting in co-current flow. The black line is from figure 8(d).
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Figure 11. Comparison between simulation, analytical slowing-down, and Maxwellian distribution. The critical energy Ecrit and birth
energy Ebirth are indicated in the figure.

Figure 12. Distribution of α particles in (Pϕ,Λ), (Pϕ,E), and (E,Λ), where the unit of Pϕ is ZαeBnL2
n.

Figure 13. Passing and trapped α particle density in the poloidal plane.

7



Nucl. Fusion 65 (2025) 066022 Y. Hu et al

Figure 14. Passing and trapped α particle toroidal current density in the poloidal plane.

Figure 15. Radial profiles of α particle pressure, heating power density (delivered to electrons and thermal ions), kinetic energy density,
and number density. Here the kinetic energy density K is related to pα∥ and pα⊥ by K= pα∥/2+ pa⊥.

Figure 14 plots the α particle toroidal current density
in the poloidal plane, where contributions of passing and
trapped particles are also separated.We also found that passing
particles’ contribution is dominant.

Figure 15 plots the radial profiles of α particle density,
pressure, kinetic energy density, and heating power dens-
ity. Results from analytical theory are also plotted, which
are in reasonable agreement with the numerical ones. The
results also indicate that pα∥ and pα⊥ are approximately
equal to each other, indicating the difference between the
parallel and perpendicular dynamics does not generate sig-
nificant anisotropy in the pressure. Here pα∥ and pα⊥ are
defined by

pα∥ =
ˆ
mαv

2
∥fαd

3v, (8)

and

pα⊥ =

ˆ
µBfαd

3v, (9)

respectively, where fα is the 6D distribution function of
α particles. The total pressure is defined by pα = (pα∥ +
2pa⊥)/3. The analytical theory used here is discussed in
appendix B.

4. Why anisotropy arises from isotropic source?

4The steady-state α particle distribution is expected to be
biased towards co-current direction. This point has been iden-
tified in previous works [15–18]. Some authors attributed
the anisotropy to asymmetric slowing-down and/or edge loss
[18]. The basic reasoning is as follows. More α particles
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Figure 16. (a) Locations of the nine toroidal filament sources in the poloidal plane. (0–8) Time evolution of averaged toroidal velocity, vϕ,
of each source. The time duration shown is about 100 typical poloidal periods. Unit of vϕ is 7.7× 106ms−1. Results from two orbit models
are shown: guiding-center (GC) with the FLR effect and full-orbit (FO). The full orbit simulations use the Boris integrator [19] with a time
step size ∆tΩα = 0.2, which is 1/10 of that used in the guiding-center simulations.

are born on the low-field side (due to larger volume) than
those on the high-field side. So we can focus on the low-field
side source. Particles born with co-current velocities on the
low-field side have their poloidal orbits more near the core
than the corresponding counter-current particles (true for both
trapped and passing particles). Therefore co-current particles
are less likely to be lost (asymmetric loss) and they also
have longer slowing-down time (asymmetric slowing-down)
because plasma near the core is hotter. The asymmetric loss
and asymmetric slowing-down imply that isotropic source can
develop co-current flow.

In fact, the anisotropy can arise even without collisions
and edge loss. Here we verify this phenomenon by using dir-
ect numerical simulations. We consider a simple collision-
less case, where all particles are born at a single time-slice
(i.e. pulse source, not continuous source). The source is iso-
tropic in the velocity space with a single energy E= 3.5MeV.
Furthermore, we limit the source to a single poloidal point and
to be toroidally uniform. We follow the Monte–Carlo markers
of the source to examine the time evolution of particles’ vϕ
(averaged over all particles, denoted by vϕ(t)). The results are
shown in figure 16, where 9 sources located at different pol-
oidal locations labeled by 0,1,...8, respectively, are considered.

Figure 16 shows that all the nine sources behavior in sim-
ilar way. The initial vϕ is near zero (as it should be, since the
source is isotropic in velocity space). Later, vϕ deviates from
zero and oscillates with time. Then the oscillation amplitude
decays with time, which is due to the phase mixing (different
particles have different poloidal periods). (At later time, some
amplitudes increase a little bit but remain at small values.) An
interesting phenomenon is that the time asymptotic trend of
vϕ approaches a nonzero positive value (for comparison, the

baseline vϕ = 0 is indicated in the figure). This corresponds to
that particles as a whole are biased to the co-current direction.
We will call this co-current flow as residual flow.

To verify that the residual flow is not an artifact of the
guiding-center model, we also carried out full orbit simula-
tions of the above case. The results are compared with that of
the guiding-center simulations, as is shown in figure 15. The
residual flows given by the twomodels show reasonable agree-
ment (the agreement at location 0 and 1 is not as good as the
others). All the residual flows are in the co-current direction.

The residual flow is due to the orbit difference between
co-going and counter-going particles. Specifically, co-going
particles on average reside in a region of weaker magnetic
field than that of the counter-going particles. Figure 17, plots
the time evolution of the averaged R of co-going and count-
going particles. The result shows that averaged R of co-going
particles is larger than that of the counter-going particles.
This means co-going particles on average stay in a region of
weaker magnetic field becauseB∼ 1/R. Then as a result of the
kinetic energy and magnetic moment conservation, co-going
particles will on average have larger parallel velocity than that
of counter-going particles. Hence there appears the co-current
residual flow.

(Here co- and counter-going refer to a specific time slice
(t= 0). For trapped particles, their vϕ will change sign later,
but they are still classified into co-going or counter-going
according to their initial vϕ signs. If we consider only trapped
particles, the difference of R between co-going and counter-
going is not significant, and the trend can be reversed (not
shown). Because particle number of the passing particles is
dominant in these cases, the overall trend is determined by the
passing particles.)

9
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Figure 17. Time evolution of averaged R of a pulse source at the 9 poloidal points indicated in figure 16.

This residual flow is a universal mechanism for spontan-
eous co-current rotation in tokamaks, i.e, a positively charged
source of zero momentum turns out to rotate in the co-current
direction. This is related to the bootstrap effect that gives rise
to the bootstrap current, but is of less importance for thermal
particles because their orbit deviation from magnetic surfaces
is much smaller than that of energetic particles.

We note that the momentum of the system should be con-
served. What is the origin of the net momentum in the residual
flow? In the simple case of collisionless simulations, the sole
contributor is the magnetic field. I.e., the momentum is derived
from the magnetic coils of the facility.

5. Effects of ripple field

The effects of the ripple field on α particles loss in CFETR
have been studied in previous works [20–22]. Improvements
over these works are possible, e.g. using the first wall instead
of the LCFS as the loss boundary, including all the three
components of the ripple field rather than only the toroidal
component, and making sure that the curl-free condition is
respected. The ripple field used in this work is discussed in
appendix C. For the hybrid scenario studied in this work, we
found the ripple loss is small: power loss fraction is less than
0.2%, as is shown in figure 18.

We found the effect of the ripple field on the α particle
steady-state distribution is also small, with the difference
nearly invisible to eyes when compared. An example is shown
in figure 19, which compares the fvϕ between the case without
ripple and that with ripple.

The ripple field, as a kind of 3D perturbation to the 2D
equilibrium field, usually has a damping effect on plasma
flow via the so-called neoclassical viscosity torque. The res-
ults in figure 19 indicate that this damping effect happens to

Figure 18. The same as figure 7 except that this is with ripple field.
The power loss fraction is about twice of that of the case without
ripple field.

Figure 19. Comparison of fvϕ between the case without ripple and
that with ripple.

be small for this specific case. Also we note that the ripple
field mainly influences trapped particles (region near vϕ = 0 in
figure 19) while the residual flow of α particles mainly comes

10
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from passing particles. This implies the ripple field effect on
the residual flow should be weak.

6. Summary and discussion

We carried out systematic study of neoclassical equilibrium
distribution of α particles born from DT nuclear fusion in a
tokamak reactor. Simulation results ofα particle radial profiles
are in reasonable agree with analytical theory. This provides a
verification for the simulation code. The agreement also indic-
ates that the finite drift orbit width and other effects that are
included in the simulation are not important in determining
these profiles (density, pressure, heating power density). We
also found that the ripple field has negligible effects on the
steady-state distribution in the hybrid scenario considered in
this paper.

In the process of this study, we identified a previously
known but less investigated phenomenon—the co-current flow
of α particles. This weak flow can be reliably observed in
simulations. This also provide confidence in the numerical
accuracy of the simulations. Previous works on the aniso-
tropy (the flow) suggest that collisions or/and edge loss are
needed in forming the anisotropy. Our finding is that even
in the case without collisions and edge loss, the anisotropy
can still appear. We gave a clear demonstration of the process
by simple numerical simulations: the collisionless evolution
of toroidal filament sources. We found that the flow appears

because of the co-count asymmetry, which make co-going α
particles on average stay in a weaker field side than that of the
counter-going ones.

The net α particle current in our specific case is 0.3MA,
which is only 2%of the total plasma current (13MA).Whether
this fraction can be significantly increased by optimizing the
plasma scenarios is not clear. As a future research option, we
may study how the aspect ratio and plasma shape influence this
fraction.
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Figure 20. The deuterium–tritium reactivity ⟨σv⟩ vs. temperature for Maxwellian distribution of the same temperature. Peak fusion
reactivity occurs at Ti = 68.6keV. Mote–Carlo sampling and integration are used in performing the 6D phase-space integration in
equation (A2).

Appendix A. Fusion rate

The fusion rate Frate is defined by

Frate = n1n2⟨σv⟩, (A1)

with the reactivity

⟨σv⟩ ≡ 1
n1n2

ˆ
σ|v1 − v2|f1 (v1) f2 (v2)dv1dv2, (A2)

where n1 and n2 are number densities of the reactants. A frequently used fitting formula for fusion cross section σ is given
by Bosch and Hale [23]. Using that formula and assuming Maxwellian distribution of the same temperature for reactants, we
calculated the deuterium–tritium reactivity ⟨σv⟩ as a function of the temperature, which is plotted in figure 20. This is the case
used in this paper. Other reactions such as beam-thermal reactions are not included.

Appendix B. Theory of α particle steady-state distribution and heating power density

Assume α particles stay on the same magnetic surfaces where they are born (zero orbit-width approximation), then the time for
a particle of kinetic energy Ebirth to slow down to zero can be analytically obtained [24]:

ts =
tse
3

ln

[
1+

(
Ebirth

Ecrit

)3/2
]

(B1)

where

tse =
3(2π)3/2T3/2

e ϵ20
neZ2

αe4 lnΛα/e

mα√
me
, (B2)

Ecrit = Te

(
3
√
π

4

∑
i

meniZ2
i

mi ne

)2/3

, (B3)

where Zi = qi /e is the charge number of bulk ion species i. (Note that, due to the ion mass dependence, the sum over the bulk
ion species can not be written in terms of Zeff ≡

∑
i niZ

2
i /ne.)
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B.1. Steady-state energetic α particle density and pressure

The steady-state density of energetic α particles at a radial location is then given by

nα (ψ) =

ˆ ts

0
Frate (ψ)dt

= Frate (ψ)
tse
3

ln

[
1+

(
Ebirth

Ecrit

)3/2
]
. (B4)

where Frate = nDnT⟨σv⟩ is the fusion rate (m−3s−1).
Similarly, the steady-state kinetic energy density Kα at a radial location is given by

Kα =

ˆ ts

0
E(t)Fratedt= Frate

ˆ ts

0
E(t)dt, (B5)

where E(t) is the instantaneous kinetic energy of an α particle, Using E(t) given by equation (5.4.11) in Wesson’s book [24],
the above integration can be analytically performed, giving

Kα = FrateEbirthtse

[
− 1

6y
ln

(∣∣y−√
y+ 1

∣∣(√
y+ 1

)2
)

−
arctan

(
2
√
y−1√
3

)
√
3y

−
arctan

(
1/
√
3
)

√
3y

+
1
2

 , (B6)

where y= Ebirth/Ecrit. Note that Frate, tse and Ecrit (and thus y) depend on the radial position. Equation (B6) agrees with equation
(5.B-9) in the technical report of the plasma transport code ONETWO [25].

The α particle pressure is related to Kα by Pα = 2Kα/3.

B.2. Steady-state heating power density (delivered to ions and electrons) from energetic α particles

The steady-state heating power density (delivered to background plasma) from α particles is given by

H =

ˆ ts

0

(
−dE

dt

)
Frate (ψ)dt.

= −Frate (ψ)

ˆ ts

0
dE

= Frate (ψ)Ebirth. (B7)

The slowing-down dynamics can be split into two parts (electron/ion contribution):(
dE
dt

)
e

=− 2
tse
E (B8)

and (
dE
dt

)
i

=− 2
tse
E

(
Ecrit

E

)3/2

(B9)

Then, the steady-state heating power density delivered to background electrons is written as

He =

ˆ ts

0

[
−
(
dE
dt

)
e

]
Frate (ψ)dt.

= Frate (ψ)
2
tse

ˆ ts

0
Edt (B10)

= Kα
2
tse
. (B11)

13



Nucl. Fusion 65 (2025) 066022 Y. Hu et al

Similarly, the steady-state heating power density delivered to background ions is written as

Hi =

ˆ ts

0

[
−
(
dE
dt

)
i

]
Frate (ψ)dt.

= Frate (ψ)
2
tse
E3/2
crit

ˆ ts

0

1√
E
dt, (B12)

Here we note that the integrand is singular at E(t= ts) = 0. To avoid this difficulty, we can choose a cutoff energy which is not
exactly zero. We can also calculate Hi by Hi = H−He, which avoids direct calculation of the above integration.

Appendix C. Ripple field

Some works on ripple loss retain only the toroidal component of ripple field, neglecting the poloidal component [22]. In this
work, we retain all the three components and take into account the constraints of curl-free and divergence-free. Assume that
the ripple filed B̃ is determined solely by currents outside the plasma [26], then B̃ in the plasma satisfies the curl-free and
divergence-free conditions, i.e.

∇· B̃= 0 (C1)

∇× B̃= 0 (C2)

In the cylindrical coordinates, equation (C1) is written as

1
R
∂

∂R

(
RB̃R

)
+

1
R
∂B̃ϕ

∂ϕ
+
∂B̃Z
∂Z

= 0, (C3)

and the R, ϕ, and Z components of equation (C2) are written as

1
R
∂B̃Z
∂ϕ

− ∂B̃ϕ

∂Z
= 0, (C4)

∂B̃R
∂Z

− ∂B̃Z
∂R

= 0, (C5)

1
R
∂

∂R

(
RB̃ϕ

)
− 1
R
∂B̃R
∂ϕ

= 0. (C6)

Assume that the toroidal component of the ripple field can be well represented by a single toroidal harmonic, n=N, where
N is the number of toroidal field (TF) coils. Suppose that the toroidal locations of TF coil centers are ϕ = 2π j/N with j =
0,1, . . . ,N− 1. Then, without loss of generality, we write B̃ϕ as

B̃ϕ = Bϕ0 (R,Z) f (R,Z)cos(Nϕ) , (C7)

where f(R,Z) is a unknown function of non-negative value, Bϕ0 is the n= 0 harmonic of the toroidal component of the magnetic
field generated by the TF coils.

(We note that f introduced above is just the ripple amplitude of the toroidal field, δ(R,Z), which is defined by

δ (R,Z) = sign(Bϕ0)
B(max)
ϕ −B(min)

ϕ

B(max)
ϕ +B(min)

ϕ

, (C8)

where the superscript ‘max’ means taking maximum along the ϕ direction. Using Bϕ = Bϕ0(R,Z)+ B̃ϕ(R,Z,ϕ), the above
expression is written as

δ (R,Z) =
2Bϕ0f
2Bϕ0

= f, (C9)

i.e. f is identical to δ.)
Substituting expression (C7) into equation (C3), we know that the dependence of B̃R and B̃Z on ϕ must be sin(Nϕ), i.e. B̃R

and B̃Z have π/2 toroidal phase difference from that of B̃ϕ. Then, without loss of generality, B̃R and B̃Z can be written as

B̃R = Bϕ0g(R,Z)sin(Nϕ) , (C10)
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Figure 21. Left: TF coil central line, first wall, and LCFS. There are 16 TF coils (N= 16). Each coil has 154 turns with nominal current
95.6 kA/turn. Middle: Color map of ripple degree δ within the LCFS. Right: Contours of the ripple.

B̃Z = Bϕ0h(R,Z)sin(Nϕ) , (C11)

where g and h are unknown functions to be determined, which can be determined by the curl-free constraint, as follows. Using
the expressions of BZ and Bϕ in equation (C4), we obtain

h=
R

NBϕ0

∂Bϕ0f
∂Z

. (C12)

Similarly, using the expressions of B̃R and B̃ϕ in equation (C6), we obtain

g=
1

NBϕ0

∂

∂R
(RBϕ0f) (C13)

(We note that the last equation of the curl-free condition, equation (C5), is automatically satisfied when h and g takes the forms
given by equations (C12) and (C13). Therefore, all the component equations of the curl-free condition are satisfied.) Using the
above results, the divergence-free condition is finally written as

∂

∂R

(
R
∂

∂R
(RBϕ0f)

)
−Bϕ0fN

2 +R2 ∂
2

∂Z2
(Bϕ0f) = 0. (C14)

How well this constraint is satisfied depends on the accuracy of B̃ϕ amplitude, i.e. Bϕ0f, which is numerically obtained. In
this work, Bϕ generated by the 16 TF coils is computed by integrating the TF coil currents using the Biot–Savart law. We use
filament currents along the TF coil center-lines to approximate the currents in the TF coils. Values of Bϕ in two poloidal planes
(ϕ= 0 and ϕ = π/N) are computed. Then fBϕ0 is computed by

fBϕ0 =
Bϕ (R,Z,ϕ = 0)−Bϕ (R,Z,ϕ = π/N)

2
. (C15)

Figure 21 plots the TF coil central line and ripple degree of CFETR.
Figure 22 plots the amplitudes of B̃R, B̃Z, and B̃ϕ, which shows that the amplitudes of B̃R and B̃ϕ are of similar magnitude,

indicating the necessity of taking into account the poloidal components.
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Figure 22. The amplitudes of B̃R (left), B̃Z (middle), B̃ϕ (right). The low panel is the corresponding contours.
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