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A formula based on the solutions to the drift kinetic equation is proposed for modeling the trapped

electron correction to the electron shielding current in neutral beam current drive in general

tokamak equilibria and arbitrary collisionality regime. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.3693201]

In preparation for ITER operation, several neutral beam

injection (NBI) and current drive (NBCD) models were reex-

amined and related computer codes benchmarked.1–3 In this

report, we revisit the kinetic theory4–8 of the effect of trapped

electrons on the electron shielding current in NBCD using

Green’s function formulation.9,10 In particular, we extend the

work of Ref. 7 to the finite collisionality regime. With some

approximation, we propose that a formula for neoclassical

bootstrap current given by Sauter et al.11 be used to model

the trapped electron effect in general tokamak equilibria and

arbitrary collisionality regime.

In the presence of the fast ions generated by NBI, the

perturbed electron distribution satisfies the following

Fokker-Planck equation:

vkb̂ � rfe1 � Clðfe1Þ ¼ Ce=f ðfemÞ; (1)

where r is the space gradient operator which is taken by hold-

ing the energy and magnetic moment constant, fem and fe1 are

electron equilibrium Maxwellian distribution and perturbed

distribution function, respectively. b̂ ¼ B=B, B is the equilib-

rium magnetic field, vk is electron velocity parallel to the mag-

netic field, Clðfe1Þ ¼ Cðfe1; femÞ þ Cðfem; fe1Þ þ Ce=iðfe1Þ is the

linearized collision term including electron-electron and

electron-ion collisions, Ce=iðfe1Þ is the collision term of elec-

trons with plasma ions, and Ce=f ðfemÞ is the collision term of

electrons with fast ions, which is assumed to be known and

acts as an inhomogeneous term in Eq. (1).

We want to determine the parallel (to the magnetic field)

current density jek contributed by fe1. It turns out that we can

obtain jek through the following way. First, solve the adjoint

equation

�vkb̂ � rve � ClðveÞ ¼ qevkBf em (2)

to obtain the current response function ve, then jek can be

expressed as

hjekBi ¼
ð

dv
ve

fem
Ce=f ðfemÞ

� �
; (3)

where qe is the charge of electrons, h…i is the flux-surface

average, and dv is the volume element in velocity space.

(The proof of Eq. (3) can be easily obtained by using the

self-adjoint property of the operator vkb̂ � r and Cl, i.e.,9,10

ð
dvgvkb̂ � rh

� �
¼ �

ð
dvhvkb̂ � rg

� �
(4)

and

ð
dvgClðfemhÞ ¼

ð
dvhClðfemgÞ; (5)

where g and h are two arbitrary functions.)

In the usual situation of NBI, the fast ions beam velocity

is much less than the electron thermal velocity, i.e., vf � vte.

This should be applicable to ITER plasmas. In this case, the

collision term of electrons with fast ions can be approxi-

mated as5

Ce=f ðfemÞ ¼
me

Te
�ef vkufkfem; (6)

where ufk is the average parallel velocity of fast ions.

�ef ¼ Z2
f nf �ei=ðZeffneÞ, where ne and nf are the number den-

sity of electrons and fast ions, respectively, Zf is the charge

number of fast ions, and Zeff is the effective charge number

of plasma ions. �ei ¼ Ce=eZeff=v3 is the pitch angle scattering

rate. Ce=e ¼ nee4lnKe=e=ð4p�2
0m2

eÞ; where lnKe=e is the Cou-

lomb logarithm, �e, me, and Te are, respectively, the charge,

mass, and temperature of electrons, and �0 is the dielectric

constant of free space. Using Eq. (6) in Eq. (3), we obtain

hjekBi ¼ �
Zf

Zeff

1

Ipe

jfkB

ð
dvve�ei

Ivk
Xe

� �
; (7)

where jfk ¼ Zf enf ufk is the fast ion parallel current, pe ¼ ne

Te;Xe ¼ �Be=me; I ¼ B/R is a flux-surface function, B/ is

the toroidal component of the equilibrium magnetic field, and

R is the usual cylindrical coordinate of points on the flux-

surface.

To evaluate hjekBi according to Eq. (7), one needs to

know the response function ve and also the poloidal angulara)Electronic mail: yjhu@ipp.ac.cn.
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dependence of jfk. In both banana and Pfirsch-Schlüter

regimes, the term D �
Ð

dvve�eiIvk=Xe appearing in Eq. (7)

can be shown to be a flux surface function. Thus, in these

cases, D can be taken out of the flux surface average opera-

tor. In the case of the intermediate collisionality regime, D is

not exactly a flux surface function and has poloidal angle

dependent collisionality corrections. However, from the

numerical results of neoclassical bootstrap current theory of

Sauter et al.,11 one might expect that these finite collisional-

ity corrections in D are weakly dependent on the poloidal

angle. Working from their numerical results for the dimen-

sionless electron density gradient bootstrap current coeffi-

cients L31 and the electron screening factor in the ion

temperature gradient coefficient L34, one can show that

hB2Di � hB2ihDi in a wide range of the collisionality

parameter �e?, for general tokamak geometry. In particular,

the difference between hDB2i and hDihB2i appears to be

proportional to �e?, instead of
ffiffiffiffiffiffi
�e?
p

, as �e? ! 0. Also, at

�e? ¼ 1 and the effective trapped particle fraction ft ¼ 0:65,

which roughly corresponds to the inverse aspect ratio of 0.2,

the difference between hDB2i and hDihB2i is always less

than 5% for Zeff ¼ 1�5. As for the poloidal angular depend-

ence of jfk, due to large radial excursion of the fast ions, the

poloidal angular dependence of jfk deviates from the usual

jfk / B dependence in the thin banana width limit. On the

other hand, suppose that jfk could be modeled by a one-

parameter function such as aBþ ð1� aÞhB2i=B with

0 < a < 1, which covers a reasonably wide range of the

poloidal angular dependence, then the assumption that D be

a flux-surface function will make a small error in predicting

hjekBi. Based on the above arguments, we write Eq. (7)

approximately, by taking D out of the flux surface average

operator and replacing it by hDi, as

hjekBi ¼ �hjfkBi
Zf

Zeff

1

Ipe

ð
dvve�ei

Ivk
Xe

� �
: (8)

According to the neoclassical bootstrap current theory of

Sauter et al.,11 we have

1

Ipe

ð
dvve�ei

Ivk
Xe

� �
¼ 1� L31; (9)

where L31 is the dimensionless electron density gradient

bootstrap current coefficient. Thus, Eq. (8) is written as

hjekBi ¼ �hjfkBi
Zf

Zeff

ð1� L31Þ: (10)

The total current is the sum of the beam current carried by

the fast ions and the electron shielding current, i.e.,

jk ¼ jfk þ jek. Then, we have

hjkBi ¼ hjfkBi 1� Zf

Zeff

ð1� L31Þ
� �

; (11)

and the ratio of the total current to the fast ion current

F �
hjkBi
hjfkBi

¼ 1� Zf

Zeff

ð1� L31Þ: (12)

The formula of L31 given by Sauter et al.11 is

L31 ¼ 1þ 1:4

Zeff þ 1

� �
X � 1:9

Zeff þ 1
X2 þ 0:3

Zeff þ 1
X3

þ 0:2

Zeff þ 1
X4; (13)

with

X ¼ ft
1þ ð1� 0:1ftÞ

ffiffiffiffiffiffi
�e?
p þ 0:5ð1� ftÞ�e?=Zeff

; (14)

where �e? is the ratio of the electron collision frequency to

the bounce frequency �e? ¼ qR�ee=ð�3=2vteÞ, q and � are the

safety factor and inverse aspect ratio of a toroidal magnetic

surface, respectively, vte ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Te=me

p
; �ee is the electron-

electron collision frequency, �ee ¼
ffiffiffi
2
p

nee4lnKe=
ð12p3=2�2

0

ffiffiffiffiffiffi
me
p

T3=2
e Þ, and ft is the effective trapped fraction12

ft ¼ 1� 3

4

B2

B2
max

� �ð1

0

kdkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kB=Bmax

pD E : (15)

We note that the formulas given by Eqs. (13)–(15) are valid

for general tokamak equilibria and arbitrary collisionality re-

gime. Thus, using these formulas in Eq. (10), we obtain a

formula for the electron shielding current which should be

applicable to all collisionality regimes in tokamak plasmas.

Previous models for the electron shielding current com-

monly used in various transport codes are well summarized

in Refs. 1 and 2. In order to make a comparison with those

models, we take the concentric circular cross-section equilib-

rium given in Ref. 7 and evaluate the ratio F as a function of

the inverse aspect ratio � and the electron collisionality

parameter �e? for the effective charge number of plasma ions

Zeff ¼ 1:6 and the fast ion charge number Zf ¼ 1. The results

are plotted in Fig. 1. The small circles in the figure corre-

spond to the results for the banana regime given in Refs. 7

and 8. We note that our results for F in the banana regime

agree well with those obtained by Kim, Callen, and Hamnén8

using the Hirshman-Sigmar moment approach13 and those

given in Ref. 7 which adopts a bootstrap current formula in

FIG. 1. The ratio F of the total neutral beam driven current to the fast ion

current, Eqs. (12)–(15), as a function of the inverse aspect ratio � in concen-

tric circular flux-surface equilibrium. The different lines in the figure corre-

spond to different values of the electron collisionality parameter, �e? ¼ 0,

0.01, 0.1, and 1.0. The small circles in the figure are the results for the ba-

nana regime given in Refs. 7 and 8. Zeff ¼ 1:6 and Zf ¼ 1.
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the banana regime for general tokamak geometry given by

Hirshman.14 As is shown in the figure, the results for small

values of �e? are close to those in the banana regime as

expected. The results in the figure also indicate that the ratio

of the total current to the fast ion current is reduced when the

value of �e? is increased. This means the electron shielding

current is actually increased when �e? is increased. The ex-

planation for this is that the collision increases the fraction

of circulating electrons so that more electrons can contribute

to the shielding current.

Up to now, there is only one collisional model for the

electron shielding current in NBCD available in the litera-

ture, which is based on a formula given by Hirshman.13,15,16

This model has been implemented in two widely used trans-

port codes, TRANSP and ONETWO,17,18 to model NBCD.

While the formulation and final expressions of the model can

be found in a number of paper,13,15,16 a nice summary of the

model and its code implementation in TRANSP are given in

Ref. 2. (Hereafter, we will refer to it as the Hirshman1978

model.) Fig. 2 compares the ratio F calculated by the Hirsh-

man1978 model with the one by Eqs. (12)–(15) in this report.

Hirshman’s formula is obtained in the case of small inverse

aspect ratio and is valid only for 0:01 � � � 0:15 (Ref. 2);

thus, the comparison in Fig. 2 is limited to this range. The

solid lines are results of the present work adopting Sauter’s

formulas for the bootstrap current coefficient, Eqs.

(12)–(15), while the dashed lines are those of Hirshman’s

formula. The two sets of the curves show similar qualitative

behaviors of F as a function of the inverse aspect ratio � and

the electron collisionality parameter �e?. The observed dis-

crepancies are within 15%. The discrepancies can be attrib-

uted to several factors. The results of the Hirshman1978

model are obtained in the case of small inverse aspect ratio.

In Fig. 2, one can see the trend that as �! 0 the two sets of

curves agree with each other better and better. For finite as-

pect ratio, the Hirshman results gradually deviate from those

of the present work. This can be attributed to some finite as-

pect ratio corrections neglected in his model. Another source

of the discrepancies could come from the difference in the

interpolation schemes for deriving the final analytic expres-

sions of the two models. Sauter’s formulas, which we use

here, are a direct fit of the code results of the bootstrap cur-

rent coefficient based on the drift kinetic equation with the

full electron-electron collision operator in general tokamak

geometry. Hirshman’s formulas are obtained based on the

moment approach with an interpolation formula of viscosity

moments from low and high collisionality regimes. Those

moments are calculated with a reduced collision operator at

the small inverse aspect limit.

In summary, we have showed that, for arbitrary aspect ra-

tio and arbitrary collisionality regime, the electron shielding

current in neutral beam current drive can be approximately

expressed in terms of the electron density gradient coefficient

of the bootstrap current, L31. Thus, the existing formula for

L31 valid for general tokamak equilibria and arbitrary colli-

sionality regime provides a general formula for calculating the

electron shielding current. These formulas [Eqs. (10)–(15)]

for the electron shielding current can be easily included in

transport codes to model neutral beam current drive.
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