Normalization

The reduced equilibrium distribution function $ F_0$ satisfies the normalization condition $ \int_{- \infty}^{\infty} F_0 (v_z) d v_z = n_0$, where $ n_0$ the number density of electrons. Denote the thermal velocity of the equilibrium distribution by $ v_t$. Then Eq. (70) can be written

$\displaystyle \frac{\partial \hat{F}_1}{\partial t} = - i k v_z \hat{F}_1 - \fr...
...c{\partial F_0}{\partial v_z} \right) \int_{- \infty}^{\infty} \hat{F}_1 d v_z,$ (72)

which can be further written

$\displaystyle \frac{\partial \hat{F}_1}{\partial t} = - i k v_t \overline{v}_z ...
...F_0}{\partial v_z} \right) \int_{- \infty}^{\infty} \hat{F}_1 d \overline{v}_z,$ (73)

where $ \overline{v}_z = v_z / v_t$, $ \omega_p = \sqrt{n_0 q^2 / (\varepsilon_0
m)}$ is the electron plasma frequency. Define $ \overline{t} = t \omega_p$, then Eq. (73) is written

$\displaystyle \frac{\partial \hat{F}_1}{\partial \overline{t}} = - \frac{i k v_...
...F_0}{\partial v_z} \right) \int_{- \infty}^{\infty} \hat{F}_1 d \overline{v}_z,$ (74)

Define $ a = i k v_t / \omega_p$, then the above equation is written

$\displaystyle \frac{\partial \hat{F}_1}{\partial \overline{t}} = - a \overline{...
...F_0}{\partial v_z} \right) \int_{- \infty}^{\infty} \hat{F}_1 d \overline{v}_z,$ (75)



yj 2016-01-26