Iterative method for solving equation of motion in wave field

Consider the motion of a test particle moving in a longitudinal wave,

$\displaystyle \mathbf{E}= \hat{\mathbf{z}} E \cos (k z - \omega t),$ (12)

then the equation of motion is given by

$\displaystyle m \frac{d v}{d t} = q E \cos (k z - \omega t),$ (13)

and

$\displaystyle \frac{d z}{d t} = v,$ (14)

with initial condition $ v (0) = v_0$ and $ z (0) = z_0$, where $ v \equiv \mathbf{v} \cdot \hat{\mathbf{z}}$ and $ \mathbf{v}$ is the velocity of the particle. Equations (13) and (14) are nonlinear system, for which exact solutions are hard to be found. Here, we consider the amplitude of the electrical field, $ E$, as a small perturbation, and use the iterative method[2] to solve Eqs. (13) and (14) approximately. The initial guess of the solution is obtained by setting $ E =
0$, which gives

$\displaystyle v^{(0)} = v_0,$ (15)

and

$\displaystyle z^{(0)} = z_0 + v_0 t.$ (16)

Substituting this solution back into the right-hand side of Eq. (13), we obtain

$\displaystyle m \frac{d v^{(1)}}{d t} = q E \cos (k z_0 + k v_0 t - \omega t),$ (17)

which can be integrated over time to give

$\displaystyle v^{(1)} = v_0 + \frac{q E}{m} \frac{\sin (k z_0 + \alpha t) - \sin (k z_0)}{\alpha},$ (18)

where $ \alpha = k v_0 - \omega$ and use has been made of the initial condition $ v^{(1)} (0) = v_0$. Substituting this solution for the velocity, Eq. (14) is written

$\displaystyle \frac{d z^{(1)}}{d t} = v_0 + \frac{q E}{m} \frac{\sin (k z_0 + \alpha t) - \sin (k z_0)}{\alpha},$ (19)

which can be integrated over time, giving
$\displaystyle z^{(1)}$ $\displaystyle =$ $\displaystyle z_0 + v_0 t + \frac{q E}{m} \int_0^t \frac{\sin (k z_0 +
\alpha t) - \sin (k z_0)}{\alpha} d t,$  
  $\displaystyle =$ $\displaystyle z_0 + v_0 t + \frac{q E}{m} \int_0^t \frac{\sin (k z_0 + \alpha t) -
\sin (k z_0)}{\alpha^2} d (k z_0 + \alpha t),$  
  $\displaystyle =$ $\displaystyle z_0 + v_0 t + \frac{q E}{m} \left[ \frac{- \cos (k z_0 + \alpha t) +
\cos (k z_0)}{\alpha^2} - \frac{\sin (k z_0)}{\alpha} t \right],$ (20)

where use has been made of the initial condition $ z^{(1)} (0) = z_0$. Substituting the solution in Eq. (20) back into the right-hand side of Eq. (13), we obtain
$\displaystyle m \frac{d v^{(2)}}{d t}$ $\displaystyle =$ $\displaystyle q E \cos (k z^{(1)} - \omega t)$  
  $\displaystyle =$ $\displaystyle q E \cos \left\{ k z_0 + k v_0 t + k \frac{q E}{m} \left[ \frac{-...
... (k z_0)}{\alpha^2} - \frac{t \sin (k
z_0)}{\alpha} \right] - \omega t \right\}$  
  $\displaystyle =$ $\displaystyle q E \cos \left\{ k z_0 + \alpha t + k \frac{q E}{m} \left[ \frac{...
...t) + \cos (k z_0)}{\alpha^2} - \frac{\sin (k
z_0)}{\alpha} t \right] \right\} .$ (21)

Since $ E$ is considered to be a small parameter, the term proportional to $ E$ can be considered to be small when compared with $ k z_0 + \alpha t$. Therefore, we expand the first cosine function in the vicinity of $ k z_0 + \alpha t$. Thus the above equation is written approximately as

$\displaystyle m \frac{d v^{(2)}}{d t} \approx q E \cos (k z_0 + \alpha t) - \si...
...+ \alpha t) + \cos (k z_0)}{\alpha^2} - \frac{\sin (k z_0)}{\alpha} t \right] .$ (22)

Next, calculate the time change rate of the kinetic energy of the particle, which is written as
$\displaystyle \frac{d}{d t} \left( \frac{1}{2} m v^2 \right)$ $\displaystyle =$ $\displaystyle m v \frac{d v}{d t}$  
  $\displaystyle \approx$ $\displaystyle m v^{(1)} \frac{d v^{(2)}}{d t}$ (23)

Using Eq. (18) for $ v^{(1)}$ and Eq. (22) for $ m d
v^{(2)} / d t$, Eq. (23) is written
$\displaystyle \frac{d}{d t} \left( \frac{1}{2} m v^2 \right)$ $\displaystyle \approx$ $\displaystyle \left[ v_0 +
\frac{q E}{m} \frac{\sin (k z_0 + \alpha t) - \sin (k z_0)}{\alpha} \right]$  
  $\displaystyle \times$ $\displaystyle \left\{ q E \cos (k z_0 + \alpha t) - \sin (k z_0 + \alpha t) k
\...
...a t) + \cos (k
z_0)}{\alpha^2} - \frac{\sin (k z_0)}{\alpha} t \right] \right\}$  
  $\displaystyle \approx$ $\displaystyle v_0 q E \cos (k z_0 + \alpha t)$  
  $\displaystyle -$ $\displaystyle v_0 \sin (k z_0 + \alpha t) k \frac{(q E)^2}{m} \left[ \frac{- \c...
...0 + \alpha t) + \cos (k z_0)}{\alpha^2} - \frac{\sin (k z_0)}{\alpha} t
\right]$  
  $\displaystyle +$ $\displaystyle \frac{(q E)^2}{m} \frac{\sin (k z_0 + \alpha t) - \sin (k
z_0)}{\alpha} \cos (k z_0 + \alpha t),$ (24)

where the terms of order $ E^3$ have been neglected (if terms of order $ E^3$ and higher are included, then the result will correspond to nonlinear Landau damping, is this correct?). Equations (24) agrees with Eq. (8) in Chapter 8 of Stix's book[4] (however Stix's formula misses, by mistakes, the first term of the above equation).

yj 2016-01-26