Averaging over initial spatial location and velocity of particles

Assume the distribution function of the particles is given by $ F (v_0, z_0) =
f (v_0) h (z_0)$ and $ h (z_0) = 1$, i.e. the distribution is uniform in space.

Consider the averaging over the initial position of particles. Define

$\displaystyle \langle \ldots \rangle_{z_0} \equiv \frac{k}{2 \pi} \int_0^{2 \pi / k} (\ldots) h (z_0) d z_0,$ (25)

which is an operator averaging over the initial position of particles in the interval of one wave length. Using this operator on both sides of Eq. (24), we obtain
$\displaystyle \left\langle \frac{d}{d t} \left( \frac{1}{2} m v^2 \right)
\right\rangle_{z_0}$ $\displaystyle =$ $\displaystyle \langle v_0 q E \cos (k z_0 + \alpha t) \rangle -
\left\langle \s...
...k z_0 + \alpha t) - \sin (k z_0)}{\alpha} \cos (k z_0 + \alpha
t) \right\rangle$ (26)
  $\displaystyle =$ $\displaystyle 0 - \frac{k}{2 \pi} k v_0 \frac{(q E)^2}{m} \int_0^{2 \pi / k} \s...
...\sin (k z_0 + \alpha t) -
\sin (k z_0)}{\alpha} \cos (k z_0 + \alpha t) d z_0 .$ (27)

Note that the term $ v_0 q E \cos (k z_0 + \alpha t)$ corresponds to the power of the electric field acting on those particles that move at a constant speed $ v_0$. Also note this term is reduced to zero when averaged over the initial position $ z_0$ no mater whether it is a resonant particle (i.e., $ \alpha
\approx 0$) or not (i.e., $ \alpha \neq 0$). (This important fact is seldom mentioned in textbooks, which is one of the motivations that I wrote this note.) Changing to the new variable $ x \equiv k z_0 + \alpha t$, the above equation is written as
$\displaystyle \left\langle \frac{d}{d t} \left( \frac{1}{2} m v^2 \right)
\right\rangle_{z_0}$ $\displaystyle =$ $\displaystyle - \frac{k}{2 \pi} k v_0 \frac{(q E)^2}{m}
\int_{\alpha t}^{2 \pi ...
...alpha t} \frac{\sin (x) - \sin (x - \alpha t)}{\alpha} \cos (x)
\frac{1}{k} d x$  
  $\displaystyle =$ $\displaystyle - \frac{1}{2 \pi} k v_0 \frac{(q E)^2}{m} \int_{\alpha t}^{2 \pi ...
...t_{\alpha t}^{2 \pi + \alpha t} \frac{\sin (x - \alpha t)}{\alpha} \cos
(x) d x$  
  $\displaystyle =$ $\displaystyle - \frac{1}{2 \pi} k v_0 \frac{(q E)^2}{m} \left[ \frac{1}{\alpha^...
...{1}{\alpha}
\int_{\alpha t}^{2 \pi + \alpha t} \sin (x - \alpha t) \cos (x) d x$  
  $\displaystyle =$ $\displaystyle - \frac{1}{2 \pi} k v_0 \frac{(q E)^2}{m} \left[ \frac{\pi}{\alph...
...right] + \frac{1}{2
\pi} \frac{(q E)^2}{m} \frac{1}{\alpha} \pi \sin (\alpha t)$  
  $\displaystyle =$ $\displaystyle \frac{(q E)^2}{2 m} \left[ - k v_0 \frac{1}{\alpha^2} \sin (\alph...
...v_0 \frac{t}{\alpha} \cos (\alpha t) + \frac{1}{\alpha} \sin (\alpha t)
\right]$  
  $\displaystyle =$ $\displaystyle \frac{(q E)^2}{2 m} \left[ - (\alpha + \omega) \frac{1}{\alpha^2}...
...ga) \frac{t}{\alpha} \cos (\alpha t) +
\frac{1}{\alpha} \sin (\alpha t) \right]$ (28)
  $\displaystyle =$ $\displaystyle \frac{(q E)^2}{2 m} \left[ - \frac{\omega}{\alpha^2} \sin (\alpha t)
+ t \cos (\alpha t) + \frac{\omega t}{\alpha} \cos (\alpha t) \right],$ (29)

which agrees with Eq. (8) in Chapter 8 of Stix's book. Next, we will average Eq. (29) over the distribution of initial velocity. Define the averaging operator in velocity space

$\displaystyle \langle \ldots \rangle_{v_0} = \int_{- \infty}^{\infty} (\ldots) f (v_0) d v_0,$ (30)

where $ f (v_0)$ is the one-dimensional distribution function, which satisfies the following normalizing condition

$\displaystyle \int_{- \infty}^{\infty} f (v_0) d v_0 = 1.$ (31)

Changing to the variables $ \alpha \equiv k v_0 - \omega$, equation (30) is written as

$\displaystyle \langle \ldots \rangle_{v_0} = \frac{1}{\vert k\vert} \int_{- \infty}^{\infty} (\ldots) f \left( \frac{\alpha + \omega}{k} \right) d \alpha,$ (32)

Define

$\displaystyle g (\alpha) \equiv f \left( \frac{\alpha + \omega}{k} \right) .$ (33)

then equation (32) is written as

$\displaystyle \langle \ldots \rangle_{v_0} = \frac{1}{\vert k\vert} \int_{- \infty}^{\infty} (\ldots) g (\alpha) d \alpha,$ (34)

Taking the average over the initial velocity, Eq. (29) is written as
$\displaystyle \left\langle \left\langle \frac{d}{d t} \left( \frac{1}{2} m v^2 \right)
\right\rangle_{z_0} \right\rangle_{v_0}$ $\displaystyle =$ $\displaystyle \left\langle \frac{(q E)^2}{2
m} \left[ - \frac{\omega}{\alpha^2}...
...\alpha t) +
\frac{\omega t}{\alpha} \cos (\alpha t) \right] \right\rangle_{v_0}$  
  $\displaystyle =$ $\displaystyle \frac{1}{\vert k\vert} \frac{(q E)^2}{2 m} \int_{- \infty}^{\inft...
...\alpha t) + \frac{\omega
t}{\alpha} \cos (\alpha t) \right] g (\alpha) d \alpha$ (35)

It can be proved that the integration $ \int_{- \infty}^{\infty} t \cos (\alpha
t) g (\alpha) d \alpha$ and $ \int_{- \infty}^{\infty} \frac{t}{\alpha} \cos
(\alpha t) g (\alpha) d \alpha$ in the above equation approach zero rapidly for large $ t$ (refer to Sec. 2.5.3). Thus, in the sense of time asymptotic, we are left with only the integration of the first term, which is written as

$\displaystyle - \frac{1}{\vert k\vert} \frac{(q E)^2}{2 m} \int_{- \infty}^{\infty} \frac{\omega}{\alpha^2} \sin (\alpha t) g (\alpha) d \alpha .$ (36)

yj 2016-01-26