Slow sound approximation

Examining the expression (138) for matrix element $ E_{22}$, we find that the first term of $ E_{22}$ can be written as

$\displaystyle \frac{{\textmu}_0^{- 1} B_0^2 + \gamma p_0}{B_0^2} ={\textmu}_0^{- 1} \left( 1 + \frac{\gamma \beta}{2} \right),$ (214)

where $ \beta \equiv p_0 / (B_0^2 / 2{\textmu}_0)$, while the second term of $ E_{22}$ can be written as
$\displaystyle {\textmu}_0^{- 1} \frac{\gamma p_0}{\omega^2 \rho_0} \mathbf{B}_0 \cdot
\nabla \left( \frac{\mathbf{B}_0 \cdot \nabla}{B^2_0} \right)$ $\displaystyle \approx$ $\displaystyle {\textmu}_0^{- 1} \left( \frac{\gamma p_0}{\omega^2 \rho_0} k_{\parallel}^2
\right),$  
  $\displaystyle \approx$ $\displaystyle {\textmu}_0^{- 1} \left( \frac{\gamma p_0}{V_A^2 \rho_0}
\right)$  
  $\displaystyle =$ $\displaystyle {\textmu}_0^{- 1} \left( \frac{\gamma p_0}{\frac{B_0^2}{{\textmu}_0
\rho_0} \rho_0} \right)$  
  $\displaystyle =$ $\displaystyle {\textmu}_0^{- 1} \left( \frac{\gamma \beta}{2} \right) .$ (215)

where $ k_{\parallel }$ is the parallel wave vector and we have used the approximation $ \omega / k_{\parallel} \approx V_A$. Using Eqs. (214) and (215), the ratio of the second term to the first term of $ E_{22}$ is written as $ (\gamma \beta / 2) / [1 + \gamma \beta / 2]$. For low $ \beta $ ( $ \beta \ll 1$) equilibrium, the ratio is small and therefore the second term of $ E_{22}$ can be dropped. This approximation is called the slow sound approximation in the literature[6,7]. Numerical results indicate this approximation will remove all the sound continua while keeping the Alfven continua nearly unchanged.

yj 2015-09-04