Eigenmode equations using $ (P_1, \xi _{\psi }, \xi _s, \nabla \cdot \xi )$ as variables

Using Eqs. (121) and (122) to eliminate $ Q_{\psi}$, $ Q_s$, Eqs. (124) and (125) are written, respectively, as

$\displaystyle \nabla \Psi \cdot \nabla P_1$ $\displaystyle =$ $\displaystyle \omega^2 \rho_0 \xi_{\psi}
+{\textmu}_0^{- 1} \vert \nabla \Psi \...
...
\frac{\mathbf{B}_0 \cdot \nabla \xi_{\psi}}{\vert \nabla \Psi \vert^2} \right)$  
  $\displaystyle +$ $\displaystyle ({\textmu}_0^{- 1} \vert \nabla \Psi \vert^2 S - B_0^2 \sigma) \f...
...rt \nabla
\Psi \vert^2}{B^2_0} (\mathbf{B}_0 \cdot \nabla \xi_s - S \xi_{\psi})$  
  $\displaystyle +$ $\displaystyle 2{\textmu}_0^{- 1} \kappa_{\psi} Q_b .$ (127)

and
$\displaystyle - \omega^2 \rho_0 \vert \nabla \Psi \vert^2 \xi_s$ $\displaystyle =$ $\displaystyle - (\mathbf{B}_0 \times
\nabla \Psi) \cdot \nabla P_1 + B_0^2 \sig...
...a \Psi \vert^2}{B^2_0} (\mathbf{B}_0 \cdot \nabla \xi_s - S \xi_{\psi})
\right]$  
  $\displaystyle +$ $\displaystyle 2{\textmu}_0^{- 1} B_0^2 \kappa_s Q_b$ (128)

Following Ref. [3], we will express the final eigenmodes equations in terms of the following four variables: $ P_1$, $ \xi_{\psi}$, $ \xi_s$, and $ \nabla \cdot \ensuremath{\boldsymbol{\xi}}$. In order to achieve this, we need to eliminate unwanted variables. Since we will use $ P_1 \equiv p_1
+\mathbf{B}_0 \cdot \mathbf{B}_1 /{\textmu}_0$ instead of $ p_1$ as one of the variables. we write the equation (120) for the perturbed pressure in terms of $ P_1$ variable, which gives

$\displaystyle P_1 -{\textmu}_0^{- 1} Q_b + p_0' \xi_{\psi} = - \gamma p_0 \nabla \cdot \ensuremath{\boldsymbol{\xi}}.$ (129)

Using (129) to eliminate $ Q_b$ in Eq. (128), we obtain
$\displaystyle - \frac{\omega^2 \rho_0 \vert \nabla \Psi \vert^2}{B_0^2} \xi_s$ $\displaystyle =$ $\displaystyle - \left(
\frac{\mathbf{B}_0 \times \nabla \Psi}{B_0^2} \right) \c...
...a \Psi \vert^2}{B^2_0} (\mathbf{B}_0 \cdot
\nabla \xi_s - S \xi_{\psi}) \right]$  
  $\displaystyle +$ $\displaystyle 2 \kappa_s \gamma p_0 \nabla \cdot \ensuremath{\boldsymbol{\xi}}+ 2 \kappa_s P_1 + 2
\kappa_s p_0' \xi_{\psi}$ (130)

Using pressure equation (120) to eliminate $ p_1$ in Eq. (126), we obtain

$\displaystyle \omega^2 \rho_0 \xi_b = - \gamma p_0 \mathbf{B}_0 \cdot \nabla (\nabla \cdot \ensuremath{\boldsymbol{\xi}}),$ (131)

which can be used in Eq. (123) to eliminate $ \xi_b$, yielding

$\displaystyle Q_b = \xi_{\psi} \left( - \frac{2 B^2_0}{\vert \nabla \Psi \vert^...
...}_0 \cdot \nabla (\nabla \cdot \ensuremath{\boldsymbol{\xi}})}{B^2_0} \right) .$ (132)

Using Eq. (132) to eliminate $ Q_b$ in Eq. (129), we obtain

$\displaystyle P_1 +{\textmu}_0^{- 1} \left[ \frac{2 B^2_0}{\vert \nabla \Psi \v...
...^2_0} \right) \right] = - \gamma p_0 \nabla \cdot \ensuremath{\boldsymbol{\xi}}$ (133)

Equations (130) and (133), which involves only surface derivative operators, can be put in the following matrix form:

$\displaystyle \left(\begin{array}{cc} E_{11} & E_{12}\\ E_{21} & E_{22} \end{ar...
...} \end{array}\right) \left(\begin{array}{c} P_1\\ \xi_{\psi} \end{array}\right)$ (134)

with the matrix elements given by

$\displaystyle E_{11} = - \frac{\omega^2 \rho_0 \vert \nabla \Psi \vert^2}{B_0^2...
...left( \frac{\vert \nabla \Psi \vert^2}{B^2_0} \mathbf{B}_0 \cdot \nabla \right)$ (135)

$\displaystyle E_{12} = - 2 \kappa_s \gamma p_0$ (136)

$\displaystyle E_{21} = 2{\textmu}_0^{- 1} \kappa_s$ (137)

$\displaystyle E_{22} = \frac{{\textmu}_0^{- 1} B_0^2 + \gamma p_0}{B_0^2} +{\te...
...mathbf{B}_0 \cdot \nabla \left( \frac{\mathbf{B}_0 \cdot \nabla}{B^2_0} \right)$ (138)

$\displaystyle F_{11} = 2 \kappa_s - \left( \frac{\mathbf{B}_0 \times \nabla \Psi}{B_0^2} \right) \cdot \nabla$ (139)

$\displaystyle F_{12} = \sigma \mathbf{B}_0 \cdot \nabla -{\textmu}_0^{- 1} \mat...
...c{\vert \nabla \Psi \vert^2}{B^2_0} S \right) + 2 \kappa_s \frac{d p_0}{d \Psi}$ (140)

$\displaystyle F_{21} = - \frac{1}{B_0^2}$ (141)

$\displaystyle F_{22} = -{\textmu}_0^{- 1} \frac{2}{\vert \nabla \Psi \vert^2} \kappa_{\psi} .$ (142)

Equations (134)-(142) agree with equations (25), (28), and (29) of Ref [3].

Using Eq. (129) to eliminate $ Q_b$ in Eq. (127), we obtain

$\displaystyle \nabla \Psi \cdot \nabla P_1$ $\displaystyle =$ $\displaystyle \omega^2 \rho_0 \xi_{\psi}
+{\textmu}_0^{- 1} \vert \nabla \Psi \...
...
\frac{\mathbf{B}_0 \cdot \nabla \xi_{\psi}}{\vert \nabla \Psi \vert^2} \right)$  
  $\displaystyle +$ $\displaystyle ({\textmu}_0^{- 1} \vert \nabla \Psi \vert^2 S - B_0^2 \sigma) \f...
...rt \nabla
\Psi \vert^2}{B^2_0} (\mathbf{B}_0 \cdot \nabla \xi_s - S \xi_{\psi})$  
  $\displaystyle +$ $\displaystyle 2 \kappa_{\psi} [P_1 + \gamma p_0 \nabla \cdot \ensuremath{\boldsymbol{\xi}}+
\xi_{\psi} p_0']$ (143)

The equation for the divergence of $ \ensuremath{\boldsymbol{\xi}}$ [Eq. (95)] is written

$\displaystyle \nabla \Psi \cdot \nabla \xi_{\psi} = \vert \nabla \Psi \vert^2 \...
...}_0 \cdot \nabla (\nabla \cdot \ensuremath{\boldsymbol{\xi}})}{B^2_0} \right) .$ (144)

Equations (143) and (144) can be put in the following matrix form

$\displaystyle \nabla \Psi \cdot \nabla \left(\begin{array}{c} P_1\\ \xi_{\psi} ...
...rray}{c} \xi_s\\ \nabla \cdot \ensuremath{\boldsymbol{\xi}} \end{array}\right),$ (145)

with the matrix elements given by

$\displaystyle C_{11} = 2 \kappa_{\psi}$ (146)

$\displaystyle C_{12} = \omega^2 \rho_0 +{\textmu}_0^{- 1} \vert \nabla \Psi \ve...
...frac{\vert \nabla \Psi \vert^2}{B^2_0} S + 2 \kappa_{\psi} \frac{d p_0}{d \Psi}$ (147)

$\displaystyle D_{11} = ({\textmu}_0^{- 1} \vert \nabla \Psi \vert^2 S - B_0^2 \sigma) \frac{\vert \nabla \Psi \vert^2}{B^2_0} \mathbf{B}_0 \cdot \nabla$ (148)

$\displaystyle D_{12} = 2 \gamma p_0 \kappa_{\psi}$ (149)

$\displaystyle C_{21} = 0$ (150)

$\displaystyle C_{22} = - \vert \nabla \Psi \vert^2 \nabla \cdot \left( \frac{\nabla \Psi}{\vert \nabla \Psi \vert^2} \right)$ (151)

$\displaystyle D_{21} = - \vert \nabla \Psi \vert^2 \frac{(\mathbf{B}_0 \times \nabla \Psi)}{B^2_0} \cdot \nabla + 2 \vert \nabla \Psi \vert^2 \kappa_s$ (152)

$\displaystyle D_{22} = \vert \nabla \Psi \vert^2 + \frac{\gamma p_0 \vert \nabl...
...thbf{B}_0 \cdot \nabla \left( \frac{\mathbf{B}_0 \cdot \nabla}{B^2_0} \right) .$ (153)

Equations (146)-(153) agree with Equations (26) and (27) in Ref.[3]. (It took me several months to manage to put the equations in the matrix form given here.)

yj 2015-09-04