Orthogonality relation

Next, we shall prove the following orthogonality relation

$\displaystyle \nabla x^i \cdot \frac{\partial \mathbf{r}}{\partial x^j} = \delta_{i j},$ (106)

where $ \delta_{i j}$ is the Kronical delta function. [Proof: The left-hand side of Eq. (106) can be written as
$\displaystyle \nabla x^i \cdot \frac{\partial \mathbf{r}}{\partial x^j}$ $\displaystyle =$ $\displaystyle \left[
\left( \frac{\partial x^i}{\partial x} \right) \hat{\mathb...
...^j} \hat{\mathbf{z}} + z \frac{\partial
\hat{\mathbf{z}}}{\partial x^j} \right]$  
  $\displaystyle =$ $\displaystyle \left[ \left( \frac{\partial x^i}{\partial x} \right)
\hat{\mathb...
...^j} \hat{\mathbf{y}} +
\frac{\partial z}{\partial x^j} \hat{\mathbf{z}} \right]$  
  $\displaystyle =$ $\displaystyle \frac{\partial x^i}{\partial x} \frac{\partial x}{\partial x^j} +...
...\partial x^j} +
\frac{\partial x^i}{\partial z} \frac{\partial z}{\partial x^j}$  
  $\displaystyle =$ $\displaystyle \frac{\partial x^i}{\partial x^j}$  
  $\displaystyle =$ $\displaystyle \delta_{i j},$  

where the second equality is due to

$\displaystyle \frac{\partial \hat{\mathbf{x}}}{\partial x^j} = 0, \frac{\partia...
...hbf{y}}}{\partial x^j} = 0, \frac{\partial \hat{\mathbf{z}}}{\partial x^j} = 0,$ (107)

since $ \hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}}$ are constant vectors independent of spatial location.]

It can be proved that $ \nabla x^i$ is a contravariant vector while $ \partial
\mathbf{r}/ \partial x^i$ is a covariant vector (I do not prove this). The orthogonality relation in Eq. (106) is fundamental to the theory of general coordinates. (The cylindrical coordinate system $ (R, \phi, Z)$ is an example of general coordinates. As an exercise, we can verify that the cylindrical coordinates have the above property. In this case, $ x = x_1 \cos
x_2$, $ y = x_1 \sin x_2$, $ z = x_3$, where $ x_1 \equiv R$, $ x_2 \equiv \phi$, $ x_3 \equiv Z$.) The orthogonality relation allows one to write the covariant basis vectors in terms of contravariant basis vectors and vice versa. For example, the orthogonality relation tells that $ \partial \mathbf{r}/ \partial
x^1$ is orthogonal to $ \nabla x^2$ and $ \nabla x^3$, thus, $ \partial \mathbf{r}/ \partial
x^1$ can be written as

$\displaystyle \frac{\partial \mathbf{r}}{\partial x^1} = A \nabla x^2 \times \nabla x^3,$ (108)

where $ A$ is a unknown variable to be determined. To determine $ A$, dotting Eq. (108) by $ \nabla x^1$, and using the orthogonality relation again, we obtain

$\displaystyle 1 = A (\nabla x^2 \times \nabla x^3) \cdot \nabla x^1,$ (109)

which gives
$\displaystyle A$ $\displaystyle =$ $\displaystyle \frac{1}{(\nabla x^2 \times \nabla x^3) \cdot \nabla x^1}$  
  $\displaystyle =$ $\displaystyle \mathcal{J}$ (110)

Thus $ \partial \mathbf{r}/ \partial
x^1$ is written, in terms of $ \nabla x^1$, $ \nabla x^2$, and $ \nabla x^3$, as

$\displaystyle \frac{\partial \mathbf{r}}{\partial x^1} =\mathcal{J} \nabla x^2 \times \nabla x^3 .$ (111)

Similarly, we obtain

$\displaystyle \frac{\partial \mathbf{r}}{\partial x^2} =\mathcal{J} \nabla x^3 \times \nabla x^1$ (112)

and

$\displaystyle \frac{\partial \mathbf{r}}{\partial x^3} =\mathcal{J} \nabla x^1 \times \nabla x^2 .$ (113)

Equations (111)-(113) can be generally written

$\displaystyle \frac{\partial \mathbf{r}}{\partial x^i} =\mathcal{J} \nabla x^j \times \nabla x^k,$ (114)

where $ (i, j, k)$ represents the cyclic order in the variables $ (x^1, x^2, x^3)$. Equation (114) expresses the covariant basis vectors in terms of the contravariant basis vectors. On the other hand, from Eq. (111)-(113), we obtain

$\displaystyle \nabla x^i =\mathcal{J}^{- 1} \frac{\partial \mathbf{r}}{\partial x^j} \times \frac{\partial \mathbf{r}}{\partial x^k},$ (115)

which expresses the contravariant basis vectors in terms of the covariant basis vectors.

yj 2018-03-09