Example: ( $ \psi , \theta , \zeta $) coordinates

Suppose $ (\psi , \theta , \zeta )$ is an arbitrary general coordinate system. Then the covariant basis vectors are $ \nabla \psi$, $ \nabla \theta $, and $ \nabla \zeta$, and the corresponding contravariant basis vectors are written as

$\displaystyle \frac{\partial \mathbf{r}}{\partial \psi} =\mathcal{J} \nabla \theta \times \nabla \zeta,$ (116)

$\displaystyle \frac{\partial \mathbf{r}}{\partial \theta} =\mathcal{J} \nabla \zeta \times \nabla \psi,$ (117)

and

$\displaystyle \frac{\partial \mathbf{r}}{\partial \zeta} =\mathcal{J} \nabla \psi \times \nabla \theta .$ (118)

In Einstein notation, contravariant basis vectors are denoted with upper indices as
$\displaystyle \mathbf{e}^{\psi} \equiv \nabla \psi ;$ $\displaystyle \mathbf{e}^{\theta} \equiv \nabla
\theta ;$ $\displaystyle \mathbf{e}^{\zeta} \equiv \nabla \zeta .$ (119)

and the covariant basis vectors are denoted with low indices as
$\displaystyle \mathbf{e}_{\psi} \equiv \frac{\partial \mathbf{r}}{\partial \psi} ;$ $\displaystyle \mathbf{e}_{\theta} \equiv \frac{\partial \mathbf{r}}{\partial \theta} ;$ $\displaystyle \mathbf{e}_{\zeta} \equiv \frac{\partial \mathbf{r}}{\partial \zeta} .$  

Then the orthogonality relation, Eq. (106), is written as

$\displaystyle \mathbf{e}^{\alpha} \cdot \mathbf{e}_{\beta} = \delta_{\alpha \beta} .$ (120)

Then, in term of the contravairant basis vectors, $ \mathbf{A}$ is written

$\displaystyle \mathbf{A}= A_{\psi} \mathbf{e}^{\psi} + A_{\theta} \mathbf{e}^{\theta} + A_{\zeta} \mathbf{e}^{\zeta},$ (121)

where $ A_{\psi} =\mathbf{A} \cdot \mathbf{e}_{\psi}$, $ A_{\theta} =\mathbf{A}
\cdot \mathbf{e}_{\theta}$, and $ A_{\zeta} =\mathbf{A} \cdot
\mathbf{e}_{\zeta}$. Similarly, in term of the covariant basis vectors, $ \mathbf{A}$ is written

$\displaystyle \mathbf{A}= A^{\psi} \mathbf{e}_{\psi} + A^{\theta} \mathbf{e}_{\theta} + A^{\zeta} \mathbf{e}_{\zeta},$ (122)

where $ A^{\psi} =\mathbf{A} \cdot \mathbf{e}^{\psi}$, $ A^{\theta} =\mathbf{A}
\cdot \mathbf{e}^{\theta}$, and $ A^{\zeta} =\mathbf{A} \cdot
\mathbf{e}^{\zeta}$.

[In passing, we note that $ \Psi \equiv A_{\phi} R$ is the covariant toroidal component of $ \mathbf{A}$ in cylindrical coordinates $ (R, \phi, Z)$. The proof is as follows. Note that the covariant form of $ \mathbf{A}$ should be expressed in terms of the contravariant basis vector ($ \nabla R$, $ \nabla
\phi$, and $ \nabla Z$), i.e.,

$\displaystyle \mathbf{A}= A_1 \nabla R + A_2 \nabla \phi + A_3 \nabla Z.$ (123)

where $ A_2$ is the covariant toroidal component of $ \mathbf{A}$. To obtain $ A_2$, we take scalar product of Eq. (123) with $ \partial \mathbf {r}/ \partial \phi $ and use the orthogonality relation (106), which gives

$\displaystyle \mathbf{A} \cdot \frac{\partial \mathbf{r}}{\partial \phi} = A_2 .$ (124)

In cylindrical coordinates $ (R, \phi, Z)$, the location vector is written as

$\displaystyle \mathbf{r} (R, Z, \phi) = R \hat{\mathbf{e}}_R (\phi) + Z \hat{\mathbf{e}}_Z .$ (125)

Using this, we obtain

$\displaystyle \frac{\partial \mathbf{r}}{\partial \phi} = R \hat{\mathbf{e}}_{\phi},$ (126)

Use Eq. (126) in Eq. (124) giving

$\displaystyle A_2 = A_{\phi} R,$ (127)

which indicates that $ \Psi = A_{\phi} R$ is the covariant toroidal component of the vector potential.]

yj 2018-03-09