Divergence operator in general coordinates $ (\psi , \theta , \zeta )$

To calculate the divergence of a vector, the vector should be in the contravariant representation since we can make use of the fact that

$\displaystyle \nabla \cdot (\nabla \alpha \times \nabla \beta) = 0,$ (133)

for any scalar quantities $ \alpha $ and $ \beta$. Therefore we write vector $ \mathbf{A}$ as

$\displaystyle \mathbf{A}= A^1 \mathcal{J} \nabla \theta \times \nabla \zeta + A...
...la \zeta \times \nabla \psi + A^3 \mathcal{J} \nabla \psi \times \nabla \theta,$ (134)

where $ A^1 =\mathbf{A} \cdot \nabla \psi$, etc.. Then the divergence of $ \mathbf{A}$ is readily calculated as
$\displaystyle \nabla \cdot \mathbf{A}$ $\displaystyle =$ $\displaystyle \nabla (A^1 \mathcal{J}) \cdot (\nabla \theta
\times \nabla \zeta...
...nabla \psi) + \nabla (A^3 \mathcal{J}) \cdot (\nabla \psi \times \nabla
\theta)$ (135)
  $\displaystyle =$ $\displaystyle \frac{1}{\mathcal{J}} \left( \frac{\partial A^1 \mathcal{J}}{\par...
...J}}{\partial \theta} + \frac{\partial
A^3 \mathcal{J}}{\partial \zeta} \right),$ (136)

where the second equality is obtained by using Eqs. (129), (130), and (131).

yj 2018-03-09