Laplacian operator in general coordinates $ (\psi , \theta , \zeta )$

Using the transformation between the two kinds of basis vectors given in Eq. (152), the gradient of $ f$ can be written as

$\displaystyle \nabla f$ $\displaystyle =$ $\displaystyle \frac{\partial f}{\partial \psi} \nabla \psi + \frac{\partial
f}{\partial \theta} \nabla \theta + \frac{\partial f}{\partial \zeta} \nabla
\zeta$  
  $\displaystyle =$ $\displaystyle \frac{\partial f}{\partial \psi} (g_{11} \nabla \theta \times \na...
...s \nabla \psi \mathcal{J}+
g_{13} \nabla \psi \times \nabla \theta \mathcal{J})$  
  $\displaystyle +$ $\displaystyle \frac{\partial f}{\partial \theta} (g_{21} \nabla \theta \times
\...
...s \nabla \psi
\mathcal{J}+ g_{23} \nabla \psi \times \nabla \theta \mathcal{J})$  
  $\displaystyle +$ $\displaystyle \frac{\partial f}{\partial \zeta} (g_{31} \nabla \theta \times \n...
...s \nabla \psi \mathcal{J}+
g_{33} \nabla \psi \times \nabla \theta \mathcal{J})$  
  $\displaystyle =$ $\displaystyle \left( \frac{\partial f}{\partial \psi} g_{11} + \frac{\partial
f...
...f}{\partial \zeta} g_{31}
\right) \nabla \theta \times \nabla \zeta \mathcal{J}$  
  $\displaystyle +$ $\displaystyle \left( \frac{\partial f}{\partial \psi} g_{12} + \frac{\partial
f...
...l f}{\partial \zeta} g_{32}
\right) \nabla \zeta \times \nabla \psi \mathcal{J}$  
  $\displaystyle +$ $\displaystyle \left( \frac{\partial f}{\partial \psi} g_{13} + \frac{\partial
f...
... f}{\partial \zeta} g_{33}
\right) \nabla \psi \times \nabla \theta \mathcal{J}$  

Using the above expression of $ \nabla f$ and the formula for the divergence operator, the Laplacian operator is written as
$\displaystyle \nabla^2 f$ $\displaystyle =$ $\displaystyle \nabla \cdot (\nabla f)$  
  $\displaystyle =$ $\displaystyle \frac{1}{\mathcal{J}} \frac{\partial \left( \frac{\partial
f}{\pa...
...+ \frac{\partial
f}{\partial \zeta} g_{33} \right) \mathcal{J}}{\partial \zeta}$  
  $\displaystyle =$ $\displaystyle \frac{1}{\mathcal{J}} \frac{\partial \mathcal{J}}{\partial \psi}
...
...heta} g_{21} + \frac{\partial f}{\partial
\zeta} g_{31} \right)}{\partial \psi}$  
  $\displaystyle +$ $\displaystyle \frac{1}{\mathcal{J}} \frac{\partial \mathcal{J}}{\partial \theta...
...ta} g_{22} + \frac{\partial f}{\partial
\zeta} g_{32} \right)}{\partial \theta}$  
  $\displaystyle +$ $\displaystyle \frac{1}{\mathcal{J}} \frac{\partial \mathcal{J}}{\partial \zeta}...
...eta} g_{23} + \frac{\partial f}{\partial
\zeta} g_{33} \right)}{\partial \zeta}$  

(wrong! The derivative of the equilibrium quantities are of order $ \delta^1$ and thus every term involves these derivatives are of higher order and can be dropped. Then the above expression reduces to

$\displaystyle \nabla^2 f$ $\displaystyle \approx$ $\displaystyle g_{11} \frac{\partial^2 f}{\partial^2 \psi} + g_{21}
\frac{\parti...
...theta \partial \psi} + g_{31} \frac{\partial^2
f}{\partial \zeta \partial \psi}$  
  $\displaystyle +$ $\displaystyle g_{12} \frac{\partial^2 f}{\partial \psi \partial \theta} + g_{22...
...\partial^2 \theta} + g_{32} \frac{\partial^2 f}{\partial
\zeta \partial \theta}$  
  $\displaystyle +$ $\displaystyle g_{13} \frac{\partial^2 f}{\partial \psi \partial \zeta} + g_{23}...
...{\partial \theta \partial \zeta} + g_{33}
\frac{\partial^2 f}{\partial \zeta^2}$ (137)

wrong!)

In field aligned coordinates, and $ k_{\parallel} \ll k_{\perp}$,

$\displaystyle \nabla^2 f$ $\displaystyle \approx$ $\displaystyle \frac{1}{\mathcal{J}} \frac{\partial
\mathcal{J}}{\partial \psi} ...
..._{31} + \frac{\partial f}{\partial \zeta} \frac{\partial g_{31}}{\partial
\psi}$ (138)
  $\displaystyle +$ $\displaystyle \frac{1}{\mathcal{J}} \frac{\partial \mathcal{J}}{\partial \theta...
...ial f}{\partial \psi} g_{12} + \frac{\partial f}{\partial
\zeta} g_{32} \right)$  
  $\displaystyle +$ $\displaystyle \frac{\partial^2 f}{\partial \psi \partial \zeta} g_{13} +
\frac{\partial^2 f}{\partial \zeta^2} g_{33}$  
  $\displaystyle =$    

yj 2018-03-09