Relation between Jacobian and poloidal angle $ \theta $

In $ (\psi , \theta , \phi )$ coordinates, a line element is written

$\displaystyle d\mathbf{l}= \frac{\partial \mathbf{r}}{\partial \psi} d \psi + \...
...}}{\partial \theta} d \theta + \frac{\partial \mathbf{r}}{\partial \phi} d \phi$ (185)

The line element that lies on a magnetic surface (i.e., $ d \psi = 0$) and on a poloidal plane (i.e., $ d \phi = 0$) is then written
$\displaystyle d\ensuremath{\boldsymbol{\ell}}_p$ $\displaystyle =$ $\displaystyle \frac{\partial \mathbf{r}}{\partial \theta} d
\theta$  
  $\displaystyle =$ $\displaystyle \mathcal{J} \nabla \phi \times \nabla \psi d \theta .$ (186)

We use the convention that $ d \ell_p$ and $ d \theta$ take the same sign, i.e.,

$\displaystyle d \ell_p = \vert \mathcal{J} \nabla \phi \times \nabla \psi \vert d \theta .$ (187)

Using the fact that $ \nabla \psi$ and $ \nabla
\phi$ is orthogonal and $ \nabla
\phi = \hat{\ensuremath{\boldsymbol{\phi}}} / R$, the above equation is written as

$\displaystyle d \theta = \frac{R}{\vert\mathcal{J} \nabla \psi \vert} d l_p$ (188)

Given $ \vert\mathcal{J} \nabla \psi \vert$, Eq. (188) can be used to determine the $ \theta $ coordinate of points on a magnetic surface.

yj 2018-03-09