Magnetic surface coordinate system $ (\psi , \theta , \phi )$

A coordinate system $ (\psi , \theta , \phi )$, where $ \phi $ is the usual cylindrical toroidal angle, is called a magnetic surface coordinate system if $ \Psi $ is a function of only $ \psi $, i.e., $ \partial \Psi / \partial \theta =
0$ (we also have $ \partial \Psi / \partial \phi = 0$ since we are considering axially symmetrical case). In terms of $ (\psi , \theta , \phi )$ coordinates, the contravariant form of the magnetic field, Eq. (172), is written as

$\displaystyle \mathbf{B}= - \Psi' \nabla \phi \times \nabla \psi + g (\Psi) \frac{\mathcal{J}}{R^2} \nabla \psi \times \nabla \theta,$ (176)

where $ \Psi' \equiv d \Psi / d \psi$. The covariant form of the magnetic field, Eq. (173), is written as

$\displaystyle \mathbf{B}= \left( \Psi' \frac{\mathcal{J}}{R^2} \nabla \psi \cdo...
...}{R^2} \vert \nabla \psi \vert^2 \right) \nabla \theta + g (\Psi) \nabla \phi .$ (177)



Subsections

yj 2018-03-09