Normalized poloidal coordinate

The range of $ \theta $ defined by Eq. (189) is usually not within $ [0
: 2 \pi]$. Define a normalized poloidal coordinate $ \overline{\theta}$ by

$\displaystyle \overline{\theta}_{i, j}$ $\displaystyle =$ $\displaystyle \frac{\theta_{i, j}}{\oint
\frac{R}{\vert\mathcal{J} \nabla \psi \vert} d l_p} 2 \pi$  
  $\displaystyle =$ $\displaystyle \frac{2 \pi}{\oint \frac{R}{\vert\mathcal{J} \nabla \psi \vert} d...
...}
\int_0^{\mathbf{x}_{i, j}} \frac{R}{\vert\mathcal{J} \nabla \psi \vert} d l_p$ (191)

which is obviously within the range $ [0
: 2 \pi]$. Sine we have modified the definition of the poloidal angle, the Jacobian of the new coordinates $ (\psi,
\overline{\theta}, \phi)$ is different from that of $ (\psi , \theta , \phi )$. Next, we determine the Jacobian $ \mathcal{J}_{\ensuremath{\operatorname{new}}}$ of the new coordinates $ (\psi,
\overline{\theta}, \phi)$. Equation (191) can be written as $ \overline{\theta}_{i, j} = s (\psi_j) \theta_{i, j}$ with

$\displaystyle s (\psi) = \frac{2 \pi}{\oint \frac{R}{\vert\mathcal{J} \nabla \psi \vert} d l_p} .$ (192)

The Jacobian $ \mathcal{J}_{\ensuremath{\operatorname{new}}}$ of the new coordinates system $ (\psi,
\overline{\theta}, \phi)$ is written
$\displaystyle \mathcal{J}_{\ensuremath{\operatorname{new}}}$ $\displaystyle \equiv$ $\displaystyle \frac{1}{(\nabla \psi \times \nabla
\overline{\theta}) \cdot \nabla \phi}$  
  $\displaystyle =$ $\displaystyle \frac{1}{\{\nabla \psi \times \nabla [s (\psi) \theta]\} \cdot \nabla
\phi}$  
  $\displaystyle =$ $\displaystyle \frac{1}{s (\psi)} \frac{1}{(\nabla \psi \times \nabla \theta) \cdot
\nabla \phi}$  
  $\displaystyle =$ $\displaystyle \frac{1}{s (\psi)} \mathcal{J}'$  
  $\displaystyle =$ $\displaystyle \pm \frac{1}{s (\psi)} \mathcal{J}$  
  $\displaystyle =$ $\displaystyle \pm \frac{\oint \frac{R}{\vert\mathcal{J} \nabla \psi \vert} d l_p}{2 \pi}
\mathcal{J}.$ (193)

The Jacobian $ \mathcal{J}$ can be set to various forms to achieve desired poloidal coordinates (as given in the next section). After the radial coordinate $ \psi $ is chosen, all the quantities on the right-hand side of Eq. (191) are known and the integration can be performed to obtain the value of $ \theta $ of each point on each flux surface.

yj 2018-03-09