Jacobian for equal-arc-length poloidal angle

If the Jacobian $ \mathcal{J}$ is chosen to be of the following form

$\displaystyle \mathcal{J}= \frac{R}{\vert \nabla \psi \vert} .$ (194)

Then $ \overline{\theta}_{i, j}$ in Eq. (191) is written

$\displaystyle \overline{\theta}_{i, j} = \frac{2 \pi}{\oint d l_p} \int_0^{\mathbf{x}_{i, j}} d l_p .$ (195)

and the Jacobian $ \mathcal{J}_{\ensuremath{\operatorname{new}}}$ given by Eq. (193) now takes the form

$\displaystyle \mathcal{J}_{\ensuremath{\operatorname{new}}} = \pm \frac{\oint d...
...c{\oint d l_p}{2 \pi} \frac{R}{\vert \nabla \Psi \vert} \frac{d \Psi}{d \psi} .$ (196)

Equation (195) indicates a set of poloidal points with equal arc intervals corresponds to a set of uniform $ \theta_i$ points. Therefore this choice of the Jacobian is called the equal-arc-length Jacobian. Note that Eq. (195) does not involve the radial coordinate $ \psi $. Therefore the values of $ \theta $ of points on any magnetic surface can be determined before the radial coordinate is chosen. By using Eq. (195) (to calculate $ \theta $) and the definition of $ \psi $ (to calculate $ \psi $), we obtain a magnetic surface coordinate system $ (\psi,
\overline{\theta}, \phi)$.

yj 2018-03-09