Poloidal angle used in tearing mode theory

Next, we discuss a new poloidal angle often used in the tearing mode theory, which is defined by

$\displaystyle \chi = \theta - \frac{n}{m} \zeta .$ (261)

Then it is ready to verify that the Jacobian of $ (\psi, \chi, \zeta)$ coordinates is equal to that of $ (\psi , \theta , \zeta )$ coordinates [proof: $ (\mathcal{J}')^{- 1} = \nabla \psi \times \nabla \chi \cdot \nabla \zeta =
\na...
... \zeta = \nabla
\psi \times \nabla \theta \cdot \nabla \zeta =\mathcal{J}^{- 1}$]. The component of $ \mathbf {B}$ along $ \nabla \chi$ direction (a covariant component) is written
$\displaystyle B^{(\chi)}$ $\displaystyle \equiv$ $\displaystyle \mathbf{B} \cdot \nabla \chi$  
  $\displaystyle =$ $\displaystyle - \Psi' (\nabla \zeta \times \nabla \psi + q \nabla \psi \times
\nabla \theta) \cdot \nabla (\theta - n \zeta / m)$  
  $\displaystyle =$ $\displaystyle - \Psi' (\nabla \zeta \times \nabla \psi \cdot \nabla \theta) + \Psi'
\frac{n}{m} (q \nabla \psi \times \nabla \theta \cdot \nabla \zeta)$  
  $\displaystyle =$ $\displaystyle - \Psi' \mathcal{J}^{- 1} + \Psi' \frac{n}{m} q\mathcal{J}^{- 1}$  
  $\displaystyle =$ $\displaystyle \Psi' \mathcal{J}^{- 1} \left( q \frac{n}{m} - 1 \right) .$ (262)

At the resonant surface $ q = m / n$, Eq. (262) implies $ B^{(\chi)} =
0$. On the other hand, the covariant component of $ \mathbf {B}$ in $ \theta $ direction is written
$\displaystyle B^{(\theta)}$ $\displaystyle \equiv$ $\displaystyle \mathbf{B} \cdot \nabla \theta$  
  $\displaystyle =$ $\displaystyle - \Psi' (\nabla \zeta \times \nabla \psi + q \nabla \psi \times
\nabla \theta) \cdot \nabla \theta$  
  $\displaystyle =$ $\displaystyle - \Psi' \nabla \zeta \times \nabla \psi \cdot \nabla \theta$  
  $\displaystyle =$ $\displaystyle - \Psi' \mathcal{J}^{- 1} .$ (263)

Using (263), equation (262) is written

$\displaystyle B^{(\chi)} = B^{(\theta)} \left( 1 - \frac{n}{m} q \right) .$ (264)

In the cylindrical limit, $ \mathcal{J}$ is a constant independent of the poloidal angle. Then Eq. (263) indicates that $ B^{(\theta)}$ is also a constant on a magnetic surface.

yj 2018-03-09