Covariant form of magnetic field in $ (\psi , \theta , \zeta )$ coordinate system

In the above, we have given the covariant form of the magnetic field in $ (\psi , \theta , \phi )$ coordinates (i.e., Eq. (177)). Next, we derive the corresponding form in $ (\psi , \theta , \zeta )$ coordinate. In order to do this, we need to express the $ \nabla
\phi$ basis vector in terms of $ \nabla \psi$, $ \nabla \theta $, and $ \nabla \zeta$ basis vectors. Using the definition of the generalized toroidal angle, we obtain

$\displaystyle g \nabla \phi$ $\displaystyle =$ $\displaystyle g \nabla (\zeta + q \delta)$  
  $\displaystyle =$ $\displaystyle g \nabla \zeta + g q \nabla \delta + g \delta \nabla q$  
  $\displaystyle =$ $\displaystyle g \nabla \zeta + g q \left( \frac{\partial \delta}{\partial \psi}...
...artial \delta}{\partial \theta} \nabla \theta \right)
+ g \delta q' \nabla \psi$  
  $\displaystyle =$ $\displaystyle \left( g q \frac{\partial \delta}{\partial \psi} + g \delta q'
\r...
...si + g q \frac{\partial \delta}{\partial \theta} \nabla
\theta + g \nabla \zeta$  
  $\displaystyle =$ $\displaystyle g \frac{\partial (q \delta)}{\partial \psi} \nabla \psi + g q
\frac{\partial \delta}{\partial \theta} \nabla \theta + g \nabla \zeta .$ (265)

Using Eq. (265), the covariant form of the magnetic field, Eq. (177), is written as

$\displaystyle \mathbf{B}= \left( \Psi' \frac{\mathcal{J}}{R^2} \nabla \psi \cdo...
...cal{J}}{R^2} \vert \nabla \psi \vert^2 \right) \nabla \theta + g \nabla \zeta .$ (266)

The expression (266) can be further simplified by using the equation (240) to eliminate $ \partial \delta / \partial \theta$, which gives
$\displaystyle \mathbf{B}$ $\displaystyle =$ $\displaystyle \left( \Psi' \frac{\mathcal{J}}{R^2} \nabla \psi \cdot
\nabla \th...
...bla \psi \vert^2 \right) \frac{\mathcal{J}}{R^2} \nabla \theta + g \nabla
\zeta$  
  $\displaystyle =$ $\displaystyle \left( \Psi' \frac{\mathcal{J}}{R^2} \nabla \psi \cdot \nabla \th...
...}{\mathcal{J}} \right)
\frac{\mathcal{J}}{R^2} \nabla \theta + g \nabla \zeta .$ (267)

Using $ B_0^2 = (\vert \nabla \Psi \vert^2 + g^2) / R^2$, the above equation is written as
$\displaystyle \mathbf{B}$ $\displaystyle =$ $\displaystyle \left( \Psi' \frac{\mathcal{J}}{R^2} \nabla \psi \cdot
\nabla \th...
...^2}{\mathcal{J}}
\right) \frac{\mathcal{J}}{R^2} \nabla \theta + g \nabla \zeta$  
  $\displaystyle =$ $\displaystyle \left( \Psi' \frac{\mathcal{J}}{R^2} \nabla \psi \cdot \nabla \th...
...-
\frac{B_0^2}{\Psi'} \mathcal{J}- g q \right) \nabla \theta + g \nabla \zeta
.$ (268)

Equation (268) is the covariant form of the magnetic field in $ (\psi , \theta , \zeta )$ coordinate system. For the particular choice of the radial coordinate $ \psi = - \Psi$ and the Jacobian $ \mathcal{J}= \alpha (\psi) /
B_0^2$, Eq. (268) reduces to

$\displaystyle \mathbf{B}= \left( - \frac{\mathcal{J}}{R^2} \nabla \psi \cdot \n...
...}{\partial \psi} \right) \nabla \psi + I (\psi) \nabla \theta + g \nabla \zeta,$ (269)

with $ I (\psi) = \alpha (\psi) - g q$. The magnetic field expression in Eq. (269) frequently appears in tokamak literature.

yj 2018-03-09