Periodic conditions of physical quantity along $ \theta $ and $ \alpha $ in field-line-following coordinates $ (\psi , \theta , \alpha )$

Since $ (\psi , \theta , \phi )$ and $ (\psi, \theta + 2 \pi, \phi)$ correspond to the same spatial point, a general physical quantity $ f$ expressed in terms of coordinates $ (\psi , \theta , \phi )$, i.e., $ f = f (\psi, \theta, \phi)$, must satisfy the following periodic condtions along $ \theta $:

$\displaystyle f (\psi, \theta + 2 \pi, \phi) = f (\psi, \theta, \phi) .$ (285)

Since $ (\psi , \theta , \phi )$ and $ (\psi, \theta, \phi + 2 \pi)$ correspond to the same spatial point, $ f$ must satisfy the following periodic condtions along $ \phi $:

$\displaystyle f (\psi, \theta, \phi + 2 \pi) = f (\psi, \theta, \phi) .$ (286)

Since $ (\psi , \theta , \alpha )$ and $ (\psi, \theta, \alpha + 2 \pi)$ correspond to the same spatial point, a general physical quantity $ g$ expressed in field-line-following coordinates $ (\psi , \theta , \alpha )$, i.e., $ g = g (\psi,
\theta, \alpha)$, must satisty the following peroidic condition along $ \alpha $:

$\displaystyle g (\psi, \theta, \alpha + 2 \pi) = g (\psi, \theta, \alpha) .$ (287)

However, $ P_1 = (\psi, \theta, \alpha)$ and $ P_2 = (\psi, \theta + 2 \pi,
\alpha)$ are not usually corresponding to the same spatial point. In fact, equation (282) implies, for point $ P_1$, its toroidal angle $ \phi_1$ is given by

$\displaystyle \phi_1 = \alpha + \int_0^{\theta} \frac{\mathbf{B} \cdot \nabla \phi}{\mathbf{B} \cdot \nabla \theta} d \theta,$ (288)

while for point $ P_2$, its toroidal angle $ \phi_2$ is given by

$\displaystyle \phi_2 = \alpha + \int_0^{\theta + 2 \pi} \frac{\mathbf{B} \cdot \nabla \phi}{\mathbf{B} \cdot \nabla \theta} d \theta = \phi_1 + 2 \pi q,$ (289)

i.e., $ \phi_1$ and $ \phi_2$ are different by $ 2 \pi q$. From this, we know that $ (\psi , \theta , \alpha )$ and $ (\psi, \theta + 2 \pi, \alpha - 2 \pi q)$ correspond to the same spatial point. Therefore we have the following periodic condtion:

$\displaystyle g (\psi, \theta, \alpha) = g (\psi, \theta + 2 \pi, \alpha - 2 \pi q),$ (290)

which involves both $ \theta $ and $ \alpha $.

yj 2018-03-09