Visualization of field-line-following coordinates

I am now developing a fully kinetic ions module in electromagnetic turbulence code GEM which uses field-line-following coordinates. Having an accurate understanding of the field-line-following coordinates is importan for writing the code. In this section, I try to visualize some aspects of the coordinates which are helpful for writing correct codes. The directions of the covariant basis vectors of $ (\psi , \theta , \alpha )$ coordinates are as follows:

$\displaystyle \frac{\partial \mathbf{r}}{\partial \alpha} \vert _{\psi, \theta}...
...\ensuremath{\operatorname{direction}}
(\hat{\ensuremath{\boldsymbol{\phi}}}), $

$\displaystyle \frac{\partial \mathbf{r}}{\partial \theta} \vert _{\psi, \alpha}...
...ath{\operatorname{line}} \ensuremath{\operatorname{direction}}, \mathbf{B}/ B,
$

and the direction of $ \partial \mathbf {r}/ \partial \psi \vert _{\theta , \alpha } $ is a combination of the radial and toroidal direction, as is shown in Fig. 15. A trivial but important thing to note is that the usual toroidal angle $ \phi $ is changing when changing $ \psi $ and/or $ \theta $ while keeping the generalized toroidal angle $ \alpha $ fixed. This is given by Eq. (282), i.e.,

$\displaystyle \phi = \alpha + \int_0^{\theta} \frac{\mathbf{B} \cdot \nabla \phi}{\mathbf{B} \cdot \nabla \theta} d \theta \approx \alpha + q (\psi) \theta,$ (284)

where the second equality becomes exact when $ \theta $ is the straight-field-line poloidal angle defined in Sec. 5.3.4. Figure 15 shows how the usual toroidal angle $ \phi $ changes when we change $ \psi $ while keeping $ \theta $ and $ \alpha $ fixed.

Figure 15: (a) $ \theta = 9 \times 2 \pi / 63$ contour on $ \phi = 0$ plane. Middle: $ \psi $ coordinate lines ( $ \partial \mathbf {r}/ \partial \psi $ is tangent to these lines) on the isosurface of $ \theta = 9 \times 2 \pi / 63$. Left: Grids on the isosurface of $ \theta = 9 \times 2 \pi / 63$, where the red lines are $ \alpha $ coordinate lines ( $ \partial \mathbf {r}/ \partial \alpha $ is tangent to these lines), which are along the usual toroidal direction $ \hat{\ensuremath{\boldsymbol{\phi}}}$; the blue lines are $ \psi $ coordinate lines. Magnetic field from EAST discharge #59954@3.03s.
\resizebox{4cm}{!}{\includegraphics{/home/yj/project_new/fig_lorentz/fig2b2/p.eps}} \resizebox{8cm}{!}{\includegraphics{/home/yj/project_new/fig_lorentz/fig2f/p.eps}}

\resizebox{8cm}{!}{\includegraphics{/home/yj/project_new/fig_lorentz/fig2r1/p.eps}} \resizebox{8cm}{!}{\includegraphics{/home/yj/project_new/fig_lorentz/fig2/p.eps}}

The relation $ \phi \approx \alpha + q (\psi) \theta$ given by Eq. (284) indicates that the toroidal shift for a radial change form $ \psi_1$ to $ \psi_2$ is given by $ (q (\psi_2) - q (\psi_2)) \theta$, which is larger on $ \theta $ isosurface with larger value of $ \theta $. An example for this is shown in Fig. 16, which has larger toroidal shift than that in Fig. 15.

Figure 16: (a) $ \theta = 19 \times 2 \pi / 63$ contour on $ \phi = 0$ plane, $ \partial \mathbf {r}/ \partial \psi $ lines (upper left) and $ \partial \mathbf {r}/ \partial \alpha $ lines (upper right) on isosurface of $ \theta = 19 \times 2 \pi / 63$. $ \partial \mathbf {r}/ \partial \alpha $ lines are identical with $ \partial \mathbf {r}/ \partial \phi $ lines. Lower left: Grids on the isosurface of $ \theta = 19 \times 2 \pi / 63$, which are the combinations of $ \partial \mathbf {r}/ \partial \psi $ lines and $ \partial \mathbf {r}/ \partial \alpha $ lines.
\resizebox{4cm}{!}{\includegraphics{/home/yj/project_new/fig_lorentz/fig2b3/p.eps}} \resizebox{8cm}{!}{\includegraphics{/home/yj/project_new/fig_lorentz/fig2d/p.eps}}

\resizebox{8cm}{!}{\includegraphics{/home/yj/project_new/fig_lorentz/fig2e/p.eps}} \resizebox{8cm}{!}{\includegraphics{/home/yj/project_new/fig_lorentz/fig2c/p.eps}}

The $ \partial \mathbf {r}/ \partial \psi \vert _{\theta , \alpha } $ lines can be understood in another way. Examine a family of magnetic field lines that start from the low-field-side midplane ( $ \theta = 0$) with the same toroidal angle $ (\phi = \phi_1)$ but different radial coordinates. When these field lines travel to an isosurfce of $ \theta $ with $ \theta \neq 0$, the intersecting points of these field lines with the $ \theta $ isosurface will trace out a $ \partial \mathbf {r}/ \partial \psi \vert _{\theta , \alpha } $ line. Examine another family of magnetic field lines similar to the above but with the starting toroidal angle $ \phi = \phi_2$. They will trace out another $ \partial \mathbf {r}/ \partial \psi \vert _{\theta , \alpha } $ line on the $ \theta $ isosurface. Similarly choose another family of field lines with $ \phi
= \phi_3$, we get the third $ \partial \mathbf {r}/ \partial \psi \vert _{\theta , \alpha } $ line. Continue the process, we finally get those lines in the upper-right panel of Fig. 15.

Figure 17 plots $ \partial \mathbf {r}/ \partial \psi \vert _{\theta , \alpha } $ lines on the $ \theta = 0, 2 \pi$ isosurfaces, which are chosen to be on the low-field-side midplane. On $ \theta = 0$ surface, $ \partial \mathbf {r}/ \partial \psi \vert _{\theta , \alpha } $ lines are idential to $ \partial \mathbf{r}/ \partial \psi \vert _{\theta, \phi}
$ lines. On $ \theta = 2 \pi $ surface, $ \partial \mathbf {r}/ \partial \psi \vert _{\theta , \alpha } $ lines have large $ \phi $ shift. In my code, $ \theta = 0, 2 \pi$ surface is chosen as the cut of $ \theta $ and thus an inner boundary connection condition for the perturbations is needed on this surface. This connection condition is discussed in Sec. 8.2.1.

Figure 17: (a) $ \theta = 0$ contour (blue line) in $ \phi = 0$ plane; (b) a series of $ \partial \mathbf {r}/ \partial \psi \vert _{\theta , \alpha } $ curves (with $ \alpha _j = j 2 \pi / 20$, $ j = 0, 1, 2, \ldots , 20$) on $ \theta = 0$ isosurface, (c) a single $ \partial \mathbf {r}/ \partial \psi \vert _{\theta , \alpha } $ curve (with $ \alpha = 0$) on $ \theta = 2 \pi $ isosurface. This curve finish about 4 torodial loops because $ (q_{\max} - q_{\min}) 2 \pi = (5.56 - 1.79) \times 2 \pi \approx 4
\times 2 \pi$. The radial range is $ \psi = 0.2 \rightarrow 0.9$, where $ \psi $ is the normalized poloidal magnetic flux. Magnetic field from EAST discharge #59954@3.03s (gfile g059954.003030 provided by Hao BaoLong).
\resizebox{3cm}{!}{\includegraphics{/home/yj/project_new/fig_lorentz/fig2jr1/p.eps}} \resizebox{7cm}{!}{\includegraphics{/home/yj/project_new/fig_lorentz/fig2fr1/p.eps}} \resizebox{7cm}{!}{\includegraphics{/home/yj/project_new/fig_lorentz/fig2fr2/p.eps}}



Subsections
yj 2018-03-09