Numerical verification of the field-aligned coordinates

The generalized toroidal angle $ \alpha $ is numerically calculated in my code. To verify $ \mathbf{B} \cdot \nabla \alpha = 0$ along a magnetic field-line, figure 26 plots the values of $ \alpha $ along a magnetic field line, which indicates that $ \alpha $ is constant. This indicates the numerical implementation of the field-aligned coordinates is correct.

Figure 26: Left: Projection of a field line on the poloidal plane. Right: the value of $ \Delta $ and $ \alpha $ along the magnetic field line. Here $ \alpha $ is defined by $ \alpha = \phi - \Delta $, where $ \phi $ is the usual cylindrical toroidal angle and $ \Delta = \int_0^{\theta}
\frac{\mathbf{B} \cdot \nabla \phi}{\mathbf{B} \cdot \nabla \theta} d
\theta,$
\includegraphics{/home/yj/project_new/lorentz_ions/figures/fig4b/p.eps}\includegraphics{/home/yj/project_new/lorentz_ions/figures/fig4/p.eps}



yj 2018-03-09