Expression of metric elements of magnetic coordinate system

To calculate the expression in Eq. (423), we need to calculate the metric elements of the coordinate system $ (\psi , \theta , \phi )$. Note that, in this case, the coordinate system is $ (\psi, \theta)$ while $ R$ and $ Z$ are functions of $ \psi $ and $ \theta $, i.e.,

$\displaystyle R = R (\psi, \theta),$ (305)

$\displaystyle Z = R (\psi, \theta) .$ (306)

Next, we express the elements of the metric matrix in terms of $ R$, $ Z$ and their partial derivatives with respect to $ \psi $ and $ \theta $. We note that

$\displaystyle \nabla R = \hat{\mathbf{R}} = R_{\psi} \nabla \psi + R_{\theta} \nabla \theta$ (307)

$\displaystyle \nabla Z = \hat{\mathbf{Z}} = Z_{\psi} \nabla \psi + Z_{\theta} \nabla \theta$ (308)

From Eqs. (307) and (308), we obtain

$\displaystyle \nabla \psi = \frac{1}{R_{\psi} Z_{\theta} - Z_{\psi} R_{\theta}} (Z_{\theta} \hat{\mathbf{R}} - R_{\theta} \hat{\mathbf{Z}}),$ (309)

$\displaystyle \nabla \theta = \frac{1}{Z_{\psi} R_{\theta} - R_{\psi} Z_{\theta}} (Z_{\psi} \hat{\mathbf{R}} - R_{\psi} \hat{\mathbf{Z}}) .$ (310)

We note that

$\displaystyle \nabla R \times \nabla \phi \cdot \nabla Z = \frac{1}{R},$ (311)

i.e.,

$\displaystyle (R_{\psi} \nabla \psi + R_{\theta} \nabla \theta) \times \nabla \phi \cdot (Z_{\psi} \nabla \psi + Z_{\theta} \nabla \theta) = \frac{1}{R}$ (312)

$\displaystyle \Rightarrow (R_{\psi} \nabla \psi \times \nabla \phi + R_{\theta}...
...bla \phi) \cdot (Z_{\psi} \nabla \psi + Z_{\theta} \nabla \theta) = \frac{1}{R}$ (313)

$\displaystyle \Rightarrow R_{\theta} Z_{\psi} \mathcal{J}^{- 1} - R_{\psi} Z_{\theta}
\mathcal{J}^{- 1} = \frac{1}{R} $

$\displaystyle \Longrightarrow \mathcal{J}= R (R_{\theta} Z_{\psi} - R_{\psi} Z_{\theta})$ (314)

Using this, Eqs. (307) and (308) are written as

$\displaystyle \nabla \psi = - \frac{R}{\mathcal{J}} (Z_{\theta} \hat{\mathbf{R}} - R_{\theta} \hat{\mathbf{Z}})$ (315)

and

$\displaystyle \nabla \theta = \frac{R}{\mathcal{J}} (Z_{\psi} \hat{\mathbf{R}} - R_{\psi} \hat{\mathbf{Z}}) .$ (316)

Using Eqs. (315) and (316), the elements of the metric matrix are written as

$\displaystyle \vert \nabla \psi \vert^2 = \frac{R^2}{\mathcal{J}^2} (Z_{\theta}^2 + R_{\theta}^2),$ (317)

$\displaystyle \vert \nabla \theta \vert^2 = \frac{R^2}{\mathcal{J}^2} (Z_{\psi}^2 + R_{\psi}^2),$ (318)

and

$\displaystyle \nabla \psi \cdot \nabla \theta = - \frac{R^2}{\mathcal{J}^2} (Z_{\theta} Z_{\psi} + R_{\theta} R_{\psi}) .$ (319)

Eqs. (317), (318), and (319) can be used to express the elements of the metric matrix in terms of $ R$, $ R_{\psi}$, $ R_{\theta}$, $ Z_{\psi}$, and $ Z_{\theta}$. [Combining the above results, we obtain

$\displaystyle \frac{\nabla \psi \cdot \nabla \theta}{\vert \nabla \psi \vert^2}...
...\frac{Z_{\theta} Z_{\psi} + R_{\theta} R_{\psi}}{Z_{\theta}^2 + R_{\theta}^2} .$ (320)

Equation (319) is used in GTAW code.]

Next, consider the gradient of the generalized toroidal angle $ \alpha $, which is defined by Eq. (282), i.e., $ \alpha = \phi - \overline {\delta }$, where $ \overline{\delta} = \int_0^{\theta} \mathbf{B}
\cdot \nabla \phi / \left( \mathbf{B} \cdot \nabla \theta \right) d \theta$. The gradient of $ \alpha $ is written as

$\displaystyle \nabla \alpha$ $\displaystyle =$ $\displaystyle \nabla \phi - \nabla \overline{\delta}$  
  $\displaystyle =$ $\displaystyle \frac{\hat{\ensuremath{\boldsymbol{\phi}}}}{R} - \frac{\partial
\...
... \nabla \psi - \frac{\partial
\overline{\delta}}{\partial \theta} \nabla \theta$  
  $\displaystyle =$ $\displaystyle \frac{\hat{\ensuremath{\boldsymbol{\phi}}}}{R} + \frac{\partial
\...
...} \frac{R}{\mathcal{J}} (Z_{\psi}
\hat{\mathbf{R}} - R_{\psi} \hat{\mathbf{Z}})$  
  $\displaystyle =$ $\displaystyle \frac{\hat{\ensuremath{\boldsymbol{\phi}}}}{R} + \left( \frac{\pa...
...ta}}{\partial \psi} \frac{R}{\mathcal{J}}
R_{\theta} \right) \hat{\mathbf{Z}} .$ (321)

Then
$\displaystyle \nabla \psi \cdot \nabla \alpha$ $\displaystyle =$ $\displaystyle \left( - \frac{R}{\mathcal{J}}
Z_{\theta} \hat{\mathbf{R}} + \fra...
...partial
\psi} \frac{R}{\mathcal{J}} R_{\theta} \right) \hat{\mathbf{Z}} \right]$  
  $\displaystyle =$ $\displaystyle - \frac{R}{\mathcal{J}} Z_{\theta} \left( \frac{\partial
\overlin...
...al \overline{\delta}}{\partial \psi} \frac{R}{\mathcal{J}}
R_{\theta} \right) .$ (322)


$\displaystyle \nabla \alpha \cdot \nabla \theta$ $\displaystyle =$ $\displaystyle \left[
\frac{\hat{\ensuremath{\boldsymbol{\phi}}}}{R} + \left( \f...
...psi} \hat{\mathbf{R}} - \frac{R}{\mathcal{J}}
R_{\psi} \hat{\mathbf{Z}} \right)$  
  $\displaystyle =$ $\displaystyle \left( \frac{\partial \overline{\delta}}{\partial \psi}
\frac{R}{...
...\psi} \frac{R}{\mathcal{J}}
R_{\theta} \right) \frac{R}{\mathcal{J}} R_{\psi} .$ (323)

Using the above results, $ h^{\alpha \beta}$ are written as

$\displaystyle h^{\psi \psi} = \frac{\mathcal{J}}{R^2} \vert \nabla \psi \vert^2 = \frac{1}{\mathcal{J}} (Z_{\theta}^2 + R_{\theta}^2)$ (324)

$\displaystyle h^{\theta \theta} = \frac{\mathcal{J}}{R^2} \vert \nabla \theta \vert^2 = \frac{1}{\mathcal{J}} (Z_{\psi}^2 + R_{\psi}^2),$ (325)

$\displaystyle h^{\psi \theta} = \frac{\mathcal{J}}{R^2} \nabla \psi \cdot \nabla \theta = - \frac{1}{\mathcal{J}} (Z_{\theta} Z_{\psi} + R_{\theta} R_{\psi})$ (326)

[As a side product of the above results, we can calculate the arc length in the poloidal plane along a constant $ \psi $ surface, $ d \ell$, which is expressed as
$\displaystyle d \ell$ $\displaystyle =$ $\displaystyle \sqrt{(d R)^2 + (d Z)^2}$  
  $\displaystyle =$ $\displaystyle \sqrt{(R_{\psi} d \psi + R_{\theta} d \theta)^2 + (Z_{\psi} d \psi +
Z_{\theta} d \theta)^2} .$  

Note that $ d \psi = 0$ since we are considering the arc length along a constant $ \psi $ surface in $ (R, Z)$ plane. Then the above equation is reduced to
$\displaystyle d \ell$ $\displaystyle =$ $\displaystyle \sqrt{(R_{\theta} d \theta)^2 + (Z_{\theta} d \theta)^2}$  
  $\displaystyle =$ $\displaystyle \sqrt{R_{\theta}^2 + Z_{\theta}^2} d \theta$  
  $\displaystyle =$ $\displaystyle \frac{\vert\mathcal{J} \nabla \psi \vert}{R} d \theta,$ (327)

which agrees with Eq. (188).]

yj 2018-03-09