Is the above $ \mathbf {B}$ divergence-free?

Let us check this. Write $ \mathbf {B}$ as

$\displaystyle \mathbf{B}= B^{(1)} \mathcal{J} \nabla \theta \times \nabla \phi ...
...nabla \phi \times \nabla r + B^{(3)} \mathcal{J} \nabla r \times \nabla \theta,$ (345)

where $ \mathcal{J}$ is the Jacobian of $ (r, \theta, \phi)$ coordinates; $ B^{(1)}$, $ B^{(2)}$, and $ B^{(3)}$ are given by

$\displaystyle B^{(1)} =\mathbf{B} \cdot \nabla r$ (346)

$\displaystyle B^{(2)} =\mathbf{B} \cdot \nabla \theta$ (347)

$\displaystyle B^{(3)} =\mathbf{B} \cdot \nabla \phi$ (348)

Use $ \mathbf{B}_p$ given by (342), then $ B^{(1)}$, $ B^{(2)}$, and $ B^{(3)}$ are written as

$\displaystyle B^{(1)} = 0,$ (349)

$\displaystyle B^{(2)} = - \frac{1}{\mathcal{J}} \frac{1}{q (r)} \frac{g_0 r}{\sqrt{R_0^2 - r^2}},$ (350)

and

$\displaystyle B^{(3)} = \frac{B_{\phi}}{R},$ (351)

respectively. Then, by using the divergence formula in $ (r, \theta, \phi)$ coordinates, $ \nabla \cdot \mathbf{B}$ is written as
$\displaystyle \nabla \cdot \mathbf{B}$ $\displaystyle =$ $\displaystyle \frac{1}{\mathcal{J}} \left( \frac{\partial
B^{(1)} \mathcal{J}}{...
...}{\partial \theta} + \frac{\partial B^{(3)} \mathcal{J}}{\partial
\phi} \right)$  
  $\displaystyle =$ $\displaystyle \frac{1}{\mathcal{J}} \left( 0 + \frac{\partial B^{(2)}
\mathcal{J}}{\partial \theta} + 0 \right)$  
  $\displaystyle =$ $\displaystyle \frac{1}{\mathcal{J}} \frac{\partial}{\partial \theta} \left( -
\frac{1}{q (r)} \frac{g_0 r}{\sqrt{R_0^2 - r^2}} \right)$  
  $\displaystyle =$ 0 (352)

i.e., $ \mathbf {B}$ in this case is indeed divergence-free.

yj 2018-03-09