Magnetic configuration with concentric-circular magnetic surfaces

Assume magnetic surfaces of a magnetic configuration are given by

$\displaystyle R (r, \theta) = R_0 + r \cos \theta,$ (333)

and

$\displaystyle Z (r, \theta) = r \sin \theta,$ (334)

where $ r$ is the label of magnetic surfaces (i.e., $ \partial \Psi / \partial
\theta \vert _r = 0 $). The above parametric equations specify a series of concentric-circular magnetic surfaces with $ r$ being the minor radius.

Assume the poloidal plasma current is zero, i.e., $ g = R B_{\phi}$ is a constant (this constant is denoted by $ g_0$ in the following). In this case the toroidal magnetic field is determined by $ B_{\phi} = g_0 / R$. Assume the $ q$ profile is given. Next, let us determine the poloidal magnetic field $ \mathbf{B}_p$, which is given by

$\displaystyle \mathbf{B}_p = \nabla \Psi \times \nabla \phi = \frac{1}{2 \pi} \nabla \Psi_p \times \nabla \phi,$ (335)

which involves the poloidal magnetic flux $ \Psi _p$. Our task is to express the poloidal magnetic flux $ \Psi _p$ in terms of $ q$ and $ g_0$. Using $ q (r) = d
\Psi_t / d \Psi_p$, we obtain

$\displaystyle d \Psi_p = \frac{1}{q} d \Psi_t, $

Integrate the above equation over $ r$, we obtain

$\displaystyle \int_0^r d \Psi_p = \int_0^r \frac{1}{q} d \Psi_t,$ (336)

which an be written as

$\displaystyle \Psi_p (r) - \Psi_p (0) = \int_0^r \frac{1}{q (r)} d \left( \int_0^r \int_0^{2 \pi} B_t r d r d \theta \right),$ (337)

where use has been made of $ \Psi_t = \int_0^r \int_0^{2 \pi} B_t r d r d
\theta$. Using $ B_t = g_0 / R$ and $ R = R_0 + r \cos \theta$, the above equation is written

$\displaystyle \Psi_p (r) - \Psi_p (0) = \int_0^r \frac{1}{q (r)} d \left( \int_0^r \int_0^{2 \pi} \frac{g_0}{R_0 + r \cos \theta} r d r d \theta \right)$ (338)

Using maxima (an open-source computer algebra system), the above integration over $ \theta $ can be performed analytically, giving

$\displaystyle \int_0^{2 \pi} \frac{g_0}{R_0 + r \cos \theta} d \theta = \frac{2 \pi g_0 r}{\sqrt{R_0^2 - r^2}} .$ (339)

Using this, equation (338) is written as

$\displaystyle \Psi_p (r) - \Psi_p (0) = \int_0^r \frac{1}{q (r)} d \left( \int_0^r \frac{2 \pi g_0 r}{\sqrt{R_0^2 - r^2}} d r \right),$ (340)

which can be simplified as

$\displaystyle \Psi_p (r) - \Psi_p (0) = \int_0^r \frac{1}{q (r)} \frac{2 \pi g_0 r}{\sqrt{R_0^2 - r^2}} d r.$ (341)

Using this, the poloidal magnetic field in Eq. (335) is written as
$\displaystyle \mathbf{B}_p$ $\displaystyle =$ $\displaystyle \frac{\nabla r \times \nabla \phi}{2 \pi}
\frac{\partial}{\partia...
...ft( \int_0^r \frac{1}{q (r)} \frac{2 \pi g_0
r}{\sqrt{R_0^2 - r^2}} d r \right)$  
  $\displaystyle =$ $\displaystyle \nabla r \times \nabla \phi \frac{1}{q (r)} \frac{g_0 r}{\sqrt{R_0^2
- r^2}} .$ (342)

[Using the formulas $ \nabla r = - \frac{R}{\mathcal{J}} (Z_{\theta}
\hat{\mathbf{R}} - R_{\theta} \hat{\mathbf{Z}})$ and $ \mathcal{J} = R
(R_{\theta} Z_r - R_r Z_{\theta})$, we obtain $ \mathcal{J} = - R r$ and $ \nabla r = \cos \theta \hat{\mathbf{R}} + \sin \theta \hat{\mathbf{Z}}$, $ \nabla
\phi = \hat{\ensuremath{\boldsymbol{\phi}}} / R$. Then Eq. (342) is written as

$\displaystyle \mathbf{B}_p = \frac{\cos \theta \hat{\mathbf{Z}} - \sin \theta \hat{\mathbf{R}}}{R} \frac{1}{q (r)} \frac{g_0 r}{\sqrt{R_0^2 - r^2}}$ (343)

This is the formula for calculating the poloidal magnetic field. The magnitude of $ \mathbf{B}_p$ is written as

$\displaystyle B_p = \frac{1}{(R_0 + r \cos \theta)} \frac{1}{q (r)} \frac{g_0 r}{\sqrt{R_0^2 - r^2}}$ (344)

Note that both $ B_p$ and $ B_{\phi}$ depend on the poloidal angle $ \theta $.]

I use Eq. (341) to compute the 2D data of $ \Psi $ ( $ \Psi = \Psi_p
/ 2 \pi$) on the poloidal plane when creating a numerical G-eqdsk file for the above equilibrium.



Subsections
yj 2018-03-09