Grad-Shafranov equation with prescribed safety factor profile (to be finished)

In the GS equation, $ g (\Psi)$ is one of the two free functions which can be prescribed by users. In some cases, we want to specify the safety factor profile $ q (\Psi)$, instead of $ g (\Psi)$, in solving the GS equation. Next, we derive the form of the GS equation that contains $ q (\Psi)$, instead of $ g (\Psi)$, as a free function. The safety factor defined in Eq. (182) can be written

$\displaystyle q (\psi)$ $\displaystyle =$ $\displaystyle - \frac{1}{2 \pi} \frac{g}{\Psi'} \int_0^{2 \pi}
\frac{\mathcal{J}}{R^2} d \theta$ (469)
  $\displaystyle =$ $\displaystyle - \frac{1}{2 \pi} \frac{g}{\Psi'} \frac{\int_0^{2 \pi} R^{- 2}
\m...
... \theta}{\int_0^{2 \pi} \mathcal{J}d \theta} \int_0^{2 \pi}
\mathcal{J}d \theta$  
  $\displaystyle =$ $\displaystyle - \frac{1}{2 \pi} \frac{g}{\Psi'} \langle R^{- 2} \rangle \int_0^{2
\pi} \mathcal{J}d \theta$ (470)
  $\displaystyle =$ $\displaystyle - \ensuremath{\operatorname{sgn}} (\mathcal{J}) \frac{V'}{(2 \pi)^2} \frac{\langle R^{-
2} \rangle}{\Psi'} g.$ (471)

Equation (471) gives the relation between the safety factor $ q$ and the toroidal field function $ g$. This relation can be used in the GS equation to eliminate $ g$ in favor of $ q$, which gives

$\displaystyle g = - \ensuremath{\operatorname{sgn}} (\mathcal{J}) \frac{(2 \pi)^2}{V' \langle R^{- 2} \rangle} \Psi' q.$ (472)

$\displaystyle \Rightarrow \frac{d g}{d \Psi} g = \frac{(2 \pi)^2}{V' \langle R^...
...e} q \left[ \frac{(2 \pi)^2}{V' \langle R^{- 2} \rangle} q \Psi' \right]_{\psi}$ (473)

Multiplying Eq. (468) by $ R^{- 2}$ gives

$\displaystyle \frac{1}{\mathcal{J}} \left[ \left( \Psi' \frac{\mathcal{J}}{R^2}...
...{\theta} \right] + \mu_0 \frac{d p}{d \Psi} + R^{- 2} \frac{d g}{d \Psi} g = 0.$ (474)

Surface-averaging the above equation, we obtain

$\displaystyle \frac{2 \pi}{V'} \int d \theta \left[ \left( \Psi' \frac{\mathcal...
... + \mu_0 \frac{d p}{d \Psi} + \langle R^{- 2} \rangle \frac{d g}{d \Psi} g = 0,$ (475)

$\displaystyle \Rightarrow \frac{2 \pi}{V'} \int d \theta \left( \Psi' \frac{\ma...
... + \mu_0 \frac{d p}{d \Psi} + \langle R^{- 2} \rangle \frac{d g}{d \Psi} g = 0,$ (476)

$\displaystyle \Rightarrow \frac{2 \pi}{V'} \left[ \Psi' \int d \theta \left( \m...
... + \mu_0 \frac{d p}{d \Psi} + \langle R^{- 2} \rangle \frac{d g}{d \Psi} g = 0,$ (477)

$\displaystyle \Rightarrow \frac{1}{V'} \left[ V' \Psi' \left\langle \frac{\vert...
... + \mu_0 \frac{d p}{d \Psi} + \langle R^{- 2} \rangle \frac{d g}{d \Psi} g = 0.$ (478)

$\displaystyle \Rightarrow \left[ V' \Psi' \left\langle \frac{\vert \nabla \psi ...
..._0 V' \frac{d p}{d \Psi} + \langle R^{- 2} \rangle V' \frac{d g}{d \Psi} g = 0,$ (479)

Substitute Eq. (473) into the above equation to eliminate $ g d g / d
\Psi$, we obtain

$\displaystyle \Rightarrow \left[ V' \Psi' \left\langle \frac{\vert \nabla \psi ...
...(2 \pi)^4 \left[ \frac{q \Psi'}{V' \langle R^{- 2} \rangle} \right]_{\psi} = 0,$ (480)

Eq. (480) agrees with Eq. (5.55) in Ref. [9].

$\displaystyle \Rightarrow V' \left\langle \frac{\vert \nabla \psi \vert^2}{R^2}...
... (2 \pi)^4 \left[ \frac{q}{V' \langle R^{- 2} \rangle} \right]_{\psi} \Psi' = 0$ (481)

$\displaystyle \Rightarrow \Psi'' = - \frac{1}{V' D} \left\{ \left[ V' \left\lan...
...le R^{- 2} \rangle} \right]_{\psi} \Psi' + \mu_0 V' \frac{d p}{d \Psi} \right\}$ (482)

where

$\displaystyle D = \left\langle \frac{\vert \nabla \psi \vert^2}{R^2} \right\rangle + \frac{(2 \pi)^4}{\langle R^{- 2} \rangle} \left( \frac{q}{V'} \right)^2$ (483)

The GS equation is

$\displaystyle \triangle^{\star} \Psi = - \mu_0 R^2 \frac{d p}{d \Psi} - g \frac{d g}{d \Psi}$ (484)

$\displaystyle \Rightarrow \triangle^{\star} \Psi = - \mu_0 R^2 \frac{d p}{d \Ps...
...{- 2} \rangle} \left[ \frac{q \Psi'}{V' \langle R^{- 2} \rangle} \right]_{\psi}$ (485)

$\displaystyle \Rightarrow \triangle^{\star} \Psi = - \mu_0 R^2 \frac{d p}{d \Ps...
...si} \Psi' + \left[ \frac{q}{V' \langle R^{- 2} \rangle} \right] \Psi'' \right\}$ (486)

Using Eq. (482) to eliminate $ \Psi''$ in the above equation, the coefficients before ( $ - \mu_0 d p / d \Psi$) is written as
$\displaystyle B$ $\displaystyle =$ $\displaystyle R^2 - \frac{q (2 \pi)^4}{V' \langle R^{- 2} \rangle} \left\{ \left[
\frac{q}{V' \langle R^{- 2} \rangle} \right] \frac{1}{V' D} V' \right\}$  
  $\displaystyle =$ $\displaystyle \frac{1}{D} \left\{ R^2 D - \left( \frac{q}{V'} \right)^2 \frac{(2
\pi)^4}{\langle R^{- 2} \rangle^2} \right\} .$ (487)

Substituting the expression of $ D$ into the above equation, we obtain
$\displaystyle B$ $\displaystyle =$ $\displaystyle \frac{1}{D} \left\{ R^2 \left\langle \frac{\vert \nabla \psi \ver...
...ft( \frac{q}{V'} \right)^2 \frac{(2
\pi)^4}{\langle R^{- 2} \rangle^2} \right\}$  
  $\displaystyle =$ $\displaystyle \frac{1}{D} \left\{ R^2 \left\langle \frac{\vert \nabla \psi \ver...
...{-
2} \rangle} \left( R^2 - \frac{1}{\langle R^{- 2} \rangle} \right) \right\},$ (488)

which is equal to the expression (5.58) in Ref. [9]. The coefficient before $ \Psi'$ is written as

$\displaystyle A = - \frac{q (2 \pi)^4}{V' \langle R^{- 2} \rangle} \left\{ \lef...
...4 \left[ \frac{q}{V' \langle R^{- 2} \rangle} \right]_{\psi}
\right] \right\} $

Define

$\displaystyle \alpha = \left\langle \frac{\vert \nabla \psi \vert^2}{R^2} \right\rangle, $

$\displaystyle \beta = \frac{q}{V' \langle R^{- 2} \rangle} . $

$\displaystyle A = - (2 \pi)^4 \beta \left\{ \beta_{\psi} - \beta \frac{1}{V' D} [(V'
\alpha)_{\psi} + q (2 \pi)^4 \beta_{\psi}] \right\} $

$\displaystyle \Longrightarrow \frac{D}{- (2 \pi)^4 \beta} A = D \beta_{\psi} - \beta \frac{1}{V'} [(V' \alpha)_{\psi} + q (2 \pi)^4 \beta_{\psi}]$ (489)

$\displaystyle \Longrightarrow \frac{D}{- \beta (2 \pi)^4} A = D \beta_{\psi} - \beta \frac{1}{V'} [V'' \alpha + V' \alpha_{\psi} + q (2 \pi)^4 \beta_{\psi}]$ (490)

Using

$\displaystyle D = \alpha + (2 \pi)^4 \langle R^{- 2} \rangle \beta^2$ (491)

Eq. () is written as

$\displaystyle \left. \Longrightarrow \frac{D}{- \beta (2 \pi)^4} A = \alpha \be...
...c{1}{V'} V' \alpha_{\psi} - \beta \frac{1}{V'} q (2 \pi)^4 \beta_{\psi} \right]$ (492)

$\displaystyle \left. \Longrightarrow \frac{D}{- \beta (2 \pi)^4} A = \alpha \be...
...pha - \beta \alpha_{\psi} - \beta \frac{1}{V'} q (2 \pi)^4 \beta_{\psi} \right]$ (493)

$\displaystyle \frac{A}{- \beta (2 \pi)^4} D = \alpha \beta_{\psi} + (2 \pi)^4 \...
... - \beta \alpha_{\psi} - \beta^2 \langle R^{- 2} \rangle (2 \pi)^4 \beta_{\psi}$ (494)

$\displaystyle \Longrightarrow \frac{A}{- \beta (2 \pi)^4} D = \alpha \beta_{\psi} - \beta \frac{1}{V'} V'' \alpha - \beta \alpha_{\psi}$ (495)

$\displaystyle \Longrightarrow \frac{A}{- \beta (2 \pi)^4} D = - \beta^2 \left( \frac{\alpha}{\beta} \right)_{\psi} - \beta \frac{1}{V'} V'' \alpha$ (496)

$\displaystyle \Longrightarrow \frac{A}{- \beta (2 \pi)^4} D = - \beta^2 \left( ...
...c{\alpha}{\beta} \right)_{\psi} - \beta^2 \frac{1}{V'} V'' \frac{\alpha}{\beta}$ (497)

$\displaystyle \Longrightarrow \frac{A}{- \beta (2 \pi)^4} D = - \beta^2 \left[ ...
...c{\alpha}{\beta} \right)_{\psi} + \frac{1}{V'} V'' \frac{\alpha}{\beta} \right]$ (498)

$\displaystyle \Longrightarrow \frac{A}{- \beta (2 \pi)^4} D = - \beta^2 \frac{1...
...left( \frac{\alpha}{\beta} \right)_{\psi} V' + V'' \frac{\alpha}{\beta} \right]$ (499)

$\displaystyle \Longrightarrow \frac{A}{- \beta (2 \pi)^4} D = - \beta^2 \frac{1}{V'} \left( \frac{\alpha}{\beta} V' \right)_{\psi}$ (500)

$\displaystyle \Longrightarrow A = \frac{(2 \pi)^4}{D} \left( \frac{q}{V' \langl...
...^2} \right\rangle \frac{\langle R^{- 2} \rangle}{q} V^{\prime 2} \right]_{\psi}$ (501)

But the expression of $ A$ is slightly different from that given in Ref. [9] [Eq. (5.57)]. Using the above coefficients, the GS equation with the $ q$-profile held fixed is written as

$\displaystyle \left( \Delta^{\star} - A \frac{\partial}{\partial \psi} \right) \Psi = - B \mu_0 \frac{d p}{d \Psi} .$ (502)

yj 2018-03-09