In the GS equation,
is one of the two free functions which can be
prescribed by users. In some cases, we want to specify the safety factor
profile
, instead of
, in solving the GS equation. Next,
we derive the form of the GS equation that contains
, instead of
, as a free function. The safety factor defined in Eq. (182)
can be written
Equation (471) gives the relation between the safety factor
and
the toroidal field function
. This relation can be used in the GS equation
to eliminate
in favor of
, which gives
 |
(472) |
![$\displaystyle \Rightarrow \frac{d g}{d \Psi} g = \frac{(2 \pi)^2}{V' \langle R^...
...e} q \left[ \frac{(2 \pi)^2}{V' \langle R^{- 2} \rangle} q \Psi' \right]_{\psi}$](img1400.png) |
(473) |
Multiplying Eq. (468) by
gives
![$\displaystyle \frac{1}{\mathcal{J}} \left[ \left( \Psi' \frac{\mathcal{J}}{R^2}...
...{\theta} \right] + \mu_0 \frac{d p}{d \Psi} + R^{- 2} \frac{d g}{d \Psi} g = 0.$](img1402.png) |
(474) |
Surface-averaging the above equation, we obtain
 |
(475) |
 |
(476) |
 |
(477) |
 |
(478) |
 |
(479) |
Substitute Eq. (473) into the above equation to eliminate
, we obtain
![$\displaystyle \Rightarrow \left[ V' \Psi' \left\langle \frac{\vert \nabla \psi ...
...(2 \pi)^4 \left[ \frac{q \Psi'}{V' \langle R^{- 2} \rangle} \right]_{\psi} = 0,$](img1409.png) |
(480) |
Eq. (480) agrees with Eq. (5.55) in Ref. [9].
![$\displaystyle \Rightarrow V' \left\langle \frac{\vert \nabla \psi \vert^2}{R^2}...
... (2 \pi)^4 \left[ \frac{q}{V' \langle R^{- 2} \rangle} \right]_{\psi} \Psi' = 0$](img1410.png) |
(481) |
![$\displaystyle \Rightarrow \Psi'' = - \frac{1}{V' D} \left\{ \left[ V' \left\lan...
...le R^{- 2} \rangle} \right]_{\psi} \Psi' + \mu_0 V' \frac{d p}{d \Psi} \right\}$](img1411.png) |
(482) |
where
 |
(483) |
The GS equation is
 |
(484) |
![$\displaystyle \Rightarrow \triangle^{\star} \Psi = - \mu_0 R^2 \frac{d p}{d \Ps...
...{- 2} \rangle} \left[ \frac{q \Psi'}{V' \langle R^{- 2} \rangle} \right]_{\psi}$](img1414.png) |
(485) |
![$\displaystyle \Rightarrow \triangle^{\star} \Psi = - \mu_0 R^2 \frac{d p}{d \Ps...
...si} \Psi' + \left[ \frac{q}{V' \langle R^{- 2} \rangle} \right] \Psi'' \right\}$](img1415.png) |
(486) |
Using Eq. (482) to eliminate
in the above equation, the
coefficients before (
) is written as
Substituting the expression of
into the above equation, we obtain
which is equal to the expression (5.58) in Ref. [9]. The
coefficient before
is written as
Define
![$\displaystyle \Longrightarrow \frac{D}{- (2 \pi)^4 \beta} A = D \beta_{\psi} - \beta \frac{1}{V'} [(V' \alpha)_{\psi} + q (2 \pi)^4 \beta_{\psi}]$](img1428.png) |
(489) |
![$\displaystyle \Longrightarrow \frac{D}{- \beta (2 \pi)^4} A = D \beta_{\psi} - \beta \frac{1}{V'} [V'' \alpha + V' \alpha_{\psi} + q (2 \pi)^4 \beta_{\psi}]$](img1429.png) |
(490) |
Using
 |
(491) |
Eq. () is written as
![$\displaystyle \left. \Longrightarrow \frac{D}{- \beta (2 \pi)^4} A = \alpha \be...
...c{1}{V'} V' \alpha_{\psi} - \beta \frac{1}{V'} q (2 \pi)^4 \beta_{\psi} \right]$](img1431.png) |
(492) |
![$\displaystyle \left. \Longrightarrow \frac{D}{- \beta (2 \pi)^4} A = \alpha \be...
...pha - \beta \alpha_{\psi} - \beta \frac{1}{V'} q (2 \pi)^4 \beta_{\psi} \right]$](img1432.png) |
(493) |
 |
(494) |
 |
(495) |
 |
(496) |
 |
(497) |
![$\displaystyle \Longrightarrow \frac{A}{- \beta (2 \pi)^4} D = - \beta^2 \left[ ...
...c{\alpha}{\beta} \right)_{\psi} + \frac{1}{V'} V'' \frac{\alpha}{\beta} \right]$](img1437.png) |
(498) |
![$\displaystyle \Longrightarrow \frac{A}{- \beta (2 \pi)^4} D = - \beta^2 \frac{1...
...left( \frac{\alpha}{\beta} \right)_{\psi} V' + V'' \frac{\alpha}{\beta} \right]$](img1438.png) |
(499) |
 |
(500) |
![$\displaystyle \Longrightarrow A = \frac{(2 \pi)^4}{D} \left( \frac{q}{V' \langl...
...^2} \right\rangle \frac{\langle R^{- 2} \rangle}{q} V^{\prime 2} \right]_{\psi}$](img1440.png) |
(501) |
But the expression of
is slightly different from that given in Ref.
[9] [Eq. (5.57)]. Using the above coefficients, the GS
equation with the
-profile held fixed is written as
 |
(502) |
yj
2018-03-09